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Abstract

Understanding the contribution of genetic variation to drug response can improve the deliv-

ery of precision medicine. However, genome-wide association studies (GWAS) for drug

response are uncommon and are often hindered by small sample sizes. We present a high-

throughput framework to efficiently identify eligible patients for genetic studies of adverse

drug reactions (ADRs) using “drug allergy” labels from electronic health records (EHRs). As

a proof-of-concept, we conducted GWAS for ADRs to 14 common drug/drug groups with

81,739 individuals from Vanderbilt University Medical Center’s BioVU DNA Biobank. We

identified 7 genetic loci associated with ADRs at P < 5 × 10−8, including known genetic asso-

ciations such as CYP2D6 and OPRM1 for CYP2D6-metabolized opioid ADR. Additional

expression quantitative trait loci and phenome-wide association analyses added evidence

to the observed associations. Our high-throughput framework is both scalable and portable,

enabling impactful pharmacogenomic research to improve precision medicine.

Author summary

Adverse drug reactions are a considerable burden on the healthcare system. Genetic stud-

ies can improve our understanding of the pathophysiological mechanisms of adverse drug
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reactions but have been hindered by small sample sizes. Drug responses are less often

recorded than physiological traits and common diseases. Here, we present a high-

throughput framework to efficiently identify eligible patients for genetic studies of adverse

drug reactions from electronic health records. We validated our approach by conducting

genome-wide association studies for adverse reactions to 14 common drug/drug groups

with 81,739 individuals from Vanderbilt University Medical Centre’s BioVU DNA Bio-

bank, identifying 7 genetic loci associated with adverse drug reactions. Our high-through-

put framework can enable impactful pharmacogenomic research to help develop clinical

guidelines for the delivery of the right drug to the right person.

Introduction

Genome-wide association studies (GWAS) have contributed substantially to precision medi-

cine, providing critical insights into the physiological and pathophysiological mechanisms of

human complex traits and diseases. [1,2] However, less than 10% of published GWAS have

focused on drug response. [3] Adverse drug reactions (ADRs) are a considerable burden on

patients and healthcare systems as a major source of hospitalization, morbidity, and mortality.

[4–7] The lack of such pharmacogenomics GWASs on ADRs hinders our ability to deliver the

right drug to the right person. [3,6–9]

A significant challenge for pharmacogenomics discovery is small sample size. [3,10] Drug

response phenotypes, such as ADRs, are less often recorded than physiological traits and com-

mon diseases. [3,7,10] Traditional studies that recruit patient cohorts remain cumbersome and

costly, and usually result in limited statistical power to detect genetic predictors with small

effect sizes. [3,7,10] Biobanks that are linked to electronic health records (EHRs) can generate

large datasets for efficient discovery and replication GWASs. [7,10,11] However, defining drug

response using EHR data (i.e., pharmacological phenotyping), remains difficult. Unlike disease

phenotypes, which can be represented with diagnostic codes, drug response information is

often embedded in clinical notes, [11,12] complicating the development and implementation

of uniform methods to extract drug response phenotypes. [11,13]

In this study, we investigated the feasibility of using the allergy section in EHRs to conduct

high-throughput GWAS of reported ADRs. In routine practice, healthcare providers often use

“drug allergy” labels in an allergy section to document a patient’s intolerance or allergy to a

drug as reported by the patient or observed by a healthcare provider. [14,15] Despite being

called an “allergy” section, the documented information most clearly satisfies the definition for

ADR, which includes any noxious, unintended or undesired effect of a drug experienced at

normal therapeutic doses. [7,16] The ADR information in this section is meant to be recon-

ciled with every patient encounter to capture new information. The allergy section is semi-

structured (i.e., some structure but does not adhere to any rigorous format), which allows for

easy retrieval of adverse reaction information without sophisticated natural language process-
ing, enabling high-throughput analysis when linked to genetic data.

