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Abstract
Increasing evidence indicates that inflammation plays a role in PTSD and stress 
disorder pathophysiology. PTSD is consistently associated with higher circulating 
inflammatory protein levels. Rodent models demonstrate that inflammation pro-
motes enduring avoidance and arousal behaviors after severe stressors (e.g., predator 
exposure and social defeat), suggesting that inflammation may play a mechanistic 
role in trauma disorders. C-reactive protein (CRP) is an innate acute phase reactant 
produced by the liver after acute infection and chronic disease. A growing number 
of investigations report associations with PTSD diagnosis and elevated peripheral 
CRP, CRP gene mutations, and CRP gene expression changes in immune signaling 
pathways. CRP is reasonably established as a potential marker of PTSD and trauma 
exposure, but if and how it may play a mechanistic role is unclear. In this review, we 
discuss the current understanding of immune mechanisms in PTSD with a particular 
focus on the innate immune signaling factor, CRP. We found that although there is 
consistent evidence of an association of CRP with PTSD symptoms and risk, there is 
a paucity of data on how CRP might contribute to CNS inflammation in PTSD, and 
consequently, PTSD symptoms. We discuss potential mechanisms through which 
CRP could modulate enduring peripheral and CNS stress responses, along with fu-
ture areas of investigation probing the role of CRP and other innate immune sign-
aling factors in modulating trauma responses. Overall, we found that CRP likely 
contributes to central inflammation, but how it does so is an area for further study.
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1 |  INTRODUCTION

Post-traumatic stress disorder (PTSD) remains a growing and 
often debilitating psychiatric disorder resulting from severe 
trauma. PTSD affects 7%–8% of the general United States 
population, with even higher rates in Iraq and Afghanistan 
combating veteran populations (Pace & Heim, 2011). PTSD is 
a relatively unique disorder in that it requires an environmen-
tal event (trauma) to trigger symptom development and main-
tenance. Symptoms manifest as highly intrusive memories 
or re-experiencing in the form of flashbacks or nightmares, 
avoidance of trauma cues, negative, depressive symptoms, 
and increased arousal or hypervigilance. PTSD is not limited 
to behavioral symptoms but is associated with a number of 
health conditions, including cardiovascular and autoimmune 
disorders (Coughlin, 2011; O'Donovan et al., 2015), and even 
premature death (Lohr et al., 2015). Pharmacological treat-
ments for PTSD are limited and are unlikely to be targeting 
underlying pathology (Krystal et al., 2017). Identifying the 
biological pathways involved in PTSD pathogenesis will 
be critical in developing novel pharmacological treatments. 
In this review, we discuss the evidence for contribution of 
immune factors as biomarkers and mechanisms of PTSD, 
focusing in particular on innate immune signaling factor 
C-reactive protein (CRP). We then briefly highlight potential 
future areas of investigation to probe the ability of CRP and 
other innate immune signaling factors to modulate trauma 
responses.

2 |  EVIDENCE FOR IMMUNE 
DISRUPTION IN PTSD

Increasing evidence suggests a potential role for inflamma-
tion in the pathophysiology of PTSD and other stress disor-
ders (for review see Altemus et al., 2006; Baker et al., 2012; 
Hoge et al., 2009; Michopoulos et al., 2017). PTSD is associ-
ated with both increased inflammatory cytokines and innate 
immune markers (Agorastos et al., 2019; Baker et al., 2001; 
Bonne et  al.,  2011; Lerman et  al.,  2016). Inflammatory 
cytokines, such as interleukin 6 (IL-6) and tumor necrosis 
factor-alpha (TNFα), serve as signaling proteins and direct 
downstream immunologic responses, including directing 
B and T cell antigen-specific responses as well as activa-
tion and proliferation of other leukocytes including mac-
rophages, neutrophils, eosinophils, and basophils (Zhang & 
An, 2007).

