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Background: A calibration phantom-based method has been developed for predicting small lung nodule 
volume measurement bias and precision that is specific to a particular computed tomography (CT) scanner 
and acquisition protocol. 
Methods: The approach involves CT scanning a simple reference object with a specific acquisition protocol, 
analyzing the scan to estimate the fundamental imaging properties of the CT acquisition system, generating 
numerous simulated images of a target geometry using the fundamental imaging properties, measuring the 
simulated images with a standard nodule volume segmentation algorithm, and calculating bias and precision 
performance statistics from the resulting volume measurements. We evaluated the ability of this approach to 
predict volume measurement bias and precision of Teflon spheres (diameters =4.76, 6.36, and 7.94 mm) placed 
within an anthropomorphic chest phantom when using 3M Scotch Magic™ tape as the reference object. CT 
scanning of the spheres was performed with 0.625, 1.25, and 2.5 mm slice thickness and spacing.
Results: The study demonstrated good agreement between predicted volumetric performance and 
observed volume measurement performance for both volumetric measurement bias and precision. The 
predicted and observed volume mean for all slice thicknesses was found to be 28% and 13% lower on 
average than the manufactured sphere volume, respectively. When restricted to 0.625 and 1.25 mm slice 
thickness scans, which are recommended for small lung nodule volume measurement, we found that the 
difference between predicted and observed volume coefficient of variation was less than 1.0 %. The approach 
also showed a resilience to varying CT image acquisition protocols, a critical capability when deploying in a  
real-world clinical setting. 
Conclusions: This is the first report of a calibration phantom-based method’s ability to predict both small 
lung nodule volume measurement bias and precision. Volume measurement bias and precision for small 
lung nodules can be predicted using simple low-cost reference objects to estimate fundamental CT image 
characteristics and modeling and simulation techniques. The approach demonstrates an improved method 
for predicting task specific, clinically relevant measurement performance using advanced and fully automated 
image analysis techniques and low-cost reference objects.
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Introduction

Obtaining accurate size and size change measurements 
of sub-centimeter lung nodules in low-dose computed 
tomography (CT) scans is essential for effective low dose 
CT lung cancer screening. Radiation dose delivered to 
patients must be minimized, typically following As Low 
As Reasonably Achievable (ALARA) guidelines (1), while 
maintaining high CT image quality to enable precise 
and accurate measurement of nodule volumes. Although 
currently available CT scanners provide tools for estimating 
radiation dose, there are no corresponding tools for 
estimating the image quality that clinicians can expect when 
using specific acquisition protocols and further predicting 
the expected quantitative image measurement performance 
for a particular clinical task. Clinicians need these tools 
given the fundamental tradeoff between CT image quality 
and radiation dose, and the complexity of the relationships 
between clinical task performance and CT acquisition 
parameters (2-6). In this manuscript we explore methods for 
predicting lung nodule volume measurement performance, 
which can provide clinicians with a direct estimate 
of expected CT image quality for specific acquisition 
protocols. While the methods were originally developed for 
estimating lung nodule volume measurement in the context 
of low dose CT lung cancer screening, the methods have 
broad applicability for informing the quality of lung nodule 
measurement in the routine clinical care setting.

CT image quality has historically relied on measuring 
a complex collection of image quality indicators, such 
as contrast, spatial resolution, image noise, and specific 
image artifacts. In addition numerous research articles 
have presented CT image quality metrics that correlate 
with general clinical task performance (7,8). While these 
methods can be useful, the complexity of interpretation of 
the results for a specific clinical task, such as for assessing 
small CT lung nodule volume measurement error, exceeds 
the expertise available at most clinical sites. Our goal here is 
to directly predict the statistical performance of an image-
based clinical task if it were to be performed many times 
with a specified CT image acquisition system and a specific 
image measurement algorithm. The approach we describe 
here is more useful than a general purpose image quality 

index where the goal is to achieve a general correlation 
with CT image quality and clinical task performance. 
Additionally, producing a direct performance prediction 
for a specific clinical task, such as CT lung nodule volume 
measurement bias and precision, is easier to evaluate 
and use as it supports direct comparison of observed and 
predicted measurement performance.