We hypothesized that drug allergy labels from the allergy sections in EHRs can be leveraged

for efficient identification of reported ADRs. We developed and applied a high-throughput

approach for identifying ADRs from allergy sections in EHRs from Vanderbilt University

Medical Center’s (VUMC) Synthetic Derivative. Then using VUMC’s BioVU DNA Biobank,

[17] we conducted GWAS on 14 drug (drug class) ADRs in a subset of 67,323 individuals with

self-reported European ancestry (EA), followed by trans-ethnic validation in 14,416 individu-

als with self-reported African ancestry (AA). Additional expression quantitative trait loci
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(eQTL) analyses and phenome-wide association analyses (PheWAS) were performed on the

lead variants. [18,19]

Results

Identifying adverse drug reactions in electronic health records

A summary of selected EHR characteristics for all individuals with available EHRs at VUMC

and the selected BioVU individuals is shown in Table 1. The BioVU cohort had mean EHR

length of 10.6 years, which was more than double the length of the mean EHR length for all

VUMC individuals (4.4 years). Additionally, a greater proportion of BioVU individuals

(95.3%) had information documented in their allergy section compared to all VUMC individ-

uals (62.4%). Similarly, a greater proportion of BioVU individuals (63.0%) had at least one

reported ADR compared to all VUMC individuals (28.6%). While the proportion of individu-

als that have information documented in their allergy section is similar between EAs and AAs,

we observed that the proportion of individuals with reported ADRs was greater among EAs

compared to AAs for all VUMC individuals and the BioVU cohort.

The most frequently documented ADRs were to penicillins (17.4%), sulfa drugs (11.6%),

and codeine (9.1%). Cases and controls for GWAS of 14 adverse drug or drug group reactions

are shown in Table 2. We selected the top 10 most frequent drugs or drug classes reported in

the allergy sections: penicillins, sulfa drugs, codeine, morphine, aspirin, lisinopril, levofloxacin,

erythromycin, meperidine, and cephalexin. The top 10 most frequently reported drugs in the

allergy sections were the same for EAs and AAs with differences in ordering. Additionally, we

observed that ADRs to statins as a class of drugs were reported frequently. Therefore, we iden-

tified ADRs to any statin for a grouped analysis since the class of drugs shares a similar meta-

bolic pathway and further broke down ADRs into atorvastatin only or simvastatin only.

Likewise, we selected CYP2D6-metabolized opioid prodrugs, including codeine, hydrocodone,

oxycodone, and tramadol, as a grouped analysis. [20] Types of adverse drug reactions for the

14 selected drug or drug groups are summarized in S1 Table. The type of reaction is not always

documented in the allergy section and the percent missing ranges from 24.4% to 58.0%.

Genome-wide analysis

The genetic analyses for EAs identified genome-wide significant signals (P< 5 × 10−8) for 7 of

the 14 adverse drug reactions. The lead variant for each signal is shown in Table 3, and addi-

tional correlated variants are reported in S2 Table. The trans-ethnic validation of the identified

signals for EAs in the AA cohort yielded no significant findings (S3 Table). Genome-wide

Table 1. Summary of selected EHR characteristics for all VUMC individuals and the BioVU individuals selected for genetic analyses, stratified by self-reported

ancestry.

Cohort N EHR length (years), Mean ± SD Have allergy section� At least one ADR�

All individuals 3,169,625 4.4 ± 6.0 1,979,220 (62.4) 905,301 (28.6%)

European ancestry 1,957,846 5.3 ± 6.3 1,376,127 (70.2) 679,141 (34.7%)

African ancestry 310,864 6.3 ± 7.0 214,149 (68.8) 77,223 (24.8%)

Other 900,915 1.6 ± 3.4 388,944 (43.2) 148,937 (16.5%)

BioVU individuals 81,739 10.6 ± 7.3 77,907 (95.3) 51,534 (63.0)

European ancestry 67,323 10.7 ± 7.2 64,166 (95.3) 44,407 (66.0)

African ancestry 14,416 10.0 ± 7.8 13,714 (95.3) 7,127 (48.4)

� Reporting count and row percentages for the respective cohort

https://doi.org/10.1371/journal.pgen.1009593.t001
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analyses in AA individuals were excluded in our primary analysis due to the potential for

unstable point estimates and inflated false discovery rates from limited sample size. Nonethe-

less, significant ADR-genetic associations in AAs may be informative for future studies and

have been included S4 Table.

The opioids shown in Fig 1 are prodrugs metabolized to a morphine or morphine-like

active metabolites by CYP2D6. We identified a strong genome-wide significant association sig-

nal near the CYP2D6 gene for codeine and CYP2D6-metabolized opioid ADRs (Fig 1). Near

the CYP2D6 locus, the minor allele of the variant rs9620007 (G) was associated with reduced

risk of codeine ADRs (Odds ratio [OR] = 0.84; 95% confidence interval [CI] = 0.79 to 0.89)

and CYP2D6-metabolized opioid ADRs (OR = 0.86; 95% CI = 0.82 to 0.90). Additionally, the

Table 2. Case and control counts for adverse drug reactions to 14 selected drugs or drug groups, stratified by self-reported ancestry.

