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Graphene oxide-ferrite hybrid 
framework as enhanced broadband 
absorption in gigahertz frequencies
Rajarshi Bhattacharyya   1,5, Om Prakash2, Somnath Roy   3, Akhilendra Pratap Singh4, 
Tapas Kumar Bhattacharya5, Pralay Maiti   2, Somak Bhattacharyya   4 & Santanu Das   1

The present investigation is focused on the in-situ synthesis of Graphene oxide (GO)-ferrite nanoparticle 
hybrid framework by gel-combustion method followed by fabrication of homogeneous, structurally 
stable thin (~100–120 μm) hybrid-polyurethane coating on a metallic aluminum substrate and 
its application on the properties of broadband absorption over the microwave frequency region. 
Microstructure studies of hybrid materials illustrated that small sized ferrite nanoparticles (~17 nm) 
are grafted on and through the graphene layers, which forms a homogeneous coating thereby. 
The hybrid-nanocomposite coating demonstrated superior broadband absorption properties with 
absorptivity higher than 90% throughout a bandwidth of ~6 GHz, and moreover, it was found that with 
increased loading of GO in the nanocomposite, the bandwidth range of absorption frequency increases 
with enhanced absorptivity. The real part and imaginary part of the surface impedance values of the 
coating was obtained as 377 Ω and 0 Ω, respectively, which imply that the free-space impedance of 
the hybrid-nanocomposite coating is matching correctly. The nanocomposite coating showed ultra-
high absorptivity over the frequency band of 8–12 GHz, which has numerous practical applications 
as radar absorbing materials (RAM), stealth technology, electromagnetic shielding, and radiated 
electromagnetic interference (EMI) management in onboard spacecraft and many more.

The rapid advances in computer technology, communication devices, and wireless electronics and their wide-
spread implementation with increased levels of electromagnetic pollution have led to the quest for developing 
novel electromagnetic interference (EMI) shielding materials1–3. Traditionally metals and metal-based compos-
ites have been used effectively for shielding purposes. However, they show several limitations, including, the 
absorption range within short bandwidth, highly corrosive, and increased weights. This issue was countered 
by introducing polymer-based composite coatings, which are lightweight, inert, flexible, and low density but 
exhibited poor absorption bandwidth with narrow frequency regions4. In this regards, ceramic ferrites show high 
promises, since, they exhibit broad absorption frequency in the GHz regions, with high strength, low conductiv-
ity, and thus, acts as a magnetic/dielectric filler in with a prime candidate for shielding applications5. Specifically, 
soft ferrites are highly significant in the field of electromagnetic shielding, since, saturation magnetization, coer-
civity, remanence, anisotropy constants, magnetostriction, and Neel temperature of soft ferrites play a key role in 
determining its frequency region (i.e., bandwidth)of microwave absorption6. Also, the chemical substitution of 
different size ions assist in changing the magnetization and Neel point, and thus, a wide variety of ferrite composi-
tions can be utilized as high-frequency absorbing materials devices7. To date, a wide range of soft magnetic mate-
rials has been developed for microwave absorption purpose. To name a few, Co-ferrite8, Ni-ferrite, NiZn-ferrite9, 
MnZn-ferrite10, MgZn-ferrite9,11 and other substituted soft ferrites12. Nanocrystalline spinel ferrites exhibit sig-
nificant changes in the cationic distribution; thus, resulting in improved magnetic properties as compared to their 
bulk counterpart. For example, ZnFe2O4 is a normal spinel in its bulk form exhibiting ferromagnetic ordering 
below 10 K; however, upon forming nanocrystallineZnFe2O4, it shows magnetically ordered structure with high 
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magnetic moment even at elevated temperatures13,14. This phenomenon is primarily attributed to the change in 
cationic distribution from its normal to the inverse structure.

On the other hand, nanocrystalline NiFe2O4is an inverse spinel with non-collinear spin structure and lower 
magnetic moment than its bulk counterpart14–16. In this regard, nickel zinc ferrites Ni1−xZnxFe2O4 (x = 0–1.0), a 
mixed ferrite whose broadband absorption properties and magnetic properties are strongly dependant on the 
zinc content, exhibiting antiferromagnetic behavior at x = 0.9 and 1.0 whereas the composition with x = 0.5 shows 
the best microwave absorption properties17. To date, various methods have been used for synthesizing ferrites 
such high-energy ball mill, co-precipitation method, sol-gel method, auto-combustion method, hydrothermal 
route, and reverse micelle process. Among those all, sol-gel auto combustion method is a low-cost, rapid, and 
facile method of synthesizing nanocrystalline ferrite powders with controllable particle size18,19.

