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Severe acute respiratory syndrome coronavirus 2 first appeared in December 2019 in Wuhan, China, and developed into a world-

wide pandemic within the following 3 months causing severe bilateral pneumonia (coronavirus disease 2019) with in part fatal out-

comes. After first experiences and tentative strategies to face this new disease, several cases were published describing severe acute

respiratory syndrome coronavirus 2 infection related to the onset of neurological complaints and diseases such as, for instance, an-

osmia, stroke or meningoencephalitis. Of note, there is still a controversy about whether or not there is a causative relation be-

tween severe acute respiratory syndrome coronavirus 2 and these neurological conditions. Other concerns, however, seem to be

relevant as well. This includes not only the reluctance of patients with acute neurological complaints to report to the emergency de-

partment for fear of contracting severe acute respiratory syndrome coronavirus 2 but also the ethical and practical implications for

neurology patients in everyday clinical routine. This paper aims to provide an overview of the currently available evidence for the

occurrence of severe acute respiratory syndrome coronavirus 2 in the central and peripheral nervous system and the neurological

diseases potentially involving this virus.
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scriptase polymerase chain reaction; SARS-CoV ¼ severe acute respiratory syndrome coronavirus; SARS-CoV-2 ¼ severe acute
respiratory syndrome coronavirus 2

Received August 18, 2020. Revised August 18, 2020. Accepted August 20, 2020. Advance Access publication September 17, 2020
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
doi:10.1093/braincomms/fcaa149 BRAIN COMMUNICATIONS 2020: Page 1 of 12 | 1

http://orcid.org/0000-0003-0682-9859
http://orcid.org/0000-0002-2156-8864


Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), a novel b-corona single-stranded RNA virus, first

appeared in Wuhan, China, in December 2019 and devel-

oped into a worldwide pandemic within the following

3 months. This makes it the third coronavirus epidemic

after the outbreak of severe acute respiratory syndrome

coronavirus (SARS-CoV) in 2003 and middle east respira-

tory syndrome coronavirus in 2012. Beyond its enormous

multi-faceted medical aspects, the pandemic also chal-

lenges us to re-think daily hospital routines ranging from

the implementation of telephone and video consultations

for patients to the organization of interdisciplinary e-con-

ferences (Grossman et al., 2020; McArthur, 2020).

Similar to other human coronaviruses, SARS-CoV-2 pri-

marily targets the upper and lower respiratory system

and was first isolated from cases of bilateral pneumonia

termed coronavirus disease 2019 (COVID-19; Lau and

Peiris, 2005; Hirano and Murakami, 2020; Rockx et al.,

2020; Wang et al., 2020a; Zhou et al., 2020). Apart

from this, numerous studies have been published that de-

scribe nervous system involvement in SARS-CoV-2-posi-

tive patients (Table 1). Of the four SARS-CoV-2

structural proteins spike, membrane, envelope and RNA-

containing nucleocapsid, the spike protein is responsible

for viral pathogenicity by binding to the human angioten-

sin converting enzyme 2 (ACE2) receptor. Of note,

SARS-CoV-2 binds to ACE2 receptor with a 10–20-fold

higher affinity than SARS-CoV. ACE2 receptor is, inter

alia, expressed on the lung epithelium (Hirano and

Murakami, 2020) where its activation ultimately results

in an infiltration of lung alveoli by activated T lympho-

cytes, natural killer cells and activated monocytes/macro-

phages. Moreover, it causes a deleterious cytokine release

syndrome (i.e. cytokine storm). In the brain, ACE2

receptor can be found in the piriform cortex (Doobay

et al., 2007), the brainstem (Lenkei et al., 1996; Lin

et al., 2008) and cardiovascular regulatory areas (Doobay

et al., 2007; Yamazato et al., 2007; Feng et al., 2008)

such as the subfornical organ, the paraventricular nu-

cleus, the nucleus of the tractus solitarius and the rostral

ventrolateral medulla. On the cellular level, it was found

on neurons (Doobay et al., 2007; Xiao et al., 2013;

Mukerjee et al., 2019; Chen et al., 2020b; Zhu et al.,

2020), glial cells (Gallagher et al., 2006; Gowrisankar

and Clark, 2016; Chen et al., 2020b; Zhu et al., 2020)

and non-neural olfactory epithelial cells [i.e. horizontal

basal cells and Bowman’s gland cells (Brann et al.,

2020)]. Interestingly, among CNS cells, oligodendrocytes

seem to be of particular interest as they express not only

ACE2 but also the transmembrane protease, serine 2, an

important SARS-CoV-2 co-receptor (Needham et al.,
2020). Epidemiologically, it remains currently unclear

how many COVID-19 patients exhibit neurological com-

plications with numbers ranging from a few per cent to

up to 80% (Helms et al., 2020a; Mao et al., 2020).

However, whether or not these complications are based

on direct effects of the virus on the central nervous sys-

tem CNS or the peripheral nervous system still needs to

be clarified.