Drugs/Drug Groups European ancestry (N = 67,323) African ancestry (N = 14,416)

Cases (%)a Controls Cases (%) Controls

Penicillin 12294 (18.3) 38284 1894 (13.1) 9539

Sulfa 8492 (12.6) 46642 964 (6.7) 11085

Codeine 6706 (10.0) 24579 706 (4.9) 7330

Morphine 3646 (5.4) 38181 450 (3.1) 9515

Aspirin 1800 (2.7) 47351 401 (2.8) 10264

Lisinopril 1591 (2.4) 34096 439 (3.0) 8959

Levofloxacin 1737 (2.6) 35888 136 (0.9) 8560

Erythromycin 1607 (2.4) 23400 138 (1.0) 7310

Meperidine 1499 (2.2) 27261 112 (0.8) 7590

Cephalexin 1460 (2.2) 30479 124 (0.9) 7995

Any statin 2927 (4.3) 42551 258 (1.8) 9897

Atorvastatin 1325 (2.0) 31048 86 (0.6) 8234

Simvastatin 1020 (1.5) 31394 111 (0.8) 8053

CYP2D6-metabolized opioidsb 10264 (15.2) 48445 1343 (9.3) 11288

a Reporting count and percentage of self-reported ancestry population identified with ADR
b CYP2D6-metabolized opioids include codeine, hydrocodone, oxycodone, and tramadol

https://doi.org/10.1371/journal.pgen.1009593.t002

Table 3. Lead variant per signal associated with adverse drug reactions for European ancestry patients.

Adverse Drug Reaction Variant Mapped Gene Consequence Allelea EAF R2 OR (95% CI)b P

Aspirin rs115346678 SSBP2, ATG10 intergenic G/A 0.01 0.98 2.03 (1.79 to 2.28) 1.40 × 10−8

Cephalexin rs34545984 LOC105376453, OTUD1 intergenic G/T 0.01 0.50 2.03 (1.79 to 2.28) 1.23 × 10−8

Codeine rs9620007 WBP2NL (CYP2D6) intronic C/G 0.30 0.98 0.84 (0.79 to 0.89) 1.24 × 10−13

CYP2D6-metabolized opioids rs62436463 OPRM1 intronic C/T 0.10 0.94 0.84 (0.79 to 0.90) 5.43 × 10−10

rs739296 SEPTIN3 (CYP2D6) intronic G/A 0.30 0.99 0.86 (0.83 to 0.90) 1.08 × 10−16

Meperidine rs11049274 PTHLH, LOC729291 intergenic G/A 0.08 0.99 1.42 (1.30 to 1.54) 2.09 × 10−8

rs113100019 FIP1L1 intronic T/G 0.01 0.82 2.10 (1.84 to 2.36) 2.26 × 10−8

rs185462714 SERINC5 intronic A/G 0.01 0.82 2.09 (1.83 to 2.35) 3.37 × 10−8

Penicillin rs115200108 HLA-B, MICA-AS1 intergenic C/A 0.02 0.99 1.30 (1.21 to 1.39) 4.23 × 10−9

Simvastatin rs76103438 DIPK2A, LNCSRLR intergenic T/A 0.03 0.90 1.88 (1.65 to 2.09) 2.56 × 10−8

EAF = Effect allele frequency; R2 = imputation quality
a Alleles are listed as reference/effect and are reported in the forward strand.
b OR and 95% CIs were derived from logistic regression models adjusted for sex, age, length of electronic health records (years), and first 10 principal components.

https://doi.org/10.1371/journal.pgen.1009593.t003
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nearby variant rs739296 (A) was associated with reduced risk of CYP2D6-metabolized opioid

ADRs (OR = 0.86; 95% CI = 0.83 to 0.90). The rs739296 (A) variant was also associated with

reduced risk of specifically nausea/vomiting reactions to CYP2D6-metabolized opioids

(OR = 0.80; 95% CI = 0.74 to 0.86). We found a significant association for OPRM1 and

Fig 1. A) Manhattan plots of genome-wide association studies (GWAS) for codeine (left) and CYP2D6-metabolized opioid (right) adverse

drug reactions (ADRs). Red lines on Manhattan plots show the genome-wide significance level (P< 5.0 × 10−8). B) CYP2D6 locus for