However, ferrite nanoparticles alone as microwave-absorbing material has its several drawbacks, including, 
narrow bandwidth, less absorptivity, and less impedance matching. In particular, high magnetic loss with the 
low impedance matching degrades the microwave absorption properties of ceramic soft-ferrites alone20. These 
problems can be overcome by introducing composites by mixing various carbon allotropes with ceramic ferrites, 
thus, enhancing the broadband absorption properties while improving strength/weight ratio of composite mate-
rial. Carbon allotropes like carbon nanotubes21–23, carbon nano-fibres24,25, and graphene20, showed the extraordi-
nary performance of microwave frequency absorption because of their sp2 bonded structures exhibit thermally 
activated carrier hoping associated with defect states, which results in high-efficiency EM wave attenuation26–28. 
Graphene oxide (GO) is atomically thin monolayer graphitic allotropes with highly stable two-dimensional 
structure with extremely high surface area29,30, lightweight, and high dielectric permittivity28,30. The combination 
of magnetic properties of ferrites and high-permittivity GO enhances the microwave absorption properties of 
ferrite-graphene matrix31–33. Furthermore, nanoparticle grafted on graphene membrane can create homogene-
ous and versatile structures, where a clear dielectric and magnetic interface can form the magneto-dielectric 
hetero-junction, which could act as a center for microwave attenuation32.

In this work, we demonstrate an in-situ synthesis of Ni0.5Zn0.5Fe2O4 ferrite (NZF)-GO hybrid materials via 
a sol-gel auto-combustion process. We also demonstrated the controlled particle size formation using the fuel 
versus oxidizer ratios during reaction while keeping the phase-pure NZF particles grafted on graphene oxide. The 
morphology of the NZF grafted GO scaffold structure is confirmed using SEM and TEM and HRTEM is used to 
demonstrate a clear interface formation in between ferrite nanoparticles and GO. Furthermore, we demonstrate 
that with varying amount of NZF:GO ratios, the hybrid exhibits to optimize the best saturation magnetizations 
with the lowest permeability. The final goal was to disperse the nanocomposite in a sprayable polymer (polyu-
rethane) and fabricate thin coatings on metal substrates for measuring the microwave absorption properties. 
The broadband microwave absorption properties of the coated substrates are investigated throughout the broad-
band range of 4–15 GHz. The samples are found to behave as absorbers in X-band and higher frequencies with 
absorptivity greater than 90%.TheseNZF-GO scaffold materials are unique, morphologically homogeneous, and 
scalable, thus, can be widely used in radar absorbing materials, stealth technology, and electromagnetic shielding 
applications with tuneable bandwidth and varying absorption efficiency.

Results and Discussions
We synthesized Nickel Zinc Ferrite of composition Ni0.5Zn0.5Fe2O4-GO hybrid scaffold nanocomposite by a 
sol-gel auto-combustion technique, and we developed a series of NZF-GO nanocomposites with the increasing 
amount of GO. The amount of GO (concerning the calculated Ni-Zn ferrite yield in w/w ratio)was added initially 
to the precursor solution during the sol-gel auto-combustion process, which produced a mixture of NZF and GO 
nanocomposite after completion of the process as shown in Fig. 1a. Three different samples were prepared with 
the various w/w ratios of NZF and GO varying as 2:1, 1:1, and 1:2. The name of those samples will be addressed as 
NZF-GO33, NZF-GO50, and NZF-GO66 respectively, throughout the rest of the manuscript where 33, 50, and 66 

Figure 1.  Shows the (a) as prepared NZF-GO powder; (b) the NZF-GO nanocomposite- TPU coated the 
aluminum substrate, and (c) schematically demonstrate the broadband microwave measurement technique.
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illustrates the percentages (%) of GO present in the nanocomposite. Figure 1b shows the NZF-GO nanocompos-
ite in polymer coating on a metal substrate (~9-inch diagonal length)as described in the “Materials and Method” 
section in this manuscript. The as coated metal substrates were used for the free-space broadband measurement 
in an anechoic chamber, as shown in the schematic in Fig. 1c.

