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Abstract
Purpose of Review This narrative review highlights the interventional musculoskeletal techniques that have evolved in 
recent years.
Recent Findings The recent progress in pain medicine technologies presented here represents the ideal treatment of the pain 
patient which is to provide personalized care. Advances in pain physiology research and pain management technologies 
support each other concurrently.
Summary As new technologies give rise to new perspectives and understanding of pain, new research inspires the develop-
ment of new technologies

Keywords Pain medicine · Chronic pain · Neuromodulation · SI o

Introduction

Chronic pain is one of the most common and debilitating 
illnesses. About 20% of adults in the USA live with chronic 
pain [1], and it is the leading cause of disability for this 
population [2]. The urgent need for effective therapy has led 
to a significant role for new technologies in pain medicine. 

This review summarizes the new technologies that are evolv-
ing treatment strategies for patients with chronic pain.

Increased understanding of the electrical signals in the 
nervous system that cause chronic pain as well as the effect 
therapeutic stimulation causes on these signals informs novel 
neuromodulation approaches. These novel devices include 
peripheral and spinal stimulators that treat complex pain 
syndromes as well as axial back pain by sending electrical 
impulses that reverse pathologic neural processes. Clinical 
evidence supporting these modalities is growing, and con-
tinued device miniaturization and optimization are further 
extending utility. Interventional musculoskeletal techniques 
are also evolving to impact patient suffering. Sacroiliac (SI) 
joint fusion is a surgical technique used to treat back pain 
originating from SI joint dysfunction. Clinical evidence sup-
ports increased efficacy compared with alternative treatment, 
and new fusion technologies may provide further improve-
ments with less invasive technique. Recent expansion of 
virtual telehealth technologies offers the opportunity to 
increase access to healthcare and optimize patients’ ability to 
connect with their providers. Advancements in biotechnol-
ogy are facilitating the development of novel pharmaceutical 
therapies for pain.

While some of these technologies already have proven 
efficacy, many remain investigational. The level of invest-
ment and growth in pain medicine therapeutics is an exciting 
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and hopeful sign for pain medicine physicians and patients 
seeking relief.

Neuromodulation

The field ofneuromodulation, particularly spinal cord stimu-
lation (SCS), has experienced arenaissance in the past two 
decades with new expanding indications, including persist-
entspine pain syndrome (PSPS), complex regional pain syn-
drome (CRPS), refractoryaxial neck and low back pain and 
neuropathic limb pain, and, more recently,painful diabetic 
neuropathy [3•,4–12]. In addition to indication expansion, 
technologicimprovements, specifically, standardization of 
surgical techniques, miniaturizationof devices, innovations 
in waveforms, novel neural targets, and heightenedunder-
standing of novel mechanisms of action (MoA) contribute 
to increased safetyand efficacy data supporting better patient 
outcomes, satisfaction,cost-effectiveness, and reduction of 
pain with improvement in function andquality of life (QoL) 
[3•,4, 5, 13–24].

Early introduction ofparesthesia-based, low-frequency 
tonic spinal cord stimulation leveraged thegate control 
theory. The deployment of innovative novel waveforms, 
particularlyhigh-frequency 10 kHz (HF10), sub-perception 
physiological bursting (Burst),pulse stimulation pattern 
(PSP), differential target multiplex (DTM), andevoked 
compound action potential (ECAP) closed-loop stimulation 
optimize waveformdelivery and the therapeutic window for 
pain modulation with precision andefficacy (Table 1) [6, 8, 
13, 14, 17, 18, 25–38 ]

SCS is a particularly important treatment option in 
chronic pain, which is a highly prevalent condition in the 
USA, leading to disability, work-day loss, and decline in 
quality of life and function [1, 39]. Chronic spinal pain in 
particular is a complex pathological phenomenon, challeng-
ing to treat, and perhaps one of the most important global 
healthcare problems. As device technology and surgical 
technique evolved to become less invasive and understanding 
of the specific MoA heightened, the uptake and utilization of 
the therapy by interventional pain physicians also increased. 
For the past two decades, a commensurate increase in clini-
cal research, specifically, level I evidence defining SCS as a 
safe and effective, critical treatment for treatment-refractory 
chronic pain, has occurred. Numerous high-quality clinical 
studies demonstrate long-term sustainability of improvement 
in pain, function, and QoL, with some studies demonstrating 
reduction in opioid utilization, increasing cost-effectiveness, 
and superiority over conservative care for numerous condi-
tions, including PSPS, previously more commonly known as 
failed back surgery syndrome (FBSS); chronic neuropathic 
limb pain; CRPS; chronic intractable axial spinal pain; 
and painful diabetic neuropathy. Studies have shown that 

healthcare resource utilization increases with longer time 
between pain onset and SCS implantation, so it is reason-
able to consider SCS intervention earlier in the chronic pain 
treatment algorithm on a case-by-case basis [3•,5, 7, 8, 10, 
38, 40–43].