CYP2D6-metabolized opioid ADRs. SNPs are colored according to their linkage disequilibrium (LD, based on 1000 Genome phase3 EUR

reference panel) with the lead variant rs739296 (22:42389948), which is marked with a purple diamond. The lead variant rs9620007

(22:42405657) for codeine ADRs is also labeled. Dotted gray line shows the genome-wide significance level (P< 5.0 × 10−8).

https://doi.org/10.1371/journal.pgen.1009593.g001
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CYP2D6-metabolized opioid ADRs, where individuals carrying the minor allele of the lead

variant rs62436463 (T) were less likely to have a reported ADR (OR = 0.84; 95% CI = 0.79 to

0.90). Notably, the minor allele of the exonic variant rs1799971 (G) in OPRM1, which is in

high LD with the lead variant rs62436463, was also associated with reduced risk of

CYP2D6-metabolized opioid ADRs (OR = 0.86; 95% CI = 0.82 to 0.91).

For meperidine ADRs, the analysis revealed a genome-wide significant association signal

upstream of PTHLH and two significantly associated variants in FIPL1 and SERINC5 (Fig 2A).

Additionally, we identified a genome-wide significant signal in the major histocompatibility

Fig 2. Risk loci for meperidine (a) and penicillin (b) adverse drug reactions (ADRs). SNPs are colored according to their linkage disequilibrium (LD, based

on 1000 Genome phase3 EUR reference panel) with the lead variants rs11049274 (12:28161055) for meperidine ADRs and rs115200108 (6:31327622) for

penicillin ADRs, which are marked with a purple diamond. Dotted gray line shows the genome-wide significance level (P< 5.0 × 10−8).

https://doi.org/10.1371/journal.pgen.1009593.g002
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complex (MHC) region for penicillin ADR (Fig 2B). The minor allele of the lead variant

rs115200108, which is located between HLA-B and MICA, was significantly associated with

increased risk of penicillin ADRs (OR = 1.30, 95% CI = 1.21 to 1.39).

We also identified three low-frequency variants (minor allele frequency [EAF] < 0.05) that

were strongly associated with ADRs to aspirin (rs115346678; OR = 2.03; 95% CI = 1.79 to

2.28), cephalexin (rs34545984; OR = 2.03; 95% CI = 1.79 to 2.28), and simvastatin

(rs76103438; OR = 1.88; 95% CI = 1.65 to 2.09).

Expression quantitative trait loci analyses

Using data from the Genotype-Tissue Expression (GTEx) project, we evaluated the correlation

of the lead variants for the genetic loci identified by the GWAS and expression levels of puta-

tive target genes. For CYP2D6-metabolized opioid ADRs, the A allele of lead variant rs739296

in the CYP2D6 locus was most significantly associated with decreased WBP2NL expression in

adipose tissue (normalized effect size [NES] = -0.33; P = 1.9 × 10−11) and increased CYP2D6
expression in brain tissue (NES = 0.55; P = 5.3 × 10−11). The T allele of the lead variant

rs62436463 and the G allele of the exonic variant rs1799971 in OPRM1 were both associated

with higher OPRM1 expression in the cerebellum with NES of 0.70 (P = 9.5 × 10−8) and 0.63

(P = 1.4 × 10−7), respectively.

The A allele of the lead variant rs11049274 in PTHLH for meperidine ADRs was significantly

associated with increased PTHLH expression in muscoskeletal tissue (NES = 0.28; P = 6.5 × 10−5).

Additionally, the A allele of rs115200108 for penicillin ADRs was most significantly associated

with higher MIR6891 expression in adipose tissue (NES = 1.3; P = 2.0 × 10−13) and reduced

MICA expression in whole blood tissue (NES = -0.72; P = 2.0 × 10−13).

Phenome-wide analyses

To compare our framework with the ability of diagnosis codes to identify ADRs, we performed

PheWAS of the lead variants from the identified genetic loci (CYP2D6, OPRM1, PTHLH,

HLA/MICA) (S1 Fig). The lead variant rs115200108 in the HLA/MICA risk-locus was associ-

ated with increased risk of ‘Poisoning by antibiotic’ with an (OR = 2.37; 95% CI = 1.90 to 2.84;

P = 3.0 × 10−4) but did not reach phenome-wide significance (P< 5.0 × 10−5).