The auto-combustion synthesis technique for nanocomposite synthesis is an exothermic process (Section S1, 
supporting information) where our calculation revealed the amount of heat evolved from the reaction is ~1976 
kJ/mol. We believe that the exothermic reaction causes the intercalation of sol particles inside of the GO layers fol-
lowed by the formation of grafted nanoparticles on GO membrane. Interestingly, the exothermic reaction causes 
the rapid exfoliation of GO during the reaction, which results in the formation of high-surface-area NZF-GO 
hybrids with the successive amount of GO in it. Figure 2a shows the X-ray diffraction profile of Ni0.5Zn0.5Fe2O4/
Graphene Oxide (NZF-GO) hybrid synthesized with different GO content, and those XRD peaks are identified 
using the standard line profile JCPDS data (No 00-008-0234). The diffraction peaks of all the samples showed the 
characteristic of a phase- pure Ni-Zn ferrite spinel structure with the highest intensity peak obtained from (311) 
plane, which is comparable to the pure NZF XRD data (Fig. 2a, the orange curve in the top). The low-angle XRD 
data of pristine GO is shown in Fig. S2a (Supporting information), which shows the characteristics GO peaks of 
(001), (002), and (100) at their respective 2θ positions of 9.97°, 24.8°, and 42.52°34. We found that all those diffrac-
tion peaks of NZF-GO hybrids undergo significant peak broadening with the increase in the amount of GO in the 
hybrids. This may be attributed to the formation of homogeneous particles distributed over the GO membrane, 
and the degree of agglomeration decreases with increasing the amount of GO content in the hybrid materials. 
We found that the as-synthesized NZF nanoparticles in GO scaffold for all those samples exhibit cubic structure 
with Fd-3m space group. It was found that the samples NZF-GO50 and NZF-GO66 with a significant amount of 
GO content show diffraction peaks of graphite along with spinel phase ferrite indicating the presence of graphitic 
carbon peaks. We believe that the increase in the GO content provided the more surface area to grow small nano-
particles, thus developed more small nickel zinc ferrite particles, and thus it results in the peak broadening of the 
XRD peaks for those samples having higher GO content. Since we have used this hybrids and TPU for the prepa-
ration of paints and coat metal substrates for broadband absorption measurement, we presented the XRD data 
of TUP (Fig. S2b, supporting information) to show that the polymer has no contribution in phase development, 
except play the role as the binder. Figure 2b shows the comparative Fourier transform infrared spectrographs of 
NZF-GO samples with pure NZF sample and various NZF-GO samples. The occurrence of C-O, C-C, and O-H 
stretching frequency peaks signify that the presence of graphene oxide in all as-synthesized hybrids35,36.

The characteristics peak of NZF is also obtained at the respective positions of ~571 cm−1 for NZF-GO33 
and found to be redshifted for NZF-GO50 and NZF-GO66 with their respective positions of ~585 cm−1 and 
589 cm−1, respectively, as shown in Figs 2b and S3a (Supporting information)37,38. The redshift of the NZF peak 
with increasing GO content may be due to some interface formation occurred between NZF nanoparticles and 
GO sheet. On the other hand, the peak position of C-O stretching frequency in NZF-GO33 at 1136 cm−1 has been 
shifted to 1085 cm−1 (for NZF-GO50), which has further been shifted to 1045 cm−1 for NZF-GO66 and became 
doublet peak35. This may be due to the development of more hetero-interface between NZF and GO in excess 
quantity. The interactions between NZF nanoparticles and GO have further lead to the formation of heterostruc-
tures at the interface, which is elaborated further in the TEM section of this manuscript.

Figure 3 shows the SEM images of as-synthesized GO and NZF-GO hybrid with a significantly different mor-
phological structure where small NZF nanoparticles were found to be grafted on graphene oxide layers. Figure 3a 
demonstrates as-synthesized pristine GO with large flake, typically crumpled, and flaky structure. Figure 3b 
shows NZF-GO66 hybrid morphologies where it is observed that NZF nanoparticles are grafted on the layered 
structure of GO. Also, it can be seen that the GO layers became highly exfoliated during the gel-combustion 
synthesis process, thus, created a large-surface-area NZF coated homogeneous GO nano-scaffold as shown in 
Fig. 3c,d. Figure 3c,d depict the high-magnification image illustrating the hybrid framework (high magnification 