Acute phase reactants are inflammatory factors involved 
in phagocytosis and tissue repair shortly after injury and in-
clude complement proteins, fibrinogen, and CRP (Gabay & 
Kushner, 1999). Over the last two decades, PTSD and trauma 
exposure, respectively, have been linked to higher levels of 

peripheral inflammatory cytokines and acute-phase inflam-
matory reactants (Passos et al., 2015; Tursich et al., 2014). 
In a widely cited meta-analysis of 20 case–control studies 
of inflammatory cytokines in PTSD, elevated pro-inflam-
matory markers, including interferon-gamma (IFNγ), in-
terleukin 1 beta (IL-1β), IL-6, and TNFα were associated 
with PTSD diagnosis (Passos et  al.,  2015). From then, as 
an update to this work, a more recent meta-analysis has ad-
ditionally found associations with increased overall white 
blood cell counts, as well as interleukin 2 (IL-2) and CRP in 
PTSD patients compared to controls (Yang & Jiang, 2020). 
In studies examining cytokine levels in CSF, PTSD and 
trauma exposure are associated with inflammatory cytokine 
abnormalities at baseline or in response to aversive stimuli 
in some, but not all studies (Agorastos et al., 2019; Baker 
et al., 2001; Bonne et al., 2011; Lerman et al., 2016). In line 
with cerebrospinal fluid (CSF) studies, the relationship be-
tween central nervous system (CNS) inflammation in PTSD 
is less clear, likely due to the relative paucity of studies and 
their relatively small size, as well as potential differences in 
patient population (e.g., level of alcohol use, age, and level 
of trauma exposure; Kim et  al.,  2020). Overall, findings 
strongly support increased circulating inflammatory signal-
ing factors in PTSD and possibly immune abnormalities in 
the central nervous system (CNS) in some PTSD patients. 
However, as we will discuss, it may also be challenging to 
differentiate immune dysregulation specific to the CNS, 
given that both cells and signaling factors can translocate 
through the blood–brain barrier (BBB).

In conjunction with altered inflammatory signaling 
proteins, PTSD and exposure to trauma are also linked 
to abnormalities in immune gene expression and methyl-
ation patterns, in particular, expression of innate immune 
genes, in peripheral immune cells (Bam et al., 2016; Breen 
et  al.,  2015, 2017; Doostparast Torshizi & Wang,  2017; 
Guardado et  al.,  2016; Malan-Muller et  al.,  2014; Neylan 
et al., 2011; Uddin et al., 2010; Yehuda et al., 2009). These 
transcriptional data support a potential role for abnormal 
innate immune responses in the development of PTSD 
symptoms. Furthermore, mounting evidence suggests a 
higher prevalence of autoimmune disorders in individuals 
who have experienced trauma or have PTSD symptoms 
(O'Donovan et al., 2012, 2015; Roberts et al., 2017; Song 
et  al.,  2018), suggesting that inflammation resulting from 
traumatic experiences contributes to co-morbid medical 
illness. While there is evidence for both pro-inflammatory 
signaling and dysregulated immune function in trauma 
exposure and PTSD, it is unclear whether inflammation 
contributes causally to PTSD or is a result of other PTSD 
pathology (e.g., glucocorticoid hypersensitivity) or life-
style changes associated with PTSD (e.g., see O'Donovan 
et al., 2012).
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3 |  ANIMAL MODELS SUPPORT 
A MECHANISTIC ROLE OF 
INFLAMMATION IN PTSD

One way to probe the potential causal role of inflamma-
tion in stress and trauma disorders is via animal models of 
enduring anxiety-like and depressive-like behaviors after 
trauma (Deslauriers et  al., 2018). Rodent studies confirm 
an important role for pro-inflammatory cytokine signaling 
to promote enduring anxiety-like and depression-like be-
haviors after severe stress, including IL-6 and IL-1β (Hodes 
et al., 2014; Wohleb et al., 2011). These cytokines are nec-
essary for enduring increases in generalized avoidance and 
arousal after a traumatic stressor (e.g., predator exposure and 
social defeat; Deslauriers et al., 2017; McKim et al., 2018; 
Takahashi et al., 2018). IL-6 and IL-1β also modulate fear 
learning and extinction processes, mechanisms that are 
strongly linked to PTSD. Disruptions in learned fear and 
extinction are considered a primary mediator of PTSD re-
experiencing and avoidance symptoms (Jones et al., 2018; 
Young et al., 2018), and PTSD patients consistently exhibit 
abnormalities in fear conditioning processes (Risbrough 
et al., 2016). When circulating in the periphery, these cy-
tokines may play a role in the stress-induced disruption of 
the blood–brain barrier (BBB) and/or macrophage traffick-
ing across the BBB to drive CNS inflammation (Cathomas 
et al., 2019; Deslauriers et al., 2017; McKim et al., 2018; 
Menard et  al.,  2017; Wohleb et  al.,  2011). They are also 
released directly in the brain from astrocytes and microglia 
after stress (Cathomas et al., 2019). Thus, there is growing 
evidence from both human and animal studies to support 
the role of inflammatory cytokine signaling in mechanisms 
underlying the development of PTSD. Less information is 
known, however, about a potential mechanistic role for in-
nate immune pathways in PTSD.