Innovative waveforms used with SCS technology may 
offer new methods for improving long pain outcomes, par-
ticularly with high-frequency and burst cycling optimization, 
pulsed stimulation patterns, and closed-loop ECAP. Precise 
anatomical targeting with glial cell modulation and differen-
tial target multiplex therapy may also be important factors. 
Offering significant promise is the capacity to optimize stim-
ulation within an individual patient’s therapeutic window, by 
the novel ability to monitor real-time spinal cord feedback 
and adjust the stimulation based on patient variables, such as 
impedance, posture, anatomy (scar tissue, implantable hard-
ware, etc.) and patient position through a closed-loop feed-
back. Increasing sophistication of surgical techniques has 
led to reduced postoperative complications and less need for 
explantation; likewise, miniaturization of devices has led to 
increased patient comfort. Important technological advance-
ments such as battery-free devices, accessibility of remote 
and external devices, microchips with upgradable program-
ming, and newer waveform programming capabilities with 
real-time feedback are innovative clinical advantages that 
offer us the promising ability to modulate pain with preci-
sion and efficacy (Table 2).

Dorsal Root Ganglion Stimulation

Dorsal root ganglion stimulation (DRGS) was approved a 
decade ago in Europe [44] and in 2016 in the USA [45]. 
The FDA approved DRGS for CRPS types I and II (causal-
gia). Providing focal and specific anatomic targeting therapy 
for up to four specific regions receiving, DRGS spared the 
patient the larger coverage zone of SCS and provided a 
higher margin of relief for more patients with CRPS than 
SCS [45]. In the years following the largest neurostimula-
tion study of patients with CRPS, clinical application of 
DRGS expanded to include multiple chronic postsurgical 
pain syndromes including postthoracotomy, mastectomy, 
inguinal hernia repair, knee replacement, and phantom limb 
syndrome [46]. Other conditions such as chronic low back 
pain [47] and pelvic pain [48] are successfully treated with 
DRGS, but large prospective studies have not yet been pub-
lished [49] on these expanded applications or postsurgical 
pain syndrome targets above the T10 level. While the FDA-
approved levels are from T10 to S2 studies of off-label use 
showed that safe placement is possible as high as the C6 
level [50], cervical-thoracic junctional levels were found to 
be helpful in managing hand and wrist pain [51].

The concept of DRGS came after careful anatomical and 
physiological studies showed that the ganglion is a structural 
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gateway between the peripheral and central nervous system 
with the capacity to modulate painful stimuli [52]. When 
stimulated, the DRG sends action potentials from the DRG 
via the stem axon to the T-junction either enhancing or 
diminish afferent signals prior to their entering the dor-
sal zone at that specific spinal cord level [53]. The unique 
structure and function of the T-junction and the anatomy 
of the DRG create a novel approach and MoA compared 
to other forms of neuromodulation, as the DRG is close to 
boney structures in the foramen and surrounded by a limited 
amount of cerebrospinal fluid (CSF) allows for lower energy 
stimulation compared to SCS.

The implantation procedure for DRGS consists of implant-
ing the four-contact lead across a specific ganglion (up to 
4 levels) under x-ray with or without electrophysiological 
guidance [54]. This is achieved percutaneously through an 
epidural access using a 14-gauge needle, but open surgical 
approaches are described and in commercial development. 
Initially, anchoring was not recommended due to the risk of 
fracture, but a recent update in the literature now supports 
the use of anchoring in addition to an S-shape loop in the 
epidural space for strain relief. [55]

Success rate is high in majority of studies with one nota-
ble exception [56]. Patients demonstrated improved QOL 
and a decrease in consumption of analgesics including opi-
oids [51]. Most studies also reported continuous improve-
ment with time, a unique feature of DRGS which differs 
from other neuromodulation therapies.