Figure 2.  Shows (a) the comparative X-ray diffraction analysis and (b) Fourier transform infrared spectrograph 
of pristine NZF and NZF-GO nanocomposites with different ratios of NZF and GO.
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images of Fig. 3b) of NZF grafted GO layers of various regions of the image shown in Fig. 3b. From Fig. 3c,d, 
it is observed that some of the tiny NZF nanoparticles were intercalated through the GO layers as well during 
the in-situ formation of nanocomposites. Since the size of NZF nanoparticles was found to be in the range of 
15–20 nm, we will discuss the size and size distribution of NZF particles in the next part of the TEM section.

Figure 4 shows the TEM/HRTEM pictures of the NZF-GO samples with different ratios of NZF and GO. 
Fig. S4a (Supporting Information) shows the TEM image of as-synthesized pristine GO flake of size ~500–
800 nm. A large-scale nanocomposite structure under low magnification TEM is shown in Fig. S4b (support-
ing information) depicting the constitution of structurally homogeneous hybrid scaffolds for NZF-GO sample. 
Figure 4 as hows the transmission electron micrograph of NZF-GO33 depicting the agglomerated NZF over the 
GO sheet due to the cohesive force of excess NZF. On the other hand, homogeneously dispersed NZF over GO 
sheet is observed for NZF-GO66 (Fig. 4b) thereby creates large interfacial contact between NZF nanoparticles 
and GO. The nanocomposite was further verified using a SAED pattern, as shown in Fig. 4c. In the SAED pattern, 
it was observed that both the NZF nanoparticles and GO structures are co-existed in the scaffold as evidenced 
with the characteristics planes of GO (110) and (100) and the characteristics planes of NZF of (311), (220), (422), 
(440) and (511).

Interestingly, the SAED pattern exhibits some scattered bright dots, which manifests the formation of dis-
persed nanoparticles with highly crystalline structures on GO membrane. Figure 4d shows the HRTEM 
image of interfaces formed between NZF particles and GO. As could be seen from Fig. 4d, those interfaces are 
hetero-interfaces with significantly different structures in comparison to the structure of either GO or NZF. We 
believe that the nanoparticle is implanted through the GO interlayer, which occurred during the sol-gel synthesis 
process while exothermic reaction (as described in the Section S1, supporting information) causes the formation 
of a bond between GO membrane and NZF nanoparticles. Since the particle size of the NZF nanoparticles are 
~17 ± 4 nm, it is quite obvious that the well-connected GO layers supposed to be separated away and forms a 
nanocomposite with the high-surface-area. It could also be presumed that the hetero-junction interfaces between 
NZF and GO act as a magneto-dielectric junction between a magnetic nanoparticles and a dielectric layer, hence, 
it may be turned into a larger boundary array in NZF coated GO membrane39,40. We believe that those unique 
hetero-junction interfaces with distinct characteristics like a larger magneto-dielectric layer array solely acts as 
GHz frequency absorber with wideband absorption characteristics as discussed in the later sections.

Figure 5 shows the magnetic characterizations of the NZF-GO hybrids with various GO contents. Figure 5a 
depicts the magnetization (MS) vs. applied field (H) plot of all NZF-GO hybrid materials where the slim hyster-
esis curves signify a typical soft-ferrimagnetic characteristic for all the samples. It is seen from Fig. 5a that there 
are significant differences in saturation magnetization (MS) values of the various NZF-GO hybrids. It could also 
be observed that with increasing GO content, the MS decreases, which is due to the paramagnetic nature of GO41. 
As GO acts as a membrane of the hybrids, it is quite obvious to degrade the magnetic moment of the composite 
with higher GO content. However, there are no significant changes found in the coercivities of all those three 

Figure 3.  Shows the morphologies of (a) GO, and (b–d) various NZF nanoparticles grafted GO 
nanocomposites under different magnifications.
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Figure 4.  Illustrate TEM of (a) NZF-GO33 sample and (b) NZF-GO66 sample. NZF-GO66 sample shows that 
NZP particles are anchored on the GO scaffold and forms nanocomposite structure; (c) SAED pattern showing 
the nanocomposite structure of (b), where both the lattice planes of GO and NZF are clearly visible; (d) HRTEM 
picture showing the heterogeneous interface formation between NZF particle and GO for the NZF-GO66 
sample.