Methods

The measurement prediction approach we implemented for 
this study has three principal computational steps consisting 
of an image acquisition model, a target object model, and a 
computational image analysis algorithm. First, we estimate 
fundamental CT image quality characteristics for a CT 
scanner and image acquisition protocol by analyzing a CT 
scan of a reference object with well-known and highly stable 
geometric and material properties. This results in a first 
order mathematical approximation, or model, of the CT 
image acquisition system. Next, we combine the acquisition 
system model with a set of virtual models of nodules to 
produce simulated images that exhibit variation in image 
noise, nodule position, and other characteristics, which 
is consistent with what would happen in real world CT 
scans. Finally, a segmentation is performed on the nodules 
in the simulated CT images using a standard CT lung 
nodule volume segmentation algorithm, yielding a set of 
lung nodule volume measurements. The resulting CT lung 
nodule volume measurements are then statistically analyzed, 
resulting in estimates of the expected volume measurement 
precision and bias of the target CT image acquisition and 
lung nodule volume measurement system.

We are not the first research group to explore this type 
of approach to estimating the quantitative measurement 
performance of a CT scanner and acquisition protocol (9).  
Funaki et al. demonstrated in 2012 a similar approach 
as reported here to predicting volumetric measurement 
performance (10) where volume measurement bias was 
predicted, but stopped short of also predicting volume 
measurement precision. This work, which was developed 
independently, extends this approach to predict both 
volume measurement bias and precision and uses an easy to 
manufacture geometric object (a concentric cylinder) and 
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sophisticated optimization algorithm to arrive at improved 
prediction performance.

System modeling

We estimate a fundamental set of CT image quality 
characteristics to generate the image acquisition model 
used in this study. This includes methods for characterizing 
3D resolution, 3D sampling rate, CT linearity, and image 
noise. The 3D sampling rate was represented as the linear 
distance between voxels in the X, Y, and Z dimensions, 
expressed in millimeters. A 3D Gaussian point spread 
function (PSF) specified as sigma values in millimeters for 
each 3D dimension (σx, σy, σz) was used to represent the 3D 
resolution of the image acquisition system. CT linearity 
specified the amount of bias from their expected Hounsfield 
units (HU) values for a set of homogeneous materials, 
taking care to avoid influence of partial volume artifact. The 
standard deviation of HU values for a specific homogeneous 
material was used to represent image noise.

The object model considered for this study was a solid 
lung nodule represented as a perfect sphere with a specific 
position and radius. The sphere model also contained 
values representing the HU densities of the sphere and the 
background material surrounding the sphere.

To simulate CT image formation, we first created a 
blank 3D image with the same 3D spacing used by the 
chest phantom protocol. Next the target object model was 
rasterized (i.e., scan converted) into the image volume with 
the given position (p), orientation vector (v), and spacing 
(s). Following this we convolved the 3D PSF with the 
target object model representation, including expected HU 
nodule foreground and background densities, to produce a 
simulated image with partial volume and sampling artifacts. 
The precise location of the sphere model within the 3D 
rectilinear grid was allowed to slightly change randomly 
each time a simulated image was generated, which is similar 
to what occurs in real world CT scanning. Finally, additive 
white Gaussian noise was randomly added to the image to 
simulate image noise. Figure 1 shows the image formation 
process for a simulated nodule.

The third and final sub-system modeled with this method 
was the software analysis algorithm. A 3D segmentation 
algorithm was run on the simulated nodule images using 
a constant threshold set halfway between the HU values 
representing the expected background and foreground 
materials. A polygonal closed surface was obtained using 
a 3D marching cubes algorithm and was quantitatively 
measured to arrive at the volume of the simulated nodule. 
Segmentation and measurement calculations were 
performed using algorithms from the Insight Segmentation 
and Registration Toolkit (ITK) (11).

Performance prediction methods

To determine the fundamental image characteristics for the 
image acquisition model, a reference object was necessary. 
We CT scanned and analyzed rolls of 3M Scotch Magic™ 
tape to build a mathematical 3D image acquisition model. 
This approach is advantageous as tape is widely available and 
inexpensive, and exhibits both the geometry and material 
properties that are important for estimating the performance 
of CT lung nodule volumetry. To obtain the needed study 
data, 3 new rolls of 3M 3/4 × 1000 Inch Scotch Magic™ tape 
were CT scanned on a GE LightSpeed VCT scanner using a 
routine chest imaging protocol. The acquired CT scotch tape 
data was then reconstructed into CT datasets of varying slice 
thicknesses (0.65, 1.25, and 2.5 mm). Slice spacing was set to 
be equal to slice thickness for all CT data obtained during 
this study. Figure 2 shows the placement of the scotch tape on 
the CT scanner table and the alignment of one roll of tape 
with CT scanner iso-center.