Peripheral Nerve Stimulation

Neuromodulation uses a low-level electrical current to stimu-
late a neurological target to alleviate pain and improve func-
tion in patients with chronic pain [57]. Neuromodulation has 
been used in both the central nervous system (CNS) and the 
peripheral nervous system for chronic pain treatment. Periph-
eral nerve stimulation (PNS) targets nerves in the peripheral 
nervous system and is used for chronic pain that fits the dis-
tribution of a known peripheral nerve.

Commonly, a peripheral nerve anesthetic block is per-
formed before the implantation of a PNS system, to eval-
uate the potential efficacy of PNS to the intended nerve 
target. A PNS system contains a lead that delivers the 
electrical stimulation, attached to an external or implanted 
pulse generator (IPG) or battery. One of the first trials of 
PNS used leads surgically implanted in a “cuff-like” fash-
ion around the nerve [58]. Newer, percutaneous techniques 
with the aid of ultrasound and fluoroscopic guidance have 
been developed for minimally invasive lead placement. 
PNS is used to treat many chronic pain syndromes, includ-
ing facial pain, chest wall pain, headaches, phantom limb 
pain, peripheral nerve pain after trauma, and pelvic/uro-
genital pain as well as back pain [59–61]. Though compli-
cations are rare, the most common complications of PNS 
include lead migration, implant/IPG site pain, and infection 
[62].

The action of PNS is hypothesized to utilize both cen-
tral and peripheral mechanisms. The gate theory introduced 
by Wall and Melzack suggests that PNS inhibits affer-
ent transmission of pain signals to higher central nervous 
centers [26]. Some studies suggest that PNS activates the 
dorsolateral prefrontal cortex, anterior cingulate gyrus, 
parahippocampal areas, and the somatosensory cortex [63]. 
Other CNS structures implicated in pain reduction from 
PNS include reduction in the firing of wide dynamic range 
(WDR) neurons in the spinal cord and effects on the central 
NMDA pathways as well as endogenous neurotransmitters 
of pain in the peripheral nervous system [63].

Neuromodulation manufacturers have developed multiple 
ways to implement PNS. Systems may be temporarily or 
permanently implanted, with the decision to use a temporary 
versus permanent implant depending on the patient’s goals 
and preferences. The Nalu, StimQ, StimRouter, Mainstay 
Medical, and Moventis systems are permanent implants 
with the ability to trial the device before implantation. The 
SPRINT system is unique as it can be implanted for 60 days 
and subsequently removed, with pain relief continuing after 
removal. Low-frequency tonic stimulation waveforms are 

Table 2  Currently available 
SCS devices and MRI 
compatibility, modified from 
Clingan et al. [117]

Senior editing: Dr. Dickerson/Wie/Maloney

SCS device MRI compatibility

Abbott Full-body conditional
Conditional for head and extremity only (Prodigy System)

Boston Scientific
Wave Writer
Precision Montage
Precision Novi

Head only compatible (Wave Writer System)
Full-body conditional (Precision Montage System)
Not compatible (Precision Novi System)

Medtronic Full-body conditional
Nevro Full-body conditional
Nalu Full-body MRI conditional
Saluda Unknown compatibility (considered unsafe at this time)
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used most frequently, though other programs such as high 
frequency and burst stimulation have been trialed [64].

SI Joint Fusion

The sacroiliac joint (SIJ) is a diarthrodial joint that connects 
sacrum and the ilium. It acts as a shock absorber and aids in 
redistribution of forces from the spine to lower extremities 
and vice versa while standing, walking, or changing posture 
[65, 66]. SIJ dysfunction has been identified as a common, 
yet underdiagnosed cause of acute and chronic low back 
pain [67–69]. Over the last decade, SIJ fusion techniques 
have gained popularity owing to recent advances in the mini-
mally invasive surgical techniques [70] and have been seen 
as an alternative to opioid medications for pain management 
[71]. SIJ fusion procedures have increased in tandem with 
approval of these devices by the FDA. Over the last decade, 
almost 24 devices have been granted FDA approval for SIJ 
fusion, while another 9 devices are awaiting FDA 510(k) 
substantial equivalence determination [72].

Table 3 lists these devices along with the favored surgi-
cal approach and their compatibility with the grafts [72]. 
SIJ fusion is most commonly achieved through the lateral 
approach [72] by placing the device through the ilium into 
sacrum, thus bridging the joint [71]. This approach has been 
associated with a more stable fusion, minimal complica-
tions, and statistically significant improvements in patient 
reported outcomes [72–74]. The less common posterolateral 
approach involves accessing the sacroiliac joint from the 
posterior inferior iliac spine in an anteroinferior direction 
[72], while the posterior allograft approach involves placing 
the allograft bone products or devices into the ligamentous 
component of sacroiliac joint. This allografting technique 
involves minimal soft tissue destruction and requires only 
half a day of hospitalization [71].