Figure 5.  Shows the (a) saturation magnetization (MS) vs. Magnetic field, while the inset shows the 
characteristics of coercivity of NZF-GO hybrids; (b) demonstrates the magnetic permeability vs. magnetic field 
curve and magnetic susceptibility vs. the magnetic field (inset) of NZF-GO hybrids with increasing GO content.
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hybrids (inset of Fig. 5a); therefore, this validate that all NZF-GO hybrids exhibit soft-ferrimagnetic characteris-
tics. Figure 5b demonstrates the characteristics of magnetic permeability (µ) vs. applied magnetic field plot of all 
three different hybrid samples with a varied amount of GO content. Figure 5b inset delineates the magnetic sus-
ceptibility (χ) of those hybrids and found that NZF-GO66 (i.e., the highest GO content nanocomposite) exhibits 
the lowest µ value as well as the lowest χ value. In general, the permeability of a material can be defined as its 
ability to support the formation of a magnetic field within itself and it allow passing through the magnetic lines 
of force. Therefore, it could be observed from Fig. 5b that with the increasing amount of GO content, all hybrid 
materials showed strong resistance towards magnetic lines of force to pass through it in the low field region. This 
could be due to the effect of the increasing amount of NZF-GO heterostructural magneto-dielectric interface, 
which may be diamagnetic. Overall, it indicates that any incident magnetic field will either be absorbed or get 
reflected the most from the NSF-GO66 sample in comparison with the other two samples. Furthermore, the 
NZF-GO66 should show the maximum broadband-microwave absorptivity of the incident radiation in the GHz 
frequency range, and our broadband measurement data are quite aligned with these magnetic characterizations 
data as elaborated in the next section.

The as-prepared NZF-GO hybrids were dispersed in polyurethane polymer (as discussed in detail in the 
Materials and Method section) and coated on the aluminum substrates of thickness ~100–120 μm. The thickness 
of the aluminum sheet is chosen greater than the skin depth at the frequencies under consideration so that the 
incident electromagnetic wave to the sample should not undergo any transmission through it. The standard free 
space measurement has been performed to measure the reflectivity of the sample under test within the frequency 
range 4 to 15 GHz, as shown in the schematic in Fig. 1c. Initially, the reflection coefficient has been measured by 
placing the aluminum substrate alone, which acts as an ideal reflector followed by the polymer coated aluminum 
substrate. Next, the reflection coefficient has been measured from the nanocomposite coated aluminum sub-
strates under identical conditions. Step-By-Step measurement techniques are described in Fig. S1 (supporting 
information). Figure S5 (supporting information) shows the as collected reflection data (i.e., S11) from the various 
sample surfaces, which includes the data from an aluminum substrate, aluminum/polymer, and aluminum/pol-
ymer/various NZF-GO samples. Thus, the difference between the three reflections gives rise to the actual reflec-
tion coefficient from the various NZF-GO samples as depicted in Fig. 6 and as well as from the polymer (Fig. S5, 
supporting information). It is also observed that the polymer used for the coating possesses minimum reflection 
from its surface as observed from Fig. S4.

It is observed from Fig. 6 that broadband reflection minima have been achieved in X-band, particularly with 
the increase of the percentage of GO within the NZF-GO nanocomposites as seen in Table 1. The bandwidth has 
been significantly enhanced with the increase of the GO percentage within the mixture. Owing to the insulating 

Figure 6.  Shows the comparative reflectivity (S11) data of various NZF-GO nanocomposite samples with a 
varied amount of GO content. The composite was dispersed in polyurethane to form paint and coated over Al 
substrates for measuring their performance as GHz absorber coating.
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properties of GO, the incident electromagnetic energy gets trapped within the sprayed sample and the aluminum 
metal placed at the backside.

The absorptivity of the structure can be computed from Eq. (1) where S11 and S21 are the reflection coefficients 
and transmission coefficients, respectively, from the sample while A is the absorptivity.

= − − | |A S S1 (1)11
2

21
2

Now, since the sample is completely metal-backed (aluminum sheet), there is no transmission through the 
sample, implying S21 = 0. Hence, the absorptivity of the sample is calculated using Eq. (2)42.