4 |  ACUTE PHASE REACTANTS 
AND PTSD, IS CRP A MARKER OR A 
PLAYER?

As discussed above, innate immune pathways, such as com-
plement proteins and acute phase reactants, have been associ-
ated with PTSD diagnosis (Speer et al., 2018); however, their 
functional role in trauma response is not well understood, and 
it is not clear if associations with innate immune abnormali-
ties are simply a marker of PTSD symptom development or 
contribute to PTSD risk. Pre-trauma expression of innate im-
mune genes can predict risk for PTSD and is also associated 
with pathophysiology post-trauma (Breen et al., 2015, 2017). 
One of the most commonly measured innate immune signal-
ing proteins, CRP, is also consistently associated with PTSD 
symptoms (see above). Previously linked to rheumatologic 

and cardiovascular disorders, and now more recently related 
to numerous psychiatric conditions, CRP is an innate acute 
phase reactant produced by the liver in response to infectious 
or inflammatory stimuli (Volanakis,  2001). While its pre-
cise mechanistic functions are still under investigation (see 
below), it is known to promote phagocytic clearance of in-
flamed tissue and pathogens. Below we discuss the evidence 
for CRP associations with PTSD and trauma exposure, as 
well as a potential role in trauma mechanisms of PTSD.

5 |  CRP ASSOCIATIONS WITH 
PTSD DIAGNOSIS,  SYMPTOM 
CLUSTER, AND TRAUMA TYPE

Baseline CRP elevation is clinically used to assess infec-
tion, systemic inflammation, and monitor the progression of 
chronic disease states, including risk for cardiovascular dis-
ease (Wu et al., 2015). Indeed, one of the strengths utilizing 
CRP as a biomarker is the ease and reliability in measuring 
it clinically, allowing it to serve as a proxy for other immune 
mediators, such as cytokines, that are often more difficult 
and less reliable to detect (Casaletto et  al.,  2018; Lasseter 
et  al.,  2020). Several reports have shown associations be-
tween PTSD diagnosis and elevated peripheral serum CRP 
in both military personnel and the civilian population (Breen 
et al., 2015; Groer et al., 2015; Spitzer et al., 2010; Sumner 
et al., 2017; Uddin et al., 2010). In a cross-sectional study of 
over 3,000 civilian adults in the general population, those with 
PTSD had over a twofold increase in the odds ratio for CRP 
levels greater than 3.0 mg/L, a clinically meaningful level of 
inflammation typically associated with health risks (Spitzer 
et al., 2010). Overall, individuals with PTSD had mean CRP 
levels of 2.81 mg/L (±2.49) compared to 2.14 mg (±2.17; 
p = 0.027) in those without PTSD. Thus, a relationship with 
CRP across civilian and military populations is suggestive 
that CRP is unlikely to be linked to a particular trauma type 
(e.g., combat versus accidents). However, to our knowledge, 
whether CRP is associated more with traumas related to 
physical injury (combat, car accidents, domestic violence) 
compared to trauma without physical injury has not been 
directly studied. Immune mechanisms may be more likely 
to play a role in PTSD symptoms associated with physical 
harm, which presumably drives a stronger immune response. 
Mechanistically, physical trauma would trigger the release 
of damage-associated molecular pattern (DAMPs) molecules 
and the inflammasome, or molecular danger signals and in-
flammatory pathways activated through by cellular injury for 
tissue repair (Matzinger, 1994; Relja & Land, 2020; Roh & 
Sohn, 2018), although there is growing evidence, particularly 
in animal models that these pathways can also be activated 
by psychological stressors and aversive stimuli, such as foot 
shock (Maslanik et al., 2013).
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An additional question is if CRP is associated with par-
ticular symptom domains. PTSD symptoms fall into four 
clusters, re-experiencing, avoidance, negative cognitions and 
mood, and arousal. Studies suggest that elevated CRP is most 
consistently associated with avoidance, re-experiencing, and 
depression. This conclusion is based on several investigations 
in civilian PTSD populations reporting a positive associa-
tion between CRP and PTSD re-experiencing and avoidance 
symptoms, in addition to overall PTSD symptom sever-
ity (Canetti et al., 2014; Miller et al., 2001) and depression 
symptoms (Rosen et al., 2017), while significant associations 
with arousal symptoms were not detected. Notably, the asso-
ciations with avoidance and re-experiencing/intrusive symp-
toms were maintained even when controlling for depression, 
suggesting CRP is not merely associated with depressive 
symptoms across disorders.