Discussion

In this study, we present a high-throughput and scalable approach to conduct large-scale,

genome-wide analyses for adverse drug reactions. Our framework can be adapted or shared

between institutions, helping facilitate collaboration between sites. Utilizing EHRs allowed us

to study ADRs in individuals with diverse clinical and ethnic backgrounds under the condi-

tions of routine clinical care. As shown in this study, what and how physicians choose to docu-

ment clinical observations or patients’ self-reported details as drug allergies in the EHR may

provide useful information. In addition, our results demonstrated the potential of utilizing

EHRs and our framework to efficiently generate pharmacogenomic findings, which can pro-

vide insights for optimizing drug therapy with maximal efficacy and minimal adverse effects.

We found that 28.6% of individuals at VUMC had at least one drug listed in the allergy sec-

tion of their EHRs. This is consistent with other studies have reported between 20 to 35 per-

cent of their populations have at least one drug allergy label in their EHRs. [14,21] The

genotyped BioVU cohort is a patient cohort (i.e., receives more frequent medical care than

general population) and has more dense EHR data, which may explain the higher proportion

of the BioVU cohort (66.0%) that reported at least one ADR. We also observed a lower propor-

tion of reported ADRs among AAs than EAs, which is consistent with a previous report. [14]
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As noted by the previous study, the difference in the reported ADRs between AAs and EAs

may reflect a documentation bias that has been reported in other clinical domains. [14]

Using our ADR case-control definitions, analyses identified genetic loci for 7 of the 14

selected drug/drug group allergies. We found that variants in two well-known genetic loci,

CYP2D6 and OPRM1, were associated with reduced risk of CYP2D6-metabolized opioid

ADRs. The analysis of eQTL data from the GTEx project showed that variants in the CYP2D6
locus and in OPRM1 were associated with elevated expression of these genes in the brain. [22]

Previous studies have implicated both of these genetic loci in opioid response and metabolism.

[23–25] Notably, an independent report on variants associated with reduced risk of opioid-

induced vomiting in a 23andMe cohort supported our findings that the minor alleles of

rs9620007 near CYP2D6 and rs1799971 in OPRM1 were associated with reduced risk of

CYP2D6-metabolized opioid ADRs. [26] Furthermore, our analysis of CYP2D6-metabolized

opioid related nausea or vomiting also identified the same loci near CYP2D6 as associated with

reduced risk. However, CYP2D6 metabolic activity also varies greatly depending on a copy

number variation, [23] which was not available for this study. Therefore, further work is

needed to better understand the contributions of genetic variations to CYP2D6-metabolized

opioid ADRs. Additionally, studies have reported that patients who carried the G allele of

rs1799971 in OPRM1 required higher doses of opioid for pain relief. [27,28] It is possible that

patients carrying the minor allele for the significant variants in OPRM1 experienced reduced

opioid effectiveness, which may affect their opioid sensitivity and risk of adverse reaction

depending on the opioid dosage.

We also identified HLA-MICA as a risk-locus for penicillin ADR, which is supported with a

recent large-scale genetic analysis for penicillin allergy including data from UK Biobank, Esto-

nian Biobank and BioVU. The previous study also showed a strong association between peni-

cillin allergy label and the HLA-MICA region with a different lead variant. [29] The eQTL

analysis showed that the minor allele of the lead variant rs115200108 in the HLA-MICA risk-

locus for penicillin ADR was associated with reduced MICA expression in whole blood tissue.

The PheWAS results found that the minor allele of rs115200108 was highly associated with

increased risk of ‘Poisoning by antibiotic,’ but did not reach phenome-wide significance. This

finding suggests that our approach to identifying ADRs not only offers ADR phenotypes that

are not covered by diagnosis codes but may also provide more power for genetic analyses than

using diagnostic codes alone.

There have been no previous studies regarding the associations between PTHLH and

meperidine allergy. In our eQTL analysis, we found that the lead variant in the PTHLH risk-

locus for meperidine allergy was associated with increased PTHLH expression in muscoskele-

tal tissue. However, further investigation is needed to confirm this finding. Trans-ethnic vali-

dation among individuals with self-reported African ancestry did not replicate any

associations of genome-wide significance, but this analysis may have been limited by smaller

sample size. Additionally, we performed genetic imputation with reference panels from the

Haplotype Reference Consortium, which were developed with individuals from predomi-

nantly European ancestry and therefore may not be adequate for individuals with self-reported

African ancestry. [30] Likewise, genome-wide analyses in the African ancestry cohort were

also limited by small sample sizes and predominantly European ancestry genetic reference

panels. Further improvements in ADR documentation and genetic reference panels as well as

the continued growth of EHR data may help us determine the generalizability of these findings

in diverse populations. Due to the high-throughput nature of our framework, it should be easy

to adapt to other large multi-ancestry EHR-based biobanks for future analyses.