The first reported SIJ fusion was performed by Smith-
Peterson in 1921 using an open approach [75]. Despite 
the adverse effects of the open approach, minimally inva-
sive techniques gained traction only after 2008 when the 
iFuse Implant System (SI bone) was granted US FDA 
approval [76•]. The iFuse implant includes triangular tita-
nium implants (with a 3D-printed option) and is one of the 
most commonly used SIJ fusion devices [72]. Polly et al. 
reported statistically significant improvement in quality of 
life and pain reduction with the use of iFuse implants in a 
randomized controlled trial of patients with SIJ dysfunction 
[74]. Subsequent authors have also reported improvement in 
patient reported outcomes, shorter duration of hospital stay, 
and reduced opioid prescription use with triangular titanium 
implants for the treatment of SIJ pain [77–80]. The inci-
dence of complications (non-union [81], deep wound infec-
tion, nerve root impingement [82], back pain, hematoma) 

associated with the use of triangular titanium implants has 
been reported to be less than the incidence of similar com-
plications with the open approach surgery [76•].

The second most commonly used device for SIJ fusion are 
cannulated screws [71, 72]. These facilitate true bony fusion 
and arthrodesis across the sacroiliac joint and are available in 
various sizes; screw selection depends upon the anatomical 
variations of SIJ in patients and the preferences of surgeon 
[71]. Spain and Holt [83] conducted a retrospective analy-
sis using Kaplan–Meier survival analysis on patients who 
underwent SIJ fusion or fixation between 2003 and 2015; the 
authors concluded that SIJ fixation done with screws had a 
4-year cumulative revision rate of 30.8%, while fusion done 
with titanium triangular implants had a revision rate of 5.7%.

The posterolateral approach involves stabilization of SIJ 
by either placing 1–3 surgical screws across the joint or 
1–2 percutaneous cortical allografts along the joint and is 
favored by interventional pain physicians due to the mini-
mally invasive nature of these techniques [76•]. General 
anesthesia with endotracheal intubation may be necessary 
in select patients as the posterior approach presents some 
challenges with respect to access to the airway due to prone 
positioning [71]. Rialto SI fusion system uses a posterior 
approach while utilizing intraoperative stereotactic naviga-
tion, but clinical data regarding its efficacy is still lacking. 
A retrospective comparative study by Claus et al. between 
Rialto and iFuse system reported no significant difference 
in procedure length or the improvement in patient reported 
outcomes at 6-month or 1-year follow-up [84]. Though mul-
tiple studies have reported favorable outcomes with the use 
of Rialto SI fusion system, clear consensus regarding its 
efficacy is lacking [85–88].

CornerLoc is a posterior approach allograft-based device 
in which two biological implants made from demineralized 
bone matrix are placed in an orthogonal direction for SIJ 
fusion [71]. This implant is devoid of any metal, and the 
entire procedure can be performed with local anesthesia in 
less than an hour [71, 89]. Another emerging device that can 
be implanted percutaneously is LinQ, which contains a cav-
ity in the center filled with demineralized bone matrix [71].

SIJ fusion devices have shown promising results for the 
treatment of SIJ dysfunction and low back pain. Though 
studies have advocated their use over other traditional meth-
ods for the treatment of pain originating from SIJ, more 
robust clinical trials are warranted to formulate evidence-
based clinical guidelines for their use [71, 73, 90].

Telemedicine Technology for Pain Medicine

Virtual health and mobile applications have been designed 
to provide treatment and to improve communication between 
patients and provider, and the efficacy of these applications 
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is emerging in the literature. Automated text messaging has 
been shown to be a promising method of monitoring opi-
oid utilization after surgery [91]. The use of online support 
forums, phone-based telehealth, and automated symptom 
check-in was correlated with reduced pain and depression 
symptoms among cancer patients [92, 93]. Mobile and 
electronic applications designed for pain therapy have been 
shown to be effective in reducing short- and medium-term 
chronic pain symptoms [94], while participation in a recent 
online program reduced pain-related distress in comparison 
with the standard of care alone [95].