While few studies have investigated how gender specifi-
cally affects the relationship between PTSD symptoms and 
CRP, an investigation of the relationship between trauma dis-
order symptomatology and inflammation found gender dif-
ferences between CRP elevation and either fear or depressive 
symptoms in relation to the threat of terrorism. This study 
of 1,153 healthy participants found that fear of a terrorist 
event or trauma was associated with higher CRP elevations 
in women than in men. In contrast, depressive symptoms 
after terrorist acts were associated with higher CRP levels 
in men (Melamed et  al.,  2004). While investigating the re-
lationship between trauma and metabolic disorders, Powers 
and colleagues noted a significant association between CRP 
and emotional dysregulation among urban African American 
women (n = 40) with Type 2 Diabetes as well as high rates of 
childhood trauma (Powers et al., 2016). As evidence by this 
body of research, the relationship between CRP and PTSD 
symptom domains may be determined by the interplay with 
trauma type (e.g., childhood trauma), gender, environment, 
and other lifestyle factors.

6 |  CRP AS A MARKER FOR PTSD 
RISK

Because elevated CRP is associated with PTSD diagnosis, 
one obvious question is whether elevated CRP is a pre-trauma 
risk factor or a marker associated with post-trauma symptom 
development. Several recent studies have examined the role 
of CRP as a potential risk factor. The prospective Marine 
Resiliency Study of ~2,600 active-duty Marines reported 
that increased CRP plasma levels in participants before their 
combat deployment predicted PTSD symptom endorse-
ment after returning from deployment (Eraly et  al.,  2014). 
However, CRP levels were not predictive of symptom sever-
ity. This result, yet, was not seen by Sumner and colleagues, 
who instead, found in a group of 525 women, as part of the 

longitudinal Nurses' Health Study II, that higher levels of 
the endothelial function and cardiovascular risk biomark-
ers, tumor necrosis factor-alpha receptor-II (TNFRII), and 
intercellular adhesion molecule-1 (ICAM-1), but not CRP, 
were predictive of women later developing PTSD symptoms 
(Sumner et al., 2018). The study populations were different 
in several significant ways; the Marine study was in young, 
fit (average age 23  years) males in military service, while 
the Nurses' Health study was in civilian women (average age 
43 years). Sex differences would not be surprising given sex 
differences in innate immune responses and sex differences in 
CRP associations with other disorders (van Eijk et al., 2007; 
Grossman, 1985; Lee et al., 2019; Li et al., 2017). Thus, as 
with findings of sex effects on CRP associations with spe-
cific PTSD symptoms, CRP associations with PTSD risk 
may depend on gender, trauma-type, or other study popula-
tion lifestyle differences (e.g., see Fedewa et al., 2017).

A number of questions arise from these findings. Is CRP 
simply associated with some other mechanism of PTSD risk? 
For example, childhood adversity is consistently linked to 
high CRP in adulthood and is a robust environmental risk 
factor for PTSD (e.g., Bertone-Johnson et al., 2012; Danese 
et  al.,  2007; Lin et  al.,  2016; Rooks et  al.,  2012; Taylor 
et al., 2006). The study by Eraly and colleagues did control 
for childhood trauma, but other aspects of adversity, such 
as socioeconomic status and unpredictability of care, were 
not measured (Eraly et al., 2014). A twin study supports that 
environmental factors may contribute to the association be-
tween CRP and PTSD risk. The Vietnam Era Twin Registry 
study reported that mean CRP levels were higher in twin vet-
eran pairs where at least one individual had PTSD, compared 
to pairs where neither twin had a PTSD diagnosis (Plantinga 
et al., 2013). The strength of the association between PTSD 
and CRP levels was similar between monozygotic and di-
zygotic twin pairs, supporting that CRP associations with 
PTSD were more likely via shared familial environment than 
genetics. This study also reported that twins with current 
PTSD were more likely to have elevated CRP compared to 
those with past PTSD or no PTSD, suggesting CRP could be 
a marker of risk for symptom state and chronicity. A role for 
genetics, however, must not be discounted.