Automated image qual i ty  assessment  sof tware 
independently analyzed each of the three CT tape scan 
datasets. The system searched for and detected the rolls 
of scotch tape using a combination of size, shape, and 
HU density characteristics. For each detected roll of tape, 
the algorithm identified the tape’s core inner cylindrical 
ring region, making sure not to include a central plastic 
structure. A multi-pass optimization algorithm (13) 
determined the best fit values for the 3D position, 3D 
orientation, and 3D Gaussian PSF sigmas (σx, σy, σz) of 

Figure 1 Simulated nodule image formation pipeline. PSF, point spread function. 
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the actual scotch tape scan data, where σx = σy. Use of 
one sigma value to represent the in-plane resolution of 
the acquisition system is common for CT calibration and 
reasonable considering that virtually all thoracic CT scans 
currently use helical scanning. It is important to note that 
the cylindrical shape of the tape and its orientation as it lays 
flat on the CT table were specifically chosen to support the 
quantitative estimation of in-plane resolution (σx = σy), and 
Z resolution (σz).

The optimization process is illustrated in Figure 3. Rolls 
of scotch tape are automatically detected by a geometrical 
discriminator that is constrained by the shape, intensity 
and size of the scotch tape. The inner ring of the scotch 
tape has a diameter of 34.62 mm with a height of 12.7 mm. 
The roll of tape has an approximate density of 115 HU. 
The discriminator computes an estimate of the position 
coordinate {p} and orientation vector {v} for each roll of 
scotch tape. Based on the initial position, an estimate of 
the densities of the tape as well as that of the air inside is 
obtained by taking the mean of the object densities within 
the core materials, taking care to avoid partial volume voxels 
at the boundary. An initial estimate of the Gaussian sigmas 
{σx, σy, σz} used to approximate the PSF is initialized as the 
three-dimensional image spacing.

From the initial estimates, an optimizer is used to 
minimize the error between a simulated model of the 
scotch tape and the observed CT image of the scotch 
tape. The optimizer minimizes the following 8 variates 
{p, v, σ}: 3 positional variates, 3 orientation variates, 2 
for the PSF (comprised of in-plane and out-of-plane 
resolutions) via an iterative process that starts from the 
initial estimates described above. The optimization is 
done in a region about the inner ring of the scotch tape, 

as illustrated via the green concentric circles in Figure 3. 
At each iteration, a simulated model of the scotch tape is 
generated by simulating the image formation process. This 
is done by inserting a scotch tape model into the image 
volume centered at the position, {p}, and oriented along 
the vector, {v}. The rasterization of the scotch tape into 
the image volume of spacing, {s}, is done while accounting 
for partial volume voxels, i.e., a voxel which contains 50% 
of the object (tape) and 50% of background (air) will have 
an intensity that’s half way between tape and air. This is 
followed by convolving the volume with a 3D PSF kernel. 
Since the 3D PSF is approximated as a Gaussian kernel, 
this is efficiently done via convolution with an finite 
impulse response filter. This blurs the image by using 
a separable convolution with discrete Gaussian kernels; 
with the kernel operator as described by Lindberg (14).  
The kernel is truncated to a width of 30 voxels away from 
the central voxel along each axis for computational speed. 
The simulated image goes through the image formation 
process but is devoid of noise. The difference between the 
simulated and observed CT image of the section of the tape 
should be mostly comprised of noise when the optimizer 
converges. The difference calculation is limited to a region 
about the inner ring capturing the transition between the 
tape and air as illustrated in Figure 3, which shows the 
region between the two green concentric circles. This 
section is automatically computed given the geometry of the 
tape and based on the estimated position and orientation at 
the end of the first optimization pass.