There are several additional limitations to this study and approach. Drug allergy labels in

the allergy section are entered into the EHRs by healthcare providers, but this information is
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often self-reported or subject to interpretation bias by the individual receiving the information

and entering the data, introducing potential documentation or selection bias. For instance,

patients who communicate with their healthcare provider more frequently, whether due to

their specific conditions or due to socio-behavioral factors, may be more likely to report their

adverse drug reactions. A better understanding of the factors that affect the likelihood of

receiving a drug allergy label may improve our ability to utilize EHRs to study ADRs. Addi-

tionally, it is likely there were some misclassification errors in the controls. Controls who were

exposed to the drug and experienced an adverse reaction may not have reported the reaction

to their clinician to be documented. Similarly, controls who were never exposed to the drug

and only had the “no known drug allergy” label may experience an adverse reaction when

exposed to the drug. However, misclassifications of cases as controls most likely biases the

results to null and leads to an underestimation of the true contribution of genetic variation to

ADRs.

While a drug allergy labels in the allergy section is consistent with a previous adverse drug

reaction to the drug, more detailed questioning often reveals that a true allergy is less certain.

[15,31] For instance the vast majority of patients who are labeled as having a penicillin allergy

were typically labeled much earlier in childhood. [32–34] Studies in allergy practice show that

>95% of these individuals that undergo validated skin testing and challenge will tolerate peni-

cillin, in part due to waning of this allergic response over time. [31] Therefore, our analysis did

not consider the possibility of patients having lost their allergic tendency and being delabeled

for a drug allergy, and our results should be explained as ‘ever or never’ reported an adverse

reaction to a drug. Indeed, it is more challenging to capture specific details in the EHR when

identifying individuals who ever had a penicillin allergy label, rather than those who currently

have a penicillin allergy.

We also observed that clinicians often do not enter information in the allergy section in a

standardized manner, especially in older EHRs. Drug allergies and drug intolerances are fre-

quently documented together in the allergy section without clear distinguishers. In addition,

allergy section entries often omit details such as severity, type of reaction (e.g., anaphylaxis vs.

rash), specific dose, and time of administration, limiting nuanced analyses. Although the

CYP2D6-metabolized opioid related nausea/vomiting findings demonstrate that our frame-

work can extract more detailed ADR phenotypes, the frequency of missing reaction informa-

tion hinders a high-throughput analyses of specific adverse effects. Thus, the high-throughput

nature of our framework means that our genetic analyses were likely driven by the milder,

more frequent reactions (e.g., rash from penicillin) rather than rarer phenotypes like Stevens-

Johnson syndrome. Nonetheless, genetic variants identified with our framework need further

follow-up to better understand the potential risks of a medication for a patient. For instance,

labeling a patient to be broadly ‘at risk’ for an ADR may cause the patient to be given subopti-

mal therapy even if the reaction may be a common, expected side effect.

These observation highlights the need to emphasize efforts to capture more accurate and

relevant drug response information. Our framework will yield better outcomes as newer EHR

systems introduce more explicit semantic meaning (e.g., allergy vs. intolerance), structured

inputs and questionnaires (e.g., drop-down menus or checkboxes), [15] and increased quantity

of quality data to the allergy section. Although these improvements require time and planning,

it is encouraging that our current study in the context of these limitations can successfully

identify several known genetic associations for ADRs.

In summary, our results demonstrate the utility and efficacy of a high-throughput frame-

work to identifying ADRs and eligible individuals from EHRs for large-scale studies. Our

approach is scalable and portable and can help accelerate the pace of impactful pharmacogeno-

mic research for advancing precision medicine.
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Methods

Ethics statement

This study was approved by VUMC Institutional Review Board (#150475). Written consent

was obtained for use of genetic data (https://victr.vumc.org/biovu-consent/).

Identifying adverse drug reactions in EHRs

For a given patient, allergy sections across all their clinical notes were extracted as free text.