= −A S1 (2)11
2

To check the reliability, we have performed each measurement for all the coatings three times under the same 
condition, however with varying orientations and the data as shown in Fig. S6 (supporting information). It is 
observed that all samples exhibit nearly identical reflection losses in all the trials as evident from Fig. S6 (support-
ing information). Consequently, the reported bandwidths obtained using all the nanocomposite samples remain 
almost invariant (Table 1). It is further observed from Table 1 that absorptions primarily occur in X-band and 
higher frequency band with the increase of GO content in the original NZF sample. The comparative absorptivity 
plots for all the NZF-GO samples are illustrated in Fig. 7a–c, which demonstrates different wideband absorptivity 
for each sample. It is also seen from Fig. 7a that NZF-GO66 exhibits broad and wideband absorptivity >90% 
within the range of 7.84 GHz to 13.80 GHz. The fractional bandwidth ~55% has been achieved with respect to 
10.8 GHz (the center frequency of the absorption band) in case of NZF-GO66 sample while NZF-GO33 and 
NZF-GO50 exhibit fractional bandwidth of 23.7% and 44.2%, respectively. Interestingly, the fractional bandwidth 
is found to be increased for nanocomposites with increasing GO/NZF ratio, which has added advantages of mak-
ing the nanocomposites lightweight and durable. It is again observed that practically no absorption takes place in 
polymer coating as depicted in Fig. 7d.

Sample Types
Range of −10 dB 
bandwidth (GHz) Bandwidth (GHz)

NZF-GO33 10.40–12.06 2.66

NZF-GO50 7.96–12.48 4.52

NZF-GO66 7.84–13.80 5.96

Table 1.  Demonstrates the comparison of −10 dB bandwidths of NZF-GO composites with increasing GO 
content.

Figure 7.  Demonstrates comparative broadband absorption data of various NZF-GO samples with an 
increasing amount of GO content.

https://doi.org/10.1038/s41598-019-48487-5
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The absorption bandwidth and thickness of the thin coating sample made with NZF-GO66 dispersed in TPU 
polymer was compared with the available data reported in recent literature, and comparative results are demon-
strated in Table 2. From Table 2, it is found that our material provides improved absorption bandwidth, maintain-
ing better compactness in compared with the recently reported data.

Furthermore, to analyze the absorption phenomena, the surface impedance of the NZF-GO nanocomposites 
have been calculated. The real parts and imaginary parts of surface impedances are illustrated in Fig. 8. For all 
these NZF-GO nanocomposites, the surface impedance was calculated as per Eq. 1. The as-measured surface 
impedance of the samples should match with the input impedance of a transmission line with characteristic 
impedance Z0

43. The surface impedance was calculated from the measured reflection coefficient using Eq. 1. Here, 
the surface impedance ZS was calculated from the measured reflection coefficient S11 and free space impedance Z0.

=
+
−

Z Z S
S

1
1 (3)S 0

11

11

The change in real components and imaginary components of surface impedances of three distinct nanocom-
posites are presented in Fig. 8, which demonstrates the complete absorption of incident electromagnetic wave, 
when the as-calculated surface impedance is accurately matching to the characteristic free-space impedance (i.e., 
~377 Ω). It is observed that the real part and imaginary part of the surface impedance are close to 377 Ω and 0 Ω, 
respectively, over the desired band of absorption (i.e., X-band) for the samples as listed in Table 1. However, the 
impedance values (i.e., real and imaginary parts) are found to be almost 377 Ω and 0Ω for NZF-GO66 sample in 
comparison with the other two samples. For further elucidation one to one comparative plots of RF absorption 
versus frequency and impedance plots versus frequency is demonstrated in Fig. S7 (supporting information).