The root mean square error (RMSE) difference between 
the simulated and observed is minimized using a Simplex 
Optimizer. The optimization happens in two passes. In 
the first pass, the position, orientation and resolution are 

Figure 2 Three rolls of scotch tape were placed on the table of a GE LightSpeed VCT scanner and scanned with a standard chest protocol (left 
and middle). This scan was analyzed and used to predict volumetric sphere measurement performance with a fully automated modeling and 
simulation method. An anthropomorphic chest phantom containing Teflon spheres was scanned multiple times with the same chest protocol 
(right) and independent software measured the volume of the spheres. Reused with the permission from Ref. (12). 
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Figure 3 Flowchart describing how the CT scanner parameters are independently determined from the CT scan. CT, computed 
tomography; PSF, point spread function; MSE, mean square error. 

minimized jointly. In the second pass, the resolution alone 
is minimized. Multiple restarts of the optimizer are used to 
potentially avoid getting trapped in local minima. At the 
end of the optimization, the variates that result in the least 
difference between the observed and simulated image are 
stored. This provides an estimate of the 3D PSF. An added 
benefit of this approach is that the RMSE, after local noise 
has been subtracted, can provide quantitative information 
on the quality of the 3D PSF estimate. Higher final RMSE 
values above what can be accounted for by local image noise 
indicates a lower quality 3D PSF estimate.

Measurement of the densities of tape and air are used 

to estimate the material CT HU values and noise. This 
is achieved by calculating mean HU densities for both 
the air region at the center of the scotch tape core and 
the scotch tape material. These measurements are taken 
with care to avoid the influence of partial volume artifacts 
using knowledge of the 3D PSF. The CT HU bias is then 
calculated as the difference between the mean HU and the 
expected HU for both tape and air materials. Image noise 
is calculated by measuring standard deviation for the air 
and tape materials, using the same identified region as the 
region used for measuring mean HU values. Although other 
CT image quality characteristics, such as levels of edge 
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enhancement, were calculated from each tape scan, they 
were not used in this analysis.

The study utilized three geometric nodule models for 
representing Teflon spheres, each with a different diameter 
(4.0, 6.0, and 8.0 mm). Given that the objective was to 
predict volume measurement accuracy of Teflon spheres 
packed within low density foam, the CT values of the 
sphere and background were fixed to the expected values for 
Teflon (HU =870) and foam (HU =−973) materials. While 
the study computed bias values for air and tape materials 
at three different locations from the iso-center, these 
values were not utilized. Thus, a zero CT bias for both 
materials was used. Accounting for CT value bias, which 
differed from expected by less than 20 HU, would have 
had a negligible impact on the reported results and would 
have required a significant amount of additional effort. 
Each sphere’s distance from iso-center would need to be 
calculated and a model of how the expected CT value bias 
changed as a function of distance from iso-center would 
have been needed to be calculated for each material.

For each of three CT slice thicknesses and nodule 
model diameters, simulated images were automatically 
generated, segmented, and quantitatively measured 
volumetrically. Mean, standard deviation, and coefficient 
of variation (CV) statistics were calculated using the 
volume measurements for each nodule size and slice 
thickness pair, establishing the measurement performance 
prediction. Interpolation between the simulated nodule 
diameter values was used for comparison against the real 
Teflon sphere diameters. The mean and CV values for 
each of the three sphere model diameters was measured 
using 150 generated 3D CT images.

Observed performance methods

To obtain quantitative volumetric measurement performance 

of an independent volume measurement algorithm we first 
CT scanned an anthropomorphic chest phantom containing 
Teflon spheres embedded in foam (diameters =4.76, 6.36, 
and 7.94 mm). This anthropomorphic chest phantom 
was scanned 10 times on the same GE VCT scanner and 
CT image acquisition protocol as the CT scan of the 
scotch tape rolls. AJ independently developed a nodule 
measurement algorithm (15) that used a constant threshold 
to volumetrically measure the Teflon spheres acquired 
within the 30 (3 reconstructions per scan) repeat CT image 
acquisitions. AJ was blinded to the prediction results prior 
to submitting his independent algorithm results. Although 
the AJ algorithm used an identical HU threshold as the 
prediction algorithm for generating a nodule surface, the 
algorithm did not use ITK and used different code for 
thresholding and calculating the volume of the Teflon 
spheres. The resulting volume measurements were used to 
calculate mean, standard deviation, and CV statistics and 
established the observed volume measurement performance.

Results

Table 1 shows both the predicted and observed volume 
measurement statistics for the 3 Teflon sphere diameters 
and three CT slice thicknesses used in the study. Predicted 
mean and CV statistics were calculated on results run on 
simulated images as described in the methods section and 
observed mean and CV statistics were calculated from the 
volume measurements reported using AJ’s segmentation 
method. Each pair of values in the table represents the 
mean and CV percentage of the volumetric measurements.