On the one hand, COVID-19-associated neurological

symptoms could be simply based on sepsis or multiorgan

failure (e.g. lung dysfunction with subsequent hypoxia),

or the above-mentioned cytokine storm featuring produc-

tion of pro-inflammatory cytokines such as interleukin

(IL)-1b, IL-2, IL-6, IL-7, IL-8, tumour necrosis factor-a,

C-X-C motif chemokine 10 and chemokine ligand 2

(Helms et al., 2020a; Huang et al., 2020a; Mehta et al.,

2020; Wan et al., 2020). Particularly, tumour necrosis

factor-a might destabilize the blood–brain-barrier render-

ing the CNS vulnerable (Kim et al., 1992). As a
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Sá
n
ch

e
z

et
al

.

(2
0
2
0
)

R
e
tr

o
sp

ec
ti
ve

o
b
se

r-

va
ti
o
n
al

tw
o
-c

e
n
tr

e

(A
L
B
A

C
O

V
ID

re
gi

st
ry

)

T
h
ro

at
sw

ab
R
T-

P
C

R

o
r

im
m

u
n
o
gl

o
b
u
lin

G
/i
m

m
u
n
o
gl

o
b
u
lin

M
an

ti
b
o
d
ie

s

ag
ai

n
st

SA
R

S-
C

o
V
-

2
in

a
b
lo

o
d

te
st

8
4
1

M
e
an

6
6
.4

(6
SD

1
5
.0

)

5
6
.2

/4
3
.8

/0
5
1

(6
.1

)
1
1
9

(1
4
.1

)
1
6
5

(1
9
.6

)
1
1

(1
.3

)
3

(0
.3

)
6

(0
.7

)
4
1

(4
.9

)
5
2

(6
.2

)
n
.a

.

L
o
d
ig

ia
n
ie

t
al

.

(2
0
2
0
)

R
e
tr

o
sp

ec
ti
ve

o
b
se

r-

va
ti
o
n
al

si
n
gl

e
-

ce
n
tr

e

L
ab

o
ra

to
ry

-p
ro

ve
n

C
O

V
ID

-1
9

3
8
8

M
e
d
ia

n
6
6

(I
Q

R
5
5
.0

–
7
5
.0

)

3
2
.0

/6
8
.0

n
.a

.
n
.a

.
n
.a

.
9
/3

6
2

cl
o
se

d

ca
se

s
(2

.5
)

n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.

C
h
e
n

et
al

.

(2
0
2
0
d
)

R
e
tr

o
sp

ec
ti
ve

ca
se

st
u
d
y,

si
n
gl

e
-

ce
n
tr

e

T
h
ro

at
sw

ab
R
T-

P
C

R
2
7
4

M
e
d
ia

n
6
2
.0

(I
Q

R
4
4
.0

–
7
0
.0

)3
7
.6

/6
2
.4

/0
2
1

(7
.6

)
3
1

(1
1
.3

)
2
6

(9
.5

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.

L
ie

t
al

.,

(2
0
2
0
a,

)

R
e
tr

o
sp

ec
ti
ve

o
b
se

rv
at

io
n
al

si
n
gl

e
-c

e
n
tr

e

C
o
n
fi
rm

e
d

C
O

V
ID

-

1
9

2
2
1

n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.
1
1

(5
.0

)
1

(0
.5

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.

M
ao

et
al

.

(2
0
2
0
)

R
e
tr

o
sp

ec
ti
ve

o
b
se

rv
at

io
n
al

m
u
lt
ic

e
n
tr

e

T
h
ro

at
sw

ab
R
T-

P
C

R
2
1
4

M
e
an

5
2
.7

(6
SD

1
5
.5

)

5
9
.3

/4
0
.7

/0
3
6

(1
6
.8

)
2
8

(1
3
.1

)
1
6

(7
.5

)
5

(2
.3

)
1

(0
.5

)
1

(0
.5

)
1
2

(5
.6

)
1
1

(5
.1

)
3

(1
.4

)

C
h
e
n

et
al

.

(2
0
2
0
a,

b,
c)

R
e
tr

o
sp

ec
ti
ve

o
b
se

rv
at

io
n
al

si
n
gl

e
-c

e
n
tr

e

T
h
ro

at
sw

ab
R
T-

P
C

R
9
9

M
e
an

5
5
.5

(6
SD

1
3
.1

)

3
2
.3

/6
7
.7

/0
n
.a

.
8

(8
.1

)
9

(8
.1

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.

G
ia

co
m

e
lli

et
al

.

(2
0
2
0
)

Q
u
es

ti
o
n
n
ai

re
-b

as
ed

,

p
at

ie
n
t-

re
p
o
rt

e
d
,

cr
o
ss

-s
ec

ti
o
n
al

,s
in

-

gl
e
-c

e
n
tr

e

n
.a

.
5
9

M
e
d
ia

n
6
0

(I
Q

R
5
0
–
7
4
)

3
2
.2

/6
7
.8

n
.a

.
2

(3
.4

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.
1
4

(2
3
.7

)1
7

(2
8
.8

)
n
.a

.