Preliminary results have shown that performing neurofeed-
back therapy for pain management remotely, using EEG head-
sets and a mobile app, may be an effective way to increase 
access to this treatment for individuals in rural areas [96]. 
Virtual reality headsets may be more convenient and effective 
for symptoms of phantom limb pain when compared with mir-
ror therapy or psychotherapy [97]. High-frequency transcra-
nial magnetic stimulation, commonly used in the treatment of 
depression, may have increased efficacy when compared to 
sham treatment for treating chronic pain, although results are 
mixed [98]. The most recent study found symptoms improved 
in the short term but returned to baseline by 2 weeks [99]. 
A newer technology, transcranial direct current stimulation, 
induces a low-current flow through deep brain structures to 
hyperpolarize and inhibit targeted areas. In a small rand-
omized trial, inhibition of the dorsal anterior cingulate cor-
tex using this technique reduced pain and anxiety symptoms 
among individuals with chronic low back pain [100].

With the rapid expansion of telehealth visits during the 
COVID-19 pandemic, there is significant opportunity for 
growth and significant need to identify ways to best utilize 
new communication methods to improve patient outcomes. 
For example, the use of mobile apps to help with pain man-
agement among elderly populations has been found to be 
complicated by that population’s lower levels of technol-
ogy literacy [101]. Numerous technologies and advances in 
portable form factors have been applied in creative ways to 
address pain symptoms, and while they show promise, most 
need further validation.

Biotechnology and Pharmaceuticals

Advances in biotechnology have encouraged the explora-
tion of new modalities for pharmaceutical therapies. Gold 
nanorods conjugated with TNF siRNA were shown to reduce 
thermal pain in rats [102]. Tramadol hydrochloride attached 
to nanoparticles with endogenous ligands has been found to 
have improved pharmaceutical properties, including a longer 
release time and increased uptake when compared with tram-
adol alone [103]. Another method being explored is mag-
netofection: intrathecal injection of gold-iron nanoparticles 

with magnetic properties, which can be conjugated with 
antibodies for specific targets, and steered to precise loca-
tions using magnetic fields [104]. Voltage-controlled micro-
fluidic devices could provide precise, remote temporal con-
trol of medication release, enabling personalized treatment 
protocols for chronic pain [105]. Automated patch clamp-
ing (APM) is a technology of particular relevance to pain 
research and can record ion channel potentials with much 
greater throughput than traditional manual methods. The 
maturation of this technology over the past 20 years has 
benefitted the development of new small molecule analgesic 
candidates [106]. Many of these advances are years away 
from clinical application, but present promising new avenues 
of future research and development.

Conclusions

Chronic pain is a complex issue. Even among patients with 
the same diagnosis, the specific pain features, symptoms, 
overall health status, biopsychosocial factors, and socioeco-
nomic status of each patient may differ greatly. All these 
factors play a large role in the experience and management 
of the individual’s pain. On a systems level, access to health-
care, access to pain specialists, access to health insurance, 
transportation, disability, and governmental support services 
all factor into the treatment options a patient may or may not 
be able to pursue.

Chronic pain is the leading cause of disability among US 
adults. An estimated 50–100 million US adults live with 
chronic pain, costing an estimated $560–630 billion each 
year in medical costs, disability programs, and lost productiv-
ity [107]. An estimated 40–70% of chronic pain patients do 
not receive “proper medical treatment,” either being over- or 
under-treated for their pain [108]. Currently, the global SARS-
CoV-2 pandemic makes access more uncertain as healthcare 
systems are strained, creating more barriers to care for indi-
viduals who already struggle to access the treatment they need.

The combination of treatment modalities needed to man-
age a patient’s pain is unique to each patient, and with the 
growing trend toward personalized medicine, this will only 
become more important to future clinical practice. The 
recent progress in pain medicine technologies presented here 
represents the future of this ideal. Advances in pain physi-
ology research and pain management technologies support 
each other concurrently. As new technologies give rise to 
new perspectives and understanding of pain, new research 
inspires the development of new technologies. Similarly, the 
SARS-CoV-2 pandemic is simultaneously impeding access 
to traditional healthcare while expanding access through 
emerging telehealth technologies and sparking innovations 
through necessity.
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As we increase our understanding of the multifaceted 
nature of pain, the technologies and modalities which enable 
us to put that understanding into practice emerge in parallel. 
Armed with numerous options, pain medicine physicians of 
the future will be able to precisely target each patient’s pain 
through internal and external technology, pharmacothera-
peutics, and emerging surgical and percutaneous technolo-
gies and techniques. With the ability to treat patients in a 
precise and targeted way, physicians will be able to help ease 
the burden of chronic pain on patients, their families, and the 
healthcare system at large.
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