Figures 4,5 show predicted versus observed volumetric 
measurement mean bias and precision performance, 
respectively.

The predicted and observed volume mean for all slice 
thicknesses was found to be 28% and 13% lower on average 

Table 1 Predicted versus observed volumetric measurements

Slice thickness

Sphere diameter

4.76 mm (56.5 mm3) 6.36 mm (134.7 mm3) 7.94 mm (262.1 mm3)

Predicted Observed Predicted Observed Predicted Observed

0.625 mm 44.3, 0.91 48.2, 1.17 110.4, 0.51 124.1, 0.47 219.9, 0.29 250.1, 0.34

1.25 mm 42.1, 0.98 47.6, 1.35 106.9, 0.56 123.1, 0.61 214.8, 0.32 248.8, 0.41

2.5 mm 23.9, 9.53 36.8,12.50 77.6, 3.84 110.5, 3.20 173.0, 1.57 233.9, 1.32

Each pair of values represents the mean volume (mm3) and the CV (%) of the volumetric measurements. Reused with the permission  
from Ref. (12). CV, coefficient of variation. 
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Figure 4 Predicted (blue), observed (red) mean volumetric measurements of Teflon spheres repeat CT scanned 10 times within an 
anthropomorphic chest phantom. Manufactured Teflon sphere volume (green) is also shown. Three different sphere diameters and three 
different slice thicknesses were used. However, only the two slice thicknesses ≤1.25 mm are relevant for volume measurement of small lung 
nodules in this size range. Reused with the permission from Ref. (12). ST, slice thickness; CT, computed tomography. 

Figure 5 Comparison of predicted (blue) and observed (red) volumetric measurement CV of Teflon spheres repeat CT scanned 10 times 
within an anthropomorphic chest phantom. Three different sphere diameters and three different slice thicknesses were used. Note that 
predicted vs. observed remained similar despite the large range in requested slice thickness (0.625 to 1.25 to 2.5 mm). Reused with the 
permission from Ref. (12). CV, coefficient of variation; ST, slice thickness; CT, computed tomography. 
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than the manufactured sphere volume, respectively. When 
restricted to 0.625 and 1.25 mm slice thickness scans, 
which are recommended for small lung nodule volume 
measurement, the predicted and observed volume mean 
measurements were found to be 20% and 9% lower than 
manufactured. We also found that the difference between 
predicted and observed volume CV was less than 1.0% for 
all nodule sizes and slice thicknesses except when measuring 
a 4.8 mm diameter sphere using 2.5 mm slice thickness.

Discussion

We have provided data highlighting several important 
capabilities and advancements for CT quantitative 
imaging. First, is that prediction of the CT measurement 
performance statistics for a specific clinical task can be 
performed by a simple image generation simulation 
engine that uses a small set of fundamental CT image 
characteristics. Similarly, modern CT scanners routinely 
provide radiation dose estimates (16) for healthcare 
providers, which also use modeling and assumptions.

In this study we calculated predictions of sphere volume 
measurements that were consistent with independently 
measured volumetric sphere measurements, using an 
anthropomorphic CT chest phantom. The approach 
expressed predicted performance for a specific quantitative 
clinical task in direct and commonly used volumetric 
measurement performance statistical metrics (bias and 
CV). This is of particular importance as physicians need to 
understand expected scanner and software performance in 
clinically meaningful terms. As oncologic imaging is highly 
dependent on the ability to measure change in volume over 
time as either a measure of response or progression (17), 
the ability to predict the CV in a given measurement will be 
a critical piece of information in terms of deciding whether 
change is genuine or instead due to measurement error. 
The type of information provided here can form the basis 
for understanding how much change will be necessary in 
order to decide if it is real, and then it also provides a basis 
for determining how long a delay will be necessary between 
scans in order to anticipate the extent of change predicted 
so as to overcome measurement variability. This is a critical 
step in terms of individualizing the approach to obtaining 
follow-up scans.