Y
an

et
al

.
(2

0
2
0
)

Q
u
es

ti
o
n
n
ai

re
-b

as
ed

,

p
at

ie
n
t-

re
p
o
rt

e
d
,

cr
o
ss

-s
ec

ti
o
n
al

,

si
n
gl

e
-c

e
n
tr

e

T
h
ro

at
sw

ab
R
T-

P
C

R
5
9

n
.a

.
4
9
.2

/4
9
.2

/

1
.7

n
.a

.
3
9

(6
6
.1

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.
4
0

(6
7
.8

)4
2

(7
1
.2

)
n
.a

.

Y
an

g
et

al
.

(2
0
2
0
)

R
e
tr

o
sp

ec
ti
ve

o
b
se

rv
at

io
n
al

si
n
gl

e
-c

e
n
tr

e

T
h
ro

at
sw

ab
R
T-

P
C

R
5
2

M
e
an

5
1
.9

(6
SD

1
2
.9

)

3
2
.6

/6
7
.3

/0
n
.a

.
3

(5
.8

)
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.
n
.a

.

O
x
le

y
et

al
.

(2
0
2
0
)

C
as

e
se

ri
e
s

T
h
ro

at
sw

ab
R
T-

P
C

R
5

M
e
d
ia

n
3
9

(I
Q

R
3
5
.0

–
4
6
.5

)

2
0
.0

/8
0
.0

n
.a

.
1

(2
0
.0

)
4

(8
0
.0

)
5

(1
0
0
.0

)
0

(0
.0

)
0

(0
.0

)
n
.a

.
n
.a

.
n
.a

.

T
h
e

ta
b
le

sh
o
w

s
a

se
le

ct
io

n
o
f
o
b
se

rv
at

io
n
al

an
d

ca
se

st
u
d
ie

s
th

at
d
e
sc

ri
b
e

n
e
u
ro

lo
gi

ca
lm

an
ife

st
at

io
n
s

in
SA

R
S-

C
o
V
-2

-p
o
si

ti
ve

p
at

ie
n
ts

.
T

h
e

st
u
d
y

lis
ti
n
g

is
b
as

e
d

o
n

th
e

n
u
m

b
e
r

o
f
in

cl
u
d
e
d

p
at

ie
n
ts

.
A

se
le

ct
io

n
o
f
fr

e
q
u
e
n
tl
y

m
e
n
ti
o
n
e
d

n
e
u
ro

lo
gi

ca
l
co

m
-

p
la

in
ts

in
th

e
co

n
te

x
t

o
f
a

SA
R

S-
C

o
V
-2

in
fe

ct
io

n
w

as
m

ad
e
.
IC

B
¼

in
tr

ac
ra

n
ia

l
h
ae

m
o
rr

h
ag

e
;
IQ

R
¼

in
te

rq
u
ar

ti
le

ra
n
ge

;
n
.a

.¼
d
at

a
n
o
t

gi
ve

n
o
r

n
o
t

av
ai

la
b
le

to
th

e
au

th
o
rs

;
SD
¼

st
an

d
ar

d
d
ev

ia
ti
o
n
.

Neurological manifestation of SARS-CoV-2 BRAIN COMMUNICATIONS 2020: Page 3 of 12 | 3



consequence, CNS-resident cells such as microglia or astro-

cytes could be driven to attack other cells in the brain and

spinal cord leading to parenchymal injury. On the other

hand, a conceivable mechanism of direct SARS-CoV-2-

mediated CNS damage could consist in an invasion of the

virus into the CNS (Table 2). In rodent animal models,

mice were exposed to intranasal injections with the SARS-

CoV-2-related human b-coronavirus OC43. Via the nasal

mucosa and olfactory bulb, the virus was found to use

retrograde axonal transport in order to travel to the brain

and brainstem where it might contribute to dysregulated

breathing or to compromised pulmonary and cardiac func-

tions (Butler et al., 2006). This portal of entry could also

explain the loss of smell and taste in the early stages of

the disease or oedematous changes in the olfactory bulb

(Laurendon et al., 2020; Mao et al., 2020; Meng et al.,

2020; Vaira et al., 2020). Of note and interestingly, it has

been known for a long time that infection of mice with

neurotropic strains of the coronavirus mouse hepatitis

virus leads to CNS demyelination mimicking multiple

sclerosis (Haring and Perlman, 2001). Moreover, SARS-

CoV-2 might retrogradely travel from the lung or the

intestines to the CNS via the vagus nerve (Li et al.,
2020b; Machado and Gutierrez, 2020). In addition, it

could be shown that human coronaviruses and especially

SARS-CoV are able to infect and activate myeloid cells

such as monocytes, which may then invade the CNS hae-

matogenously via Trojan horse transit (Law et al., 2005;

Yilla et al., 2005; Chen et al., 2020c; Moore and June,

2020). Finally, it is conceivable that in the context of vir-

emia blood-borne SARS-CoV-2 travels to the CNS where

it infects the endothelium and might then reach the brain

via viral budding (Varga et al., 2020). In summary, each

of the above-described mechanisms could help to explain

the occurrence of neurological symptoms and diseases in

SARS-CoV-2-positive patients.