The data in an allergy section is often semi-structured (e.g., pcn [rash] and sulfa [itching]), but

formatting can vary depending on the healthcare provider who entered the data. Therefore,

drugs that appear in the allergy section were identified using case-insensitive regular expres-

sions for generic names, brand names, abbreviations (e.g., pcn for penicillin), and common

misspellings. Regular expressions allow us to match drug keywords within a drug allergy label

irrespective of formatting. A full list of regular expressions used to identify drugs in this study

can be found in S5 Table. The type of reaction was identified similarly with regular expressions

when available. For drug allergy labels that refer to a class of drugs (e.g., penicillin, sulfa, etc.),

we grouped all the drugs in the class as one ADR phenotype.

For each drug, we defined cases as individuals with any mention of the drug in the allergy

section. For controls, we included individuals that met either of two criteria: 1) individuals who

were prescribed the drug and had no mention of the drug in their allergy sections; or 2) individ-

uals who only had labels for “no known drug allergy” or an equivalent description in of their

allergy sections. For the first criteria, we used RxNorm codes–a normalized naming system for

generic and branded drug–to identify individuals with prescriptions of the drug of interest.

Genotyping and SNP imputation

Genotyping was performed on the Infinium Multi-Ethnic Genotyping Array (MEGAchip). We

excluded DNA samples: (1) with per-individual call rate< 95%; (2) with wrongly assigned sex;

(3) with a cryptic relationship closer than a third-degree relative (proportion identity by descent

�0.25); or (4) unexpected duplication. We performed whole genome imputation using the

Michigan Imputation Server (https://imputationserver.sph.umich.edu) [35] with the Haplotype

Reference Consortium (HRC), version r1.1, [36] as reference. Principal components for ances-

try (PCs) were calculated using common variants (MAF> 0.01) with high variant call rate

(> 98%), excluding variants in linkage and regions known to affect PCs (HLA region on chro-

mosome 6, inversion on chromosome 8 (8135000–12000000) and inversion on chr 17

(40900000–45000000), GRCh37 build). For association analyses, we used EasyQC (www.

genepi-regensburg.de/easyqc) [37] to filter (1) poorly imputed variants with imputation quality

(R2) value of< 0.5, (2) EAF< 0.005, (3) deviation from Hardy-Weinberg equilibrium with a P-
value� 1×10−6 and (4) variants with EAF that deviated from the HRC reference panel by> 0.3.

Genetic analyses

All statistical analyses were performed with PLINK 2.0.[38] This study included 81,739 indi-

viduals from the Vanderbilt University Medical Center’s BioVU DNA Biobank, [17] including

GWAS data from 67,323 individuals with self-reported European ancestry and trans-ethnic

validation using 14,416 individuals with self-reported African ancestry. We applied logistic

regression models to investigate the association of genetic variants with risk of ADR to any of

the 14 drugs or drug groups selected for this study. All regression models were adjusted for

sex, age, length of EHR, and the first 10 principal components of the genotyping array for

ancestry. Association results were annotated with ANNOVAR. [39] Region plots were
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produced with LocusZoom. [40] Additional eQTL analysis used data from the Genotype-Tis-

sue Expression (GTEx) project (www.gtexportal.org). [22]

For PheWAS, we used logistic regression models with phecodes, which are diagnosis codes

aggregated into meaningful disease phenotypes that have been commonly used in phenome-

wide analyses. [18,19] Patients with� 2 phecodes were assigned to case. All regression models

were again adjusted for sex, age, length of EHR, and the first 10 principal components of the

genotyping array for ancestry.

Supporting information

S1 Table. Summary of types of adverse drug reactions stratified by ancestry.

(PDF)

S2 Table. Genome-wide significant variants associated with adverse drug reactions in

European ancestry individuals.

(PDF)

S3 Table. Trans-ethnic replication of lead variant per signal associated with adverse drug

reactions in individuals with self-reported African ancestry.

(PDF)

S4 Table. Genome-wide significant variants associated with adverse drug reactions in self-

reported African ancestry individuals.

(PDF)

S5 Table. Regular expressions for extracting adverse drug reactions from the ‘Allergy sec-

tion’ of electronic health records.

(PDF)

S1 Fig. Manhattan plots of phenome-wide analysis of lead variants in CYP2D6, OPRM1,

PTHLH, and HLA/MICA associated with adverse drug reactions (ADRs). Red lines on

Manhattan plots show the phenome-wide level of significance (5.0 × 10−5). Phenotypes with P-

values< 0.005 were annotated.

(PDF)
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