Two studies examined the role of CRP genes in PTSD 
risk. A cross-sectional investigation of almost 2,700 indi-
viduals from an urban population reported that a single-nu-
cleotide polymorphism (SNP), rs1130864, was associated 
both with increased amounts of CRP, as well as an ele-
vated risk for developing PTSD symptoms and increased 
fear learning (Michopoulos et al., 2015). More recently, a 
study of 286 military veterans of post-9/11 conflicts inves-
tigated CRP genetic SNP variants and DNA methylation in 
conjunction with trauma exposure and PTSD diagnosis and 
symptom severity. Here PTSD was not only associated with 
higher CRP levels, but the relationships between PTSD 
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symptom severity and CRP were mediated by several CRP 
SNPs and methylation of the CRP gene promotor locus, 
AIM2 (Miller et  al.,  2018). Taken together, these studies 
hint that increased CRP could play a role in risk for PTSD, 
either through environmental factors or genetic factors that 
increase CRP levels. Genetic findings on CRP, however, 
should be taken with caution, given that thus far, no CRP 
gene mutation has been implicated via genome-wide as-
sociation studies for PTSD, although other immune genes 
have been implicated (Gelernter et  al.,  2019; Nievergelt 
et al., 2018).

7 |  KNOWN PHYSIOLOGIC 
FUNCTIONS OF CRP

Because CRP is consistently associated with PTSD, it is 
worth examining what potential mechanisms might exist for 
CRP to contribute to the enduring effects of trauma. CRP was 
named after it was first identified for its reactivity with the 
Streptococcus pneumonia “C” carbohydrate antigen in serum 
samples from patients with acute inflammation (Pepys & 
Baltz, 1983). It is an acute-phase reactant that binds to phos-
phatidylcholine and phosphatidylethanolamine expressed 
on surfaces of dead or dying cells, as well as some bacteria 
(Schwalbe et al., 1992; Thompson et al., 1999). During an acute 
inflammatory trigger or infectious response, immune cells re-
lease inflammatory cytokines, such as IL-6, that trigger the liver 
to synthesize CRP (Volanakis, 2001; Figure 1). CRP levels rise 
within 2 hr of an inflammatory challenge and can increase up 
to 10,000 fold by its peak at 48 hr (Pepys & Hirschfield, 2003). 
The precise mechanistic role of CRP in the immune response 
is still under active investigation, in part because CRP exists 
in distinct conformational forms, including pentameric CRP 
(pCRP) and monomeric CRP (mCRP; McFadyen et al., 2018; 
Wu et al., 2015), and in part because of functional differences 
between human CRP and CRP in model species such as ro-
dents (Taylor et al., 1984; Torzewski et al., 2014). It is known, 
however, to deposit in damaged tissues and activate the clas-
sical complement pathway (Figure 1) to promote macrophage 
phagocytosis of either necrotic or apoptotic cells along with 
bacteria (Mold et al., 1999). CRP also binds histones and chro-
matin released during cellular necrosis (Abrams et al., 2013; Du 
Clos et al., 1988).

CRP may also have anti-inflammatory properties. Once 
CRP is cleaved by neutrophil surface proteolytic enzymes, the 
derived peptides limit both neutrophil chemotaxis (Heuertz 
et  al.,  1993; Kew et  al.,  1990) as well as neutrophil reactive 
oxygen species production (Dobrinich & Spagnuolo,  1991; 
Filep & Foldes-Filep, 1989; Ling et al., 2014). As circulating 
cellular and nuclear breakdown products likely contribute to 
autoimmune pathology (Szalai, 2004), CRP has been trialed as 
a disease therapeutic in autoimmune mouse models (Du Clos 

et al., 1994; Rodriguez et al., 2005, 2007). In this context, CRP 
has been under investigation as an immunoregulatory treatment 
in patients after an acute physical trauma (West et al., 2012).