Materials and methods
For this review, a web-based literature search for all

English-language studies or preprints was conducted on

PubMed (https://www.ncbi.nlm.nih.gov/pubmed/, last

accessed on 8 August 2020), medRxiv and bioRxiv using

search terms such as ‘SARS-CoV-2’, ‘2019-nCoV’, ‘novel

coronavirus’, ‘COVID-19’, ‘neurology’, ‘neurological dis-

order’, ‘neurological disease’, ‘neurological complication’,

‘neurological deterioration’, ‘neurological involvement’,

‘central nervous system’, ‘peripheral nervous system’,

‘cerebrospinal fluid’ and ‘brain’, in combination with each

other reporting neurological presentations of patients with

clinically or laboratory-confirmed SARS-CoV-2 infection.

Where available, reviews or brief statements from the na-

tional or international neurological societies were taken

into account. We have incorporated studies made available

online between 1 May and 8 August 2020.

SARS-CoV-2 and its
involvement in neurological
diseases

Meningoencephalitis

At this stage, some case reports have described SARS-

CoV-2-associated encephalopathies or meningoencephal-

itis. It remains, as discussed, unclear whether these

diseases result from indirect effects of a systemic pro-in-

flammatory state, as can be observed in sepsis, or from

direct SARS-CoV-2-induced meningeal and neuroglial in-

flammation. To date, only in a limited number of cases

could SARS-CoV-2 be detected in the CNS of patients

(Table 3). Moriguchi et al. describe a 24-year-old male

presenting with headache, fatigue, fever, sore throat, neck

stiffness, altered consciousness, pneumonia and new onset

generalized seizures. In this case, MRI showed a fluid-

attenuated inversion recovery sequence-hyperintensity in

the right mesial temporal lobe and hippocampus and a

diffusion-weighted magnetic resonance imaging-hyperin-

tensity along the wall of the inferior horn of right lateral

ventricle. Furthermore, CSF cell count was mildly ele-

vated to 12/ml and intracranial pressure was >320

mmH2O. Interestingly, SARS-CoV-2 RNA was not

detected in the nasopharyngeal swab but in the CSF

(Moriguchi et al., 2020). The second case report is still

unpublished but officially confirmed by the treating med-

ical institution. It describes the case of a 56-year-old pa-

tient with viral encephalitis in whose CSF SARS-CoV-2

was identified by gene sequencing (Wu et al., 2020;

Xiang et al., 2020; http://xinhuanet.com/english/2020-03/

05/c_138846529.htm, accessed on 23 May 2020). The

third case was a 41-year-old woman presenting with

headache, fever, new onset seizures and signs of menin-

geal irritation. Cranial CT-scan showed no abnormalities

but CSF analysis revealed an increased lymphocytic white

cell count of 70/ml and a red cell count of 60/ml without

evidence for herpes simplex virus infection. The patient

Table 2 Potential portals of entry for SARS-CoV-2 into the CNS

Portal of entry into the CNS Mode of action Authors

Endothelium of cerebral vessels Haematogenously via viral budding Paniz-Mondolfi et al. (2020); Varga et al. (2020)

Nasal mucosa and olfactory bulb Via retrograde axonal transport Laurendon et al. (2020); Meng et al. (2020)

Vagus nerve Via retrograde axonal transport Li et al. (2020b); Machado and Gutierrez (2020)

Myeloid cells Haematogenously via Trojan horse transit Chen et al. (2020d); Merad and Martin (2020); Moore and June (2020)
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underwent SARS-CoV-2 testing although she had no

signs of respiratory discomfort and chest CT did not

show any findings suggestive of pneumonia. Both the

nasopharyngeal swab test and the CSF sample were posi-

tive for SARS-CoV-2 (Duong et al., 2020; Huang et al.,
2020b). Moreover, Paniz-Mondolfi et al. report a SARS-

CoV-2-positive Parkinson’s disease patient with initial

reduced vigilance, fever and confusion. Although SARS-

CoV-2 was not found in the CSF, the virus was detected

post-mortem in the frontal lobe by electron microscopy

and by reverse transcriptase polymerase chain reaction

(RT-PCR; Paniz-Mondolfi et al., 2020). This observation

is corroborated by the results of another post-mortem

case study in which SARS-CoV-2 RNA was detected in

brain tissue from four patients who had died from

COVID-19 (Wichmann et al., 2020). In contrast to these

studies, Schaller and et al. as well as Barton et al. did

find neither macroscopic nor histological evidence of

SARS-CoV-2-related CNS abnormalities in COVID-19

autopsies (Barton et al., 2020; Schaller et al., 2020). On

the cellular level, Chu et al. detected a modest SARS-

CoV-2 replication in the human neuronal U251 cell line

(Chu et al., 2020). While this observation suggests that,

in principle, CNS cells are susceptible to SARS-CoV-2 in-

fection there are two major caveats. First, the authors did

not use primary human CNS cells and second, they

observed no substantial cytopathic effect in the cells

investigated.