A second important finding is that inexpensive and 
easy to obtain reference objects, in this case 3 rolls of a 
commonly available brand of scotch tape, can be used to 
estimate the fundamental performance of a medical image 

acquisition system. Overall, this study shows that a small 
and fundamental set of image quality metrics obtained by 
scanning and analyzing a low-cost reference object can be 
used to predict the expected quantitative performance of 
a medical scanning and measurement system. Despite the 
ultra-low cost of these reference objects, we found that 
analysis of them using advanced image processing and 
analysis methods, as described above, can provide highly 
accurate and useful image quality characteristics (e.g., 3D 
spatial resolution).

We were not the first to demonstrate the potential of 
this type of approach to estimating small lung nodule 
volume measurement performance.  Funaki  et  a l . , 
implemented a similar approach in 2012 and also provided 
predicted performance of volumetric measurement of small 
spheres (10). However, they only went as far as predicting 
the mean volume of spheres and obtained lower prediction 
performance than reported here. To our knowledge the 
prediction performance reported here is the first report of 
a calibration phantom-based method predicting both the 
volumetric bias and precision of a CT scanner, acquisition 
protocol, and a general class of volumetric measurement 
software.

An underestimation of mean volumetric measurement 
values with respect to the manufactured volume was 
observed, particularly for the thickest slice thickness 
used. An increasing negative volume measurement bias 
is expected when a small reference object is CT scanned 
with larger slice thicknesses and both the predicted and 
observed performance showed this in Figure 4. As shown by 
Mendonça et al. (18), a negative edge localization bias will 
be present when a convex edge is convolved with a point 
spread function. This is a fundamental property of imaging 
systems and demonstrates an alignment of computer vision 
modeling theory and experimentally derived results. Our 
volumetric measurement bias results are also consistent with 
independent results reported by Prionas et al. (19).

Increasing volume measurement bias is also due to 
greater partial volume artifact influence across the surface 
area of small reference objects. A greater influence of 
partial volume artifact on small reference objects is also 
responsible for an increasing CV when thicker slice 
thicknesses are used. Another factor which may have 
contributed to a negative volume measurement bias with 
thicker slices is that the slice sensitivity profile of the 
thickest slice thickness used (2.5 mm) departs further 
from a Gaussian profile. A Gaussian 3D PSF was used for 
representing the 3D resolution of the acquisition system. 
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More advanced methods for modeling the PSF along the Z 
axis has potential to improve our prediction performance 
for CT slice thicknesses larger than 1.25 mm as scanner 
manufacturers often combine CT slices to generate thick 
slices. As a result, a Gaussian PSF model may not be the 
best choice for thick CT slices. However, in the setting 
of predicting volumetric measurement performance for 
lung cancer screening studies, better modeling of thicker 
slices is not a priority as thin, ≤1.25 mm slice thickness is 
recommended by numerous screening guidance documents 
(20,21).

The analysis of the scotch tape scans resulted in three 
independent estimates of the 3D PSF at different distances 
from scanner iso-center. Spatial resolution at a location 
within a CT scan can be efficiently expressed as the volume 
of the 3D PSF ellipsoid. As expected, we observed a loss 
of 3D spatial resolution as a function of distance from iso-
center for all scans. For example, the 3D PSF ellipsoid 
volume measurements for a 0.625 mm slice thickness scan 
were 0.370, 0.502, and 0.620 mm3 at distances of 38, 93, 
and 177 mm from scanner iso-center, respectively. A future 
improvement to our prediction method is to leverage the 
spatially varying 3D PSF information when creating the 
simulated sphere images. This would better model CT 
scanners and image acquisition protocols that have a large 
loss of resolution as a function of distance to iso-center.

Another factor is that the scotch tape reference 
objects were not surrounded by a water equivalent 
mass representing a human chest. This resulted in 
an underestimation of the image noise present in the 
anthropomorphic phantom scan when predicting volumetric 
measurement performance, which could have contributed 
toward volume bias and imprecision. These factors indicate 
that improved modeling of the 3 sub-systems will likely 
improve the measurement prediction performance in future 
studies. In addition, a more advanced CT image noise 
model, such as the noise power spectra, and a better match 
of the computational processing algorithms used for the 
predicted and observed segmentation algorithms are some 
of the steps that will likely be needed to achieve improved 
task performance prediction values.