8 |  POTENTIAL MECHANISMS OF 
CRP RISK—MODULATION OF THE 
COMPLEMENT SYSTEM

There are several mechanisms by which CRP may play a 
role in psychiatric disorders, including PTSD, for example, 
via indirect effects through peripheral signaling, or through 
more direct central effects. Within the peripheral vascula-
ture, CRP activates the complement system or macrophages 
to induce an inflammatory signaling cascade (Figure 1; Mold 
et  al.,  1999). Because there is growing evidence that pe-
ripheral complement activation may play a role directly in 
risk for other psychiatric diseases, including schizophrenia 
and depression (Canetta et al., 2014; Mayilyan et al., 2008; 
Morgan, 2018), it is possible that CRP could play a mech-
anistic role in PTSD development by activating the classi-
cal complement system in peripheral blood. Upon immune 
challenge, rising circulating levels of CRP will bind to com-
plement ligand, C1q, to initiate the classical complement 
cascade (Agrawal et  al.,  2001). In both the periphery and 
CNS, this cascade triggers C3 convertase and later C5 con-
vertase as part of the terminal pathway to ultimately form 
the Membrane Attack Complex (MAC; Lucas et  al.,  2006; 
Merle et al., 2015). The MAC has been found to create pores 
in target cells, while the C3 complement protein has been 
shown to simultaneously increase leukocyte recruitment 
and opsonization, which enhances phagocytosis (Nesargikar 
et al., 2012). This signaling process may also affect neural 
function. Altered CRP and complement levels are associated 
with neuropsychiatric illnesses, including schizophrenia and 
depression (Canetta et al., 2014; Horn et al., 2018). Increased 
maternal levels of CRP and C1q both increase the likelihood 
of schizophrenia in offspring, and many patients with schizo-
phrenia have elevated complement system activity (Canetta 
et al., 2014; Mayilyan et al., 2008; Severance et al., 2014). 
More recently, genetic C4 complement gene allelic variation 
with increased C4A protein expression has also been found 
in schizophrenia, which has been implicated in possible ex-
cessive synaptic pruning (Sekar et  al., 2016). Patients with 
depression express higher levels of CRP in addition to higher 
levels of C4 protein (Berk et al., 1997).

While little has been published regarding complement 
and its relationship with CRP in PTSD subjects to date, one 
investigation involving 31 patients with PTSD compared to 
age- and sex-matched healthy controls found hyperactivation 
of the classical complement cascade pathway, hypoactiva-
tion of the alternative complement pathway, and overacti-
vation of the terminal complement pathway (Hovhannisyan 
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et  al.,  2010). The study authors postulated that alternative 
pathway hypoactivation could be due to C3 component de-
pletion from terminal pathway overactivation in which C3 is 
overutilized. While alterations in the complement cascade are 
a further indicator that inflammation is associated with PTSD 
etiology or progression, we must await replication of these 
results with larger studies and investigation of whether a di-
rect correlation is detectable between CRP levels and classi-
cal complement cascade hyperactivation in trauma-disorder 
populations.

9 |  POTENTIAL ROLE OF 
CRP IN MODULATING CNS 
INFLAMMATION

Aside from its activity in the complement system, CRP is 
thought to also have pro-inflammatory effects by decreasing 
macrophage secretion of interleukin 10 (IL-10), an anti-in-
flammatory cytokine (Singh et  al.,  2006), and by promot-
ing monocyte proliferation and transformation to activated 

F I G U R E  1  The potential mechanistic role CRP in trauma response in the periphery and central nervous system. A stressor or inflammatory 
trigger primes the immune response and the release of inflammatory cytokines, such as IL-1β or IL-6, triggering the liver to synthesize CRP. 
CRP exists in distinct conformational forms, including pCRP and mCRP forms, where fully dissociated mCRP is generally thought to be more 
proinflammatory towards activating macrophages. Within the peripheral vasculature, CRP activates the complement system and activates monocyte 
Fcγ receptors to promote macrophage activation, trafficking, and induce the inflammatory signaling cascade. Inflammatory cytokines within this 
cascade may increase BBB permeability, enhancing macrophage and CRP trafficking into the CNS. CRP can also induce BBB disruption by 
activating endothelial Fcγ receptors. Microglia and astrocytes also express Fcγ receptors that can be activated by any CRP within the CNS. Both 
neurons and astrocytes can upregulate CRP expression with acute and chronic inflammatory states. Figure created in the Mind the Graph platform 
www.mindt hegra ph.com
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macrophages (Figure  1; Devaraj & Jialal,  2011; Devaraj 
et  al.,  2009). Activated macrophages release inflammatory 
cytokines, recruit other pro-inflammatory cells, and can 
phagocytose bacteria and cellular debris. It is now becoming 
increasingly clear that peripheral macrophages are trafficked 
across the BBB during stress or trauma to drive CNS inflam-
mation further through microglia and astrocyte activation 
(Figure 1; Jones et  al.,  2018; McKim et  al.,  2018; Menard 
et  al.,  2017). Moreover, reduced circulating IL-10 is asso-
ciated with PTSD risk (Teche et al., 2017). Thus it is pos-
sible that CRP modulates peripheral immune contributions 
to PTSD through interactions with other immune cytokines 
and signaling factors, as well as stimulating macrophage 
proliferation/activation.