Cerebrovascular diseases

A potential link between acute cerebrovascular diseases

such as ischaemic and haemorrhagic stroke and SARS-

CoV-2 infection is controversially discussed. As of now,

Table 3 Cases in which SARS-CoV-2 was detected in the CNS

Authors Number of

patients

Age/gender Analysis Manifestation Imaging

Moriguchi et al. (2020) 1 24 years/M Nasopharyngeal swab

SARS-CoV-2 RT-PCR

negative

CSF specimen

SARS-CoV-2 RT-PCR

positive

Pneumonia, headache, fatigue,

fever, sore throat, neck

stiffness, consciousness dis-

turbance, multiple general-

ized seizures

Cranial MRI:

fluid-attenuated inversion re-

covery sequence-hyperinten-

sity right mesial temporal

lobe and hippocampus. diffu-

sion-weighted magnetic res-

onance imaging-

hyperintensity along the wall

of the inferior horn of right

lateral ventricle

Xiang et al. (2020) 1 56 years/M CSF specimen

SARS-CoV-2 gene sequencing

positive

COVID-19, encephalitis Cranial CT-scan:

no abnormal findings

Duong et al., (2020)

Huang et al. (2020a, b)

1 41 years/F Nasopharyngeal swab

SARS-CoV-2 RT-PCR

positive

CSF specimen

SARS-CoV-2 RT-PCR

positive

Headache, fever, lethargic,

seizure, neck stiffness,

photophobia, confusion,

hallucinations

Cranial CT-scan:

no abnormal findings

Serial chest X-ray and chest

CTwere normal

Paniz-Mondolfi et al. (2020) 1 74 years/M Nasopharyngeal swab

SARS-CoV-2 RT-PCR

negative

CSF specimen

SARS-CoV-2 RT-PCR

negative (post-mortem)

Electron microscopy positive

for pleomorphic spherical

viral-like 80–110-nm particles

frontal lobe brain sections

(post-mortem)

Minced brain tissue

SARS-CoV-2 RT-PCR

positive (post-mortem)

COVID-19, fever, confusion,

agitation, new onset of

atrial fibrillation

Cranial CT-scan:

patchy subcortical and peri-

ventricular hypodensities un-

changed from a scan

6 months earlier

Wichmann et al. (2020) 4 n.a. Minced lung tissue

SARS-CoV-2 RT-PCR

positive (post-mortem)

Minced brain tissue

SARS-CoV-2 RT-PCR

positive (post-mortem)

COVID-19 n.a.

n.a. ¼ data not given or not available to the authors.
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evidence suggests that this link is CNS unspecific and

seems to be rather based on an impact of SARS-CoV-2

on the heart and the peripheral vascular system in the

general context of a critical disease. Of note, pre-existing

conditions such as arterial hypertension, cardiovascular

diseases, diabetes mellitus and smoking predispose

patients to develop COVID-19 (Emami et al., 2020)

while they are, at the same time risk factors for cerebro-

vascular disease. It is therefore difficult to disentangle

these connections regarding causative versus chance rela-

tionship. Nonetheless, a recent study demonstrated that

SARS-CoV-2-positive patients who were hospitalized due

to stroke showed a higher incidence of fever, delirium

and ultimately are at greater risk for poor outcomes than

SARS-CoV-2-negative patients (Benussi et al., 2020).

Observational studies from Europe and China estimate

the proportion of COVID-19 patients with concurrent

cerebrovascular disease at 1.3–5.0% (Klok et al., 2020;

Li et al., 2020a; Lodigiani et al., 2020; Romero-Sánchez

et al., 2020). A retrospective observational study by Mao

et al. reported five cases (2.3%) with ischaemic and one

case (0.5%) with haemorrhagic stroke in SARS-CoV-2-

positive patients (Mao et al., 2020). These results are

supported by several case series describing the occlusion

of large arterial vessels in SARS-CoV-2-positive patients

(Al Saiegh et al., 2020; Oxley et al., 2020).

Pathophysiologically, SARS-CoV-2 could have a direct ef-

fect on myocardial and endothelial cells via the ACE2 re-

ceptor, which is expressed not only by Type I and Type

II alveolar epithelial cells but also by myofibroblasts, vas-

cular endothelial and vascular smooth muscle cells

(Hamming et al., 2004). This could result in damage of

cell–cell interfaces with subsequent myocardial or vascular

cell injury leading to an increased thrombogenicity (Yau

et al., 2015). In addition, myofibroblasts activated by

SARS-CoV-2 could also interfere with the propagation of

electrical signals in the heart resulting in arrhythmia

(Quinn et al., 2016). This might, in turn, explain a

higher risk for micro- and thrombo-embolic events lead-

ing to ischaemic strokes in COVID-19 patients. The same

circumstance, i.e. an interrupted cell–cell interface, could

underpin reported cases of focal as well as subarachnoid

cerebral haemorrhage in COVID-19 patients but, again,

this remains to be demonstrated (Heman-Ackah et al.,

2020; Hernández-Fernández et al., 2020; Poyiadji et al.,

2020; Sharifi-Razavi et al., 2020; Wang et al., 2020b).