In summary, we found that NZF-GO66 shows the best microwave absorption properties along with the 
enhancement (almost ~55%) in fractional bandwidth throughout the X-band. We know that nanoscale materials 
are very easily polarized under an electromagnetic field; thus, it can be assumed that each nanoparticle act as an 
electric dipole in the electromagnetic field, which is again very susceptible to space charge polarization by trap-
ping space charges and enhancing the microwave properties. Here we observed that with increasing GO content 
in the composite, the dispersibility of the nanoparticles is enhanced, which results in the formation of smaller 
particle size (i.e., higher surface area) uniformly distributed on the GO layers. Moreover, it can be assumed that 
by enhancement in dispersibility, it increases the formation of heterostructure interfaces (i.e., magneto-dielectric 
interfaces as discussed in TEM/HRTEM section and magnetic data analysis section) between the NZF nano-
particles and GO, which act as the center of microwave absorption. This may be due to the formation of interfa-
cial magnetic dipoles, which leads to the formation of more active interfaces, are one of the key characteristics 
of absorbing electromagnetic waves. The larger number of heterostructural interfaces results in higher surface 
area as well as highest compactness, which improves the microwave absorption along with enhancement in 
fractional bandwidth. Thus, the larger the magneto-dielectric interfacial area, lower penetration occurred by 
electromagnetic waves. In brief, we have demonstrated the efficacy of the ferrite-GO nanocomposites towards 
the broadband-microwave frequency absorption by embedding the ferrite nanoparticle in GO membrane while 
nanocomposite dispersed polymer paint showed sophisticated processing and easy application as a lightweight 
coating on metal surfaces.

Conclusions
In conclusion, we have demonstrated the successful synthesis of in-situ Ni0.5Zn0.5Fe2O4 ferrite nanoparticle 
grafted-graphene oxide hybrid scaffold as broadband microwave absorber material. We obtained phase pure 
NZF particles with an average particle size of ~17 nm± 4 nm, which was found to be homogeneously coated on 
to GO layers. The scaffold exhibits NZF nanoparticles grafted on GO, which form during the in-situ gel com-
bustion process. Various heterogeneous interfaces are formed between NZF and GO layers with distinct lattice 
structures and bonding. The formation of interfacial bonding occurred between NZF and GO during the sol-gel 
auto-combustion process as the reaction is highly exothermic. The magnetic data show that the saturation mag-
netizations, as well as magnetic permeability decreases for the hybrid structure with an increasing amount of 
GO as GO, are diamagnetic. Furthermore, the nanocomposite coatings showed excellent broadband absorption 
properties throughout the microwave frequency range (8–12 GHz) with absorptivity greater than 90%. More 
specifically, with increasing GO content, the bandwidth of RF absorptions for individual nanocomposite became 
widen while the absorptivity of corresponding nanocomposites is found to be significantly improved. The real 
and imaginary parts of the impedance of the hybrid nanocomposite coatings are obtained as 377 Ω and 0 Ω, 

Literature Bandwidth Thickness

Shu et al.46 3.2 GHz 2 mm = λ/15

Yang et al.47 7.8–12.6 GHz 5 mm = λ/6

Liu et al.20 4.8 GHz 3 mm = λ/10

Liu et al.48 6 GHz 2 mm = λ/11

Zhang et al.31 4 GHz 1.4 mm = λ/20

Proposed NZF-GO66 sample 5.96 GHz (=7.84–13.8 GHz) 1 mm = λ/30

Table 2.  Illustrates the comparative data published in recent literature and our experimental results obtained in 
this work.
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respectively, over the entire region of the frequency band. This further indicates that the lowest reflections from 
the hybrid-coating over the frequency band of interest, thus, contributing towards broadband absorption in the 
range of 8–12 GHz. We obtained the improvement in dispersibility of nanoparticles with increasing GO con-
tent, which causes the formation of a large number of magneto-dielectric hetero-junction interfaces. Thus, the 
interfaces cause trapping of space-charge along with magnetic dipoles, which effectively enhance the absorp-
tion bandwidth as well as improvement in absorptivity. These types of graphene oxide hybrid framework based 
hybrid-nanocomposite coatings on metal will find immense possibilities for applications as radar absorbing mate-
rials, stealth technology, electromagnetic shielding, and the radiated EMI management in onboard spacecraft and 
safeguarding medical devices form electromagnetic radiations.

Materials and Method
Preparation of graphene oxide.  Graphene oxide was synthesized via oxidation of graphite flakes obtained 
from Merckmillipore, Germany (~150 μm flakes) via improved method reported elsewhere44.