CRP could additionally impact CNS function by access-
ing the CNS directly. CRP levels are increased in both pe-
riphery and CSF in depressed patients, suggesting that CRP 
is a marker for both peripheral and central inflammation that 
could potentially modulate affect and cognition in psychi-
atric illness (Felger et al., 2016; Haroon et al., 2016). CSF 
CRP levels also correlate with depression symptom sever-
ity in other patient populations (e.g., Parkinson's Disease; 
Lindqvist et al., 2013), and CRP can be found deposited in 
Alzheimer's disease brain tissue senile plaques (Iwamoto 
et al., 1994). How CRP accesses the central nervous system 
in patients with psychiatric illness and its functional role in 
the CNS is not clear.

10 |  CRP ACCESS TO CNS AND 
POTENTIAL FUNCTIONS

CRP could access the CSF during periods of BBB perme-
ability, including after traumatic events such as brain injury, 
severe stress, or during high inflammation (Figure 1; Prakash 
& Carmichael, 2015; Welcome & Mastorakis, 2020; Yurgil 
et  al.,  2014). CSF protects the CNS by maintaining buoy-
ancy, clearing waste, and distributing electrolytes and small 
molecule neuroendocrine factors (Johanson et  al.,  2011; 
Strazielle & Ghersi-Egea,  2013), and with normally much 
lower concentrations of inflammatory cells and proteins 
(de Graaf et al., 2011; Ohtori et al., 2011). The BBB, there-
fore, has been postulated to assist in maintaining the CNS 
as an immunologically privileged site and limit inflamma-
tory destruction in order to protect the CNS from immuno-
logical destruction (Engelhardt & Sorokin,  2009; Muldoon 
et al., 2013). An increasing body of evidence suggests that 
peripheral CRP may cross the BBB to enter the CSF dur-
ing such pathologic states (i.e., infectionBoje, 1996; Gerdes 
et al., 1998; Sindic et al., 1984). As discussed earlier, with 
regard to animal models demonstrating a role for inflam-
matory cytokine signaling in promoting stress-induced psy-
chopathology, severe stress has been shown to induce BBB 

permeability (Menard et  al.,  2017). Moreover, traumatic 
brain injury, one of the most substantial risk factors for PTSD 
(Prakash & Carmichael, 2015; Yurgil et al., 2014), is also as-
sociated with BBB permeability, allowing immune signaling 
factors, including CRP, to access the CNS. CRP itself can 
also induce BBB disruption by binding and activating the Fc 
gamma receptors (FcγR), CD16, and CD32, on endothelial 
cells (Kuhlmann et al., 2009). Intravenous injections of mice 
with radioactively labeled CRP have shown that elevated 
doses of CRP mimicking inflammatory states increases both 
BBB permeability as well as CNS CRP levels (Hsuchou 
et  al.,  2012). Thus, by increasing BBB permeability, CRP 
could further contribute to PTSD risk not only by directly in-
filtrating the CNS but also by allowing other cytokines (i.e., 
IL-1β and IL-6) or immune cells to enter the CNS at the time 
of trauma (Figure 1). Thus, it is possible that CRP and other 
immune factors contribute to PTSD in specific trauma cases 
where BBB permeability is highest (e.g., TBI, trauma involv-
ing severe physical injury and infection).