Another possible pathophysiological rationale for the oc-

currence of cerebrovascular diseases in COVID-19

patients could be the cytokine storm mentioned above.

The systemic release of SARS-CoV-2-induced pro-inflam-

matory cytokines such as IL-1b, IL-6, IL-8 and tumour

necrosis factor-a may not only have a negative influence

on pre-existing arteriosclerotic diseases [Goldberg et al.,

2020, reviewed in Libby et al. (2018)]. It could also play

an important role in tissue-factor-mediated activation of

the coagulation system, inter alia, resulting in thrombin

generation and the inhibition or the dysfunction of

physiological anticoagulant systems (Vary and Kimball,

1992; Levi et al., 1997; Franco et al., 2000; Chen et al.,
2020a; Fogarty et al., 2020; Harzallah et al., 2020;

Helms et al., 2020b; Tang et al., 2020; Zhang et al.,

2020b). Accordingly, this could lead not only to the oc-

currence of cerebral ischaemia but also to cerebral venous

thrombosis in COVID-19 patients as described in several

case reports (Garaci et al., 2020; Hemasian and Ansari,

2020; Hughes et al., 2020; Li et al., 2020a). Ultimately,

this procoagulatory state might activate the fibrinolytic

system generating characteristic fibrin degradation prod-

ucts resulting in disseminated intravascular coagulation as

it was also observed in COVID-19 patients (Chen et al.,

2020a; Fogarty et al., 2020; Tang et al., 2020). Another

aspect that could explain a hypercoagulable state in

COVID-19 patients could be a SARS-CoV-2-induced anti-

phospholipid syndrome, which by itself is known to af-

fect the CNS causing stroke and cerebral venous

thrombosis [reviewed by Nayer and Ortega (2014)]. In a

small series of three patients, Zhang et al. describe the

presence of anticardiolipin immunoglobulin A, anti-b2-

glycoprotein I immunoglobulin A and immunoglobulin G

antibodies in the serum of patients with COVID-19 who

developed cerebral infarctions during their hospitalization

(Zhang et al., 2020b). Further studies reported 45% up

to 88% of COVID-19 patients tested positive for lupus

anticoagulant (Harzallah et al., 2020; Helms et al.,

2020b). However, this might be non-specific since anti-

phospholipid antibodies and lupus anticoagulants are

often detected particularly in elderly patients in the con-

text of infection or related to specific medications

[reviewed by Uthman and Gharavi (2002) and

Giannakopoulos and Krilis (2013)]. Accordingly, there

has been a controversial discussion regarding the signifi-

cance of these results (Connell et al., 2020; Escher et al.,
2020; Tang, 2020; Tang et al., 2020). In addition,

Merkler et al. report an increased risk of stroke in

COVID-19 patients compared to patients who had re-

spiratory tract infection due to another viral pathogen,

viral pathogen, even though further studies are needed to

confirm this finding (Merkler et al., 2020). Finally, it is

worth mentioning that, in general, the fear of contracting

COVID-19 has led to a reluctance of patients particularly

with mild stroke symptoms to present to emergency

departments (Oxley et al., 2020; Siegler et al., 2020). Of

note, Zhao et al. report a 37.9% decrease in hospital

admissions related to stroke during the Chinese epidemic

in February 2020 compared to the same period in the

previous year. In parallel to that, the absolute number of

patients treated by thrombolysis or thrombectomy

dropped by 25.5 and 22.7%, respectively. In this regard,

not only the patients’ and their families’ fear of contract-

ing SARS-CoV-2 in the hospital may result in a signifi-

cant delay for timely stroke treatment. The same may

apply to insufficient transportation resources during lock-

down, COVID-19 screening procedures and local infec-

tious prevention strategies. This could obviously result in
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potentially poorer outcomes and emphasizes the need for

standardized management guidelines in stroke care during

the COVID-19 pandemic (Zhao et al., 2020b).

Guillain–Barré-Syndrome

Another conceivable neurological manifestation of SARS-

CoV-2 may be Guillain–Barré-Syndrome (GBS) and its

variants, which have been reported in a number of

COVID-19 patients. GBS is an acute mostly postinfec-

tious immune-mediated disorder affecting nerve roots and

peripheral nerves. Clinically, GBS is associated with a

rapidly progressive ascending symmetric peripheral par-

alysis, hypo- or areflexia and can ultimately necessitate

mechanical ventilation (Willison et al., 2016). It is usually

linked to previous infection with Campylobacter jejuni,
Mycoplasma pneumoniae, Zikavirus, Ebstein-Barr-Virus

or other pathogens (Jacobs et al., 1998; Cao-Lormeau

et al., 2016; Krauer et al., 2017). Prior to the current

pandemic, there have already been reports associating

other coronaviruses with different forms of GBS (Kim

et al., 2017; Sharma et al., 2019). In the context of the

current pandemic, a few case reports have linked GBS

and its subforms to prior infection with SARS-CoV-2.