Another limitation of the current study is that we only 
evaluated a simple sphere model for this study. Adding 
elliptical and other shapes would have added much more 
complexity to the study and potentially made the results 
harder to gauge because the simulation would have needed 
to know the orientation of the ellipsoids (or other shapes) 
to model them correctly. Estimating object orientation 

from acquired images would have introduced another 
source of error in the study which likely would have made 
the results more difficult to interpret. Secondly, the only 
prior published paper performing similar work also used 
spheres and it is advantageous to be able to compare our 
reported performance to these previously published results. 
However, further evaluation of this approach should be 
extended to more complex nodule and patient presentations, 
potentially using spheres, ellipsoids, and more complex 
nodule models. As we conduct further studies, we plan 
to determine how much more complexity to add to the 
modeling methods to better model a wide range of medical 
image acquisition systems, patient presentations, and image 
analysis algorithms. While the closeness of our predicted 
to actual volume measures are important indicators of the 
robustness of our technique, these are likely to vary based 
on assumptions made for a given software. However, the 
precision of volume measurement, expressed here as a CV, is 
a more meaningful measure as this will be more important 
in estimating change over time, which is not dependent 
on bias in the absolute volume estimate. Here we see even 
closer agreement between actual and predicted measures.

The choice to not use an edge enhancing reconstruction 
kernel during CT image acquisition had several motivations. 
First, is that edge enhancement can significantly over-
estimate the HU density at the edge of objects and greatly 
bias the ability to estimate the in-plane resolution of the 
CT acquisition since it is computed using edge intensities. 
Third, the application of edge-enhancement is only 
performed in-plane and not along the Z dimension and is 
generally avoided when performing precise quantitative CT 
measurements.

We used spheres manufactured out of Teflon and 
modeled the spheres during image simulation using a Teflon 
HU density. While the HU density of Teflon is significantly 
higher than real lung nodules in the clinical setting, we are 
not aware of any advantage this choice of material would 
provide to predicting volumetric measurement bias and 
precision. A future study using a range of materials would 
help determine the potential for higher density materials to 
bias volume measurement prediction performance in these 
types of studies.

Better methods for validating prediction performance 
are also needed. The CT acquisition of more than 10 repeat 
CT scans for each sphere size and slice thickness pair would 
have improved our ability to measure observed volume 
measurement performance. However, performing large 
numbers of CT scans is challenging to achieve in a clinical 
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setting as the increased CT acquisition time is difficult to 
obtain at most clinical institutions.

Despite these limitations, this study demonstrates that 
obtaining fundamental CT image quality characteristics 
and using this information to predict quantitative CT 
measurement performance has potential to inform 
clinicians. A naïve approach to performance prediction 
likely would have made the assumption that 1.25 mm slice 
thickness scanning would result in much higher volumetric 
measurement CV than a 0.625 mm slice thickness CT 
scan. However, our image quality analysis algorithm found 
that the estimated Z resolutions of these very different CT 
slice thicknesses was in actually fairly similar. Because our 
simulation approach used scotch tape measured resolution 
estimates, our prediction performance more closely 
matched the observed performance. Had we used a Z 
resolution estimate based on the requested slice thickness 
within the DICOM header, our volumetric measurement 
prediction performance would not have performed as well 
as was reported here. Our approach, which estimates and 
uses fundamental image quality metrics, has potential to 
provide improved quantitative measurement prediction 
performance and resilience to varying many other CT 
image acquisition parameters beyond CT slice thickness.

The methods described here can also potentially support 
many other clinical tasks and other modalities beyond 
quantitative CT volumetry. One highly useful extension 
of this work has the potential to address a very important 
clinical imaging responsibility which is in need of better 
quantitative tools. Specifically, these methods have the 
potential to predict and optimize both radiation exposure 
and quantitative CT image measurement performance, 
which can be difficult to optimize for a specific patient 
circumstance.

Conclusions

This study demonstrated for the first time that a fully 
automated calibration phantom-based analysis combined 
with CT image formation simulation methods can be used 
to predict CT volume measurement bias and precision 
for small 5 to 8 mm diameter solid objects. In addition, 
this study demonstrated that a reference object need not 
be expensive or difficult to acquire. This study used very 
low-cost reference objects (3 rolls of Scotch Magic™ 
tape) and achieved useful spatial resolution and other 
key CT image quality measurements. This approach 
is also notable in that it directly predicts the statistical 

performance of an important clinical task metric, namely 
the volume measurement of small solid lung nodules. The 
approach demonstrates a new and more effective method 
for predicting task specific, clinically relevant measurement 
performance using advanced and fully automated image 
analysis techniques and low-cost reference objects.
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