11 |  CRP PRESENCE AND 
FUNCTION WITHIN THE  BRAIN

CRP is primarily produced by the liver in response to mac-
rophage secreted IL-6. Gene expression mapping through 
the Allen Brain Atlas demonstrates little, if any, expression 
in healthy tissue in both mouse and human brain. CRP ex-
pression, however, may be upregulated in glutamate neurons 
during specific disease states, such as Alzheimer's dementia 
(Figure 1; Yasojima et  al.,  2000). Furthermore, Slevin and 
colleagues reported that mCRP resides in human brain tissue 
after ischemic stroke within both the endothelial microvas-
culature as well as within neuronal cytoplasm in stroke-af-
fected neurons (Slevin et al., 2010). The study authors also 
demonstrate that both human fetal neurons, as well as human 
brain microvessel endothelial cells, will express CRP in vitro 
when subjected to oxygen and glucose deprivation (Slevin 
et al., 2010). Additionally, ex vivo astrocytes express CRP 
when presented with an immune challenge (lipopolysac-
charide), suggesting astrocytes may be a source of CRP in 
the CNS under pathological conditions (Wight et al., 2012). 
Like endothelial cells, microglia and astrocytes also express 
Fcγ receptors (Figure 1; Fuller et al., 2014; Li et al., 2008), 
although there have not yet been direct studies demonstrat-
ing that these glial receptors are activated by CRP. Human 
post-mortem tissue studies and direct injection of CRP into 
mouse hippocampus indicate that mCRP colocalizes with 
α-amyloid plaques and with phosphorylated-tau protein 
(Slevin et  al.,  2015). Furthermore, in vitro studies demon-
strate neuronal uptake of exogenously administered CRP in 
human-derived neuronal cell culture and that CRP was toxic 
to these cultures when at concentrations that would occur in 
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an inflammatory state (Duong et  al.,  1998). Overall, these 
studies indicate that CRP is produced in the CNS, either in 
neurons, glia, and/or microvessel endothelial cells, during 
immune and homeostatic challenges with some indication 
that CRP may be neurotoxic. The next step is to understand if 
and how CRP exposure is linked to the functional effects of 
trauma, such as changes in brain morphology and behaviors 
relevant to psychiatric symptoms. Alternatively, CRP's pri-
mary effects could be further contributing to increasing BBB 
permeability through the endothelial modifications described 
above and thus allowing other inflammatory signaling factors 
to enter the CNS.

12 |  CONCLUSION AND FUTURE 
WORKS

PTSD remains a growing and often debilitating psychiatric 
disorder that affects military personnel, first responders, and 
civilians after severe trauma. Numerous studies in the last 
decade have found associations between PTSD symptoma-
tology and chronic inflammation. However, it is yet to be 
determined if CRP, or any immune marker, will be a use-
ful biomarker for PTSD, as they have been shown to be for 
depression (Ironside et al., 2019). It is important to note that 
immune dysfunction cuts across neuropsychiatric disorder 
diagnoses (Pinto et al., 2017). Increased inflammation, such 
as with high circulating CRP, may reflect particular symp-
tom clusters that cross diagnostic boundaries (e.g., endorse 
high anhedonia symptoms; Bekhbat et  al.,  2020; Haroon 
et al., 2018; Loas et al., 2016; Mehta et al., 2020) or occur in 
populations with specific risk factors for mood and anxiety 
symptoms, such as those with childhood trauma (McIntyre 
et al., 2019). Identifying robust biomarkers of such popula-
tions is a critical step in personalized medicine, in particular 
in predicting treatment response or prognosis (Heinzelmann 
et al., 2014; McIntyre et al., 2019; Raison et al., 2013). At 
the mechanistic level, however, there is also much work to 
be done. High plasma CRP is linked to increased central in-
flammation, as well as alterations in threat circuit activation 
and morphology relevant to mood and anxiety disorders such 
as PTSD (Mehta et al., 2018; Yin et al., 2019). CRP is also 
associated with circuit and behavioral disruptions in neu-
ropsychiatric disorders like PTSD, but whether it is actually 
contributing to the disease is unclear. We have highlighted 
potential ways in which CRP could affect enduring trauma 
responses via both direct and indirect signaling routes and 
described limited studies of possible CNS effects of CRP 
signaling. More studies in model systems will be needed to 
understand the potential causal contributions of CRP and 
other innate immune signaling factors in PTSD risk and 
symptom development. Such studies include both in vitro 
and in vivo model systems to understand if CRP is expressed 

within the brain after trauma, how and where it signals in the 
brain, as well as its potential effects in boosting peripheral 
immune access to CNS sites through BBB disruption. There 
are now tissue-specific mouse model (Wright et  al.,  2015) 
and tools to distinguish between the functionally distinct iso-
forms (Sproston & Ashworth, 2018) to begin to interrogate 
the role of CRP in trauma response and recovery.
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