The most recent attempt at systematically reviewing

reports published before 17 May 2020, found 18 cases

(De Sanctis et al., 2020). In nearly all of the cases, GBS

symptoms occurred following the clinical manifestation of

SARS-CoV-2, i.e. fever and non-productive cough. To

our knowledge, there is only one case where symptoms

occurred simultaneously (Zhao et al., 2020a).

Interestingly, in none of the cases SARS-CoV-2 RNA

could be detected in the CSF. Moreover, anti-glycolipid

antibodies that typically occur in the serum of GBS

patients were not detected (Coen et al., 2020; Toscano

et al., 2020) although some of the patients were not

tested for them (Padroni et al., 2020; Sedaghat and

Karimi, 2020; Toscano et al., 2020; Virani et al., 2020).

Typical CSF findings such as albuminocytologic dissoci-

ation were inconsistent, varying from highly (Coen et al.,
2020) to mildly increased (Alberti et al., 2020) to normal

protein levels (Toscano et al., 2020). In the reported

cases, EMG identified mainly two variants of GBS:

motor-sensory demyelinating neuropathy (Alberti et al.,

2020; Coen et al., 2020; Toscano et al., 2020; Virani

et al., 2020) and motor-sensory axonal neuropathy

(Sedaghat and Karimi, 2020; Toscano et al., 2020).

Furthermore, three of the reported patients required

mechanical ventilation but it is not clear whether respira-

tory insufficiency resulted from COVID-19 or was part

of the natural course of GBS (Toscano et al., 2020). An

obvious differential diagnosis would be critical illness

polyneuropathy. MRI scans of the brain and spinal cord

showed a variety of findings: no pathological signals at

all (Sedaghat and Karimi, 2020; Toscano et al., 2020),

gadolinium enhancement in the caudal nerve roots or, in

one case, bilaterally in the facial nerve (Toscano et al.,

2020). In addition, there is one case in which a SARS-

CoV-2-positive patient developed Miller–Fisher-Syndrome,

a GBS spectrum disease characterized by ataxia, ophthal-

moplegia, areflexia and typically antibodies to ganglio-

sides such as ganglioside Q1b. Here, an antibody

directed at the ganglioside D1b was identified in the

serum and CSF analysis showed albuminocytologic dis-

sociation. However, again SARS-CoV-2 RNA could not

be detected in the CSF. The same authors report another

case where a SARS-CoV-2-positive patient suffering from

diarrhoea developed polyneuritis cranialis. Except for

albuminocytologic dissociation, all other laboratory anal-

yses yielded non-specific results (Gutiérrez-Ortiz et al.,

2020).

Acute disseminated
encephalomyelitis

Acute disseminated encephalomyelitis (ADEM) is an acute

monophasic usually postinfectious, immune-mediated

demyelinating disorder of the CNS. As the disease is

characterized by multiple white matter lesions in the

brain or spinal cord, neurological symptoms can vary sig-

nificantly (Noorbakhsh et al., 2008). A first case report

published in 2003 established a possible link between

coronavirus OC43 and ADEM when the virus was

detected in the CSF and the nasopharyngeal secretions of

a 15-year-old patient (Yeh et al., 2004). As of now, there

is only one definite case report of ADEM in an adult fe-

male patient who was tested positive for SARS-CoV-2.

Analysis of the patient’s CSF yielded no pathological

findings, including a negative test for SARS-CoV-2 RNA.

MRI revealed multiple white matter lesions in accordance

with an ongoing acute inflammatory demyelinating pro-

cess (Zhang et al., 2020a). Another case report by Brun

et al. describes a 54-year-old woman diagnosed with

COVID-19 requiring mechanical ventilation. After sed-

ation was discontinued, the patient presented with pro-

longed confusion and hemiplegia. MRI revealed

homogenous bilateral gadolinium-enhancing brain lesions

suggesting ADEM-like demyelination. As a differential

diagnosis, the authors discuss small-vessel CNS vasculitis.

Once again, CSF RT-PCR for SARS-CoV-2 was negative

(Brun et al., 2020). Of note, ADEM as a possible (para-)

infectious consequence of COVID-19 is supported by

post-mortem neuropathological findings by Reichard

et al. (2020). The authors describe subcortical scattered

clusters of macrophages, a range of associated axonal in-

jury, and a perivascular ADEM-like appearance.

Acute transverse myelitis

Of note, acute transverse myelitis (ATM) has also been

described in the context of SARS-CoV-2. ATM frequently

follows infections with various pathogens, particularly

viruses. ATM presents with acute paresthaesia, loss of

sensation, back pain as well as urinary and bowel
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incontinence (West et al., 2012). To date, there are two

case reports of nasopharyngeal swab SARS-CoV-2-posi-

tive patients who developed ATM. Both patients showed

the above-described typical clinical symptoms. One of

them underwent lumbar puncture. The CSF was, how-

ever, negative for SARS-CoV-2 but showed a mono-

nuclear lymphocytosis of 125 cells/ll. MRI of the spinal

cord revealed longitudinal signal changes typical of ATM

(Sarma and Bilello, 2020). The other patient was diag-

nosed exclusively based on his clinical symptoms. Neither

CSF analysis nor MRI was performed (Zhao et al.,

2020c).