Preparation of Ni0.5Zn0.5Fe2O4-GO scaffold.  Ni0.5Zn0.5Fe2O4was synthesized by gel combustion 
method. Graphene oxide was added in situ during the process. The chemical reagents used for synthesis were 
Fe(NO3)3.9H2O, Ni(NO3)2.6 H2O, Zn(NO3)2.6 H2O, de-ionized water (Millipore), citric acid anhydrous and 
ammonia solution (All purchased from Merckmillipore, Germany and Sigma-Aldrich, India). In a typical exper-
iment, metal nitrates in the required molar ratio were dissolute in the minimum amount of distilled water. A 
stoichiometric amount of citric acid was used as fuel for the experiment. A small amount of ammonia solution 
was added to the solution to adjust the pH value to about 6. After stirring the solution at room temperature for 
30 minutes, graphene oxide was added to the solution and ultra-sonicated for 15 minutes. The ultra-sonicated 
solutions containing GO were evaporated at 100 °C on a hot plate while continuously stirring to transform them 
into dark brown viscous xerogel. By further raising the temperature to 220 °C the gel was ignited in the air with 
the evolution of the large volume of gases and produced a dark-brown mass was obtained. The as-obtained pow-
der from the gel-combustion technique was calcined at 600 °C for 2 hours, as shown in Fig. 1a.

X-Ray diffraction analysis.  The phase analysis of all the NZG-GO powders was performed using X-ray 
diffraction (XRD) analysis technique in an XRD instrument (RigakuSmartLab, RIGAKU Corporation, Japan). All 
the diffraction peaks were analyzed using standard line profile JCPDS data (No. 00-008-0234).

Fourier transform infrared spectroscopy.  Fourier transform infrared spectroscopies were carried out 
using FTIR spectrometer (THERMO Electron Scientific, Instruments LLC, Model No: Nicolet iS5) from the 
ranges of 400 cm−1 to 4000 cm−1 with the resolution of 4 cm−1.

Scanning electron microscopy.  The morphologies of the NZF-GO scaffold materials are characterized 
using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) (NOVA 
FESEM 450, FEI USA).

Transmission electron microscopy/high-resolution transmission electron microscopy.  All the 
nzf-GO scaffold nanocomposites were characterized in a transmission electron microscope (TEM) (TECNAI G2 
20 TWIN, FEI, USA) where the as-synthesized nanocomposite samples were dispersed in solvent and drop cast 
on a lacy carbon coated TEM grid.

Measurement of magnetic properties.  The magnetic properties of all the NZF-GO samples were charac-
terized using a vibrating sample magnetometer (VSM) (Model: EZ9, Microsense, USA). All the NZF-GO samples 
were filled in acrylic cups followed by fixing it to quartz rods for mounting on the VSM. Before the magnetic 
measurement, the samples were A.C. demagnetized with a demagnetization factor of 0.9 for removing any stray 
magnetization from the samples. Following that the M-H measurements were performed. The same measurement 
conditions were used for the respective background corrections.

Figure 8.  Shows surface impedance of various nanocomposites with a successive increase of GO content (a) 
NZF-GO33 (b) NZF-GO50 and (c) NZF-GO66.
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Fabrication of nanocomposite-polymer coating.  For the nanocomposite coating fabrication, we have 
purchased thermoplast polyurethane (TPU) (Bayer Material Science AG: polyester based TPU (Desmopan 385S)) 
with the shore hardness of 86A. This polymer was equivalent materials used in conventional paints for different 
coatings45. We took TPU and different NZF-GO scaffolds in 1:1 weight ratio for nanocomposite fabrication where 
TPU was dissolved in dimethylformamide (DMF) by stirring it at 100 °C followed by the addition NZF-GO 
scaffold powders. The solution was ultra-sonicated under high power probe sonicator for one hour followed by 
transferring those solutions on a hot plate (100 °C) under constant stirring. The NZF-GO scaffold dispersed TPU 
solution was coated onto Al substrates of dimension 8.5 inches (diagonal length) using a simple hand-brushing. 
The photographic image of the as-coated substrate is shown in Fig. 1b.

Measurement of broadband microwave properties.  The microwave absorptivity of the as-fabricated 
NZF-GO nanocomposite-TPU coating on Al-substrates was measured inside of an anechoic chamber. We have 
used three different pairs of horn antennas (viz. C-band antenna, X-band antenna, and Ku-band antenna) for 
measuring the reflection from the as-fabricated coating on Al-substrate. In the measurement set-up, from each 
pair of horn antennas, one was used as a transmitter to send off the electromagnetic wave on to the sample whereas 
the other antenna was used to receive the reflection from the sample. All the horn antennas were connected to the 
vector network analyzer (VNA) (Anritsu MS 2037, Japan) during the entire measurements. The entire broadband 
absorption measurement techniques are shown schematically in Fig. S1 (Supporting information).
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