Psychiatric and
neuropsychiatric
presentations
During the last SARS-CoV and MERS coronavirus epi-

demics, psychiatric and neuropsychiatric symptoms were

established as a common feature at times outlasting the

infectious disease. Also neuropsychiatric symptoms

occurred in caregiving health workers (Sheng et al., 2005;

Su et al., 2007; Lancee et al., 2008; Mak et al., 2009;

Kim et al., 2018; Lee et al., 2018). Such symptoms

included emotional lability, mood disturbances, anxiety,

impairment of memory, concentration or attention, sleep-

ing disorders and confusion. In the postinfectious state,

SARS-CoV patients presented with a high point-preva-

lence of anxiety and depression disorders as well as post-

traumatic stress disorders at roughly 15–30% even

though most of the studies did not include control groups

or references from the general population (Rogers et al.,
2020). The current evidence for neuropsychiatric com-

plaints in SARS-CoV-2-positive patients is scarce and in-

complete regarding the long-term outcomes. In parallel to

SARS-CoV and MERS, patients with COVID-19 are

more susceptible to develop confusion and delirium

(Rogers et al., 2020). On a note of caution, the majority

of the mentioned papers have methodological problems

(Rogers et al., 2020) so that further studies are required

to better delineate SARS-CoV-2-related neuropsychiatric

disorders.

Conclusion
Soon after the COVID-19 pandemic occurred, it became

clear that multiple organs other than the lungs are

involved. In particular, a number of reports appeared

describing a range of neurological disorders putatively

associated with it. However, the evidence causally linking

SARS-CoV-2 infection to CNS or peripheral nervous sys-

tem diseases is currently inconclusive. For obvious rea-

sons, most studies were carried out in patients with

SARS-CoV-2-associated acute respiratory distress

syndrome without matched controls. Patients with such

critical conditions are per se prone to develop, for in-

stance, stroke, critical illness polyneuropathy, parainfec-

tious GBS and critical illness myopathy (Nauwynck and

Huyghens, 1998; Naik-Tolani et al., 1999; Latronico and

Bolton, 2011; Walkey et al., 2011; Yuki and Hartung,

2012; Nasr and Rabinstein, 2015). In general, there have

only been a limited number of cases in which SARS-

CoV-2 was detected in the CNS. Therefore, the nature of

a potential impact of SARS-CoV-2 on the nervous system

remains presently unclear—all the more so as autopsy

results are partly contradictory. In addition, a structured

meta-analysis is complicated by the use of different diag-

nostic tools, small case numbers and the fact that some

of the patients suffered from additional, potentially con-

founding, diseases (Alberti et al., 2020; Sedaghat and

Karimi, 2020; Virani et al., 2020). Currently, SARS-CoV-

2 not only dominates the scientific discourse but has also

an enormous impact on our everyday life as neurologists.

Concerns have arisen whether patients with autoimmune

nervous system disorders, such as multiple sclerosis or

immune neuropathies, should be started or continued on

immunomodulatory therapy potentially compromising the

capacity to fight off COVID-19 and may modify the risk

of developing a severe COVID-19 infection (Amor et al.,

2020; Guidon and Amato, 2020; Hartung and Aktas,

2020; Louapre et al., 2020; Parrotta et al., 2020;

Rajabally et al., 2020; Sormani, 2020). In general, pre-

liminary evidence suggests that multiple sclerosis patients

are not at an increased risk to contract COVID-19 or

suffer a more severe form (Louapre et al., 2020;

Sormani, 2020). Managing multiple sclerosis patients

using a broadened treatment armamentarium creates add-

itional complexity in times of COVID-19 and mandates a

personalized approach relying on the unique modes of

actions and risks attributable to disease modifying agents

(Berger et al., 2020). Fear of infection has a direct impact

on patient management and requires the responsible

healthcare professional not only to search for possible

SARS-CoV-2-related neurological complications or dis-

eases but also to effectively deliver patient care under

these challenging circumstances (de Seze and Lebrun-

Frenay, 2020; Kim and Grady, 2020; Tarolli et al.,
2020). As recently proposed by the World Federation of

Neurology, regional, national and international COVID-

19 neuro-epidemiological databases are needed to better

understand the connection between SARS-CoV-2 and the

observed neurological diseases (Román et al., 2020).

Competing interests
M.F. and V.W. report no disclosures. P.K. is supported

by the Stifterverband/Novartisstiftung. M.B. has received

institutional support for research, speaking and/or partici-

pation in advisory boards for Biogen, Merck, Novartis,

Roche, Sanofi Genzyme and Alexion. He is a consulting

8 | BRAIN COMMUNICATIONS 2020: Page 8 of 12 M. Förster et al.



neurologist for RxMx and research director for the

Sydney Neuroimaging Analysis Centre. H.-P.H. has

received fees for consulting, speaking and serving on

steering committees from Bayer Healthcare, Biogen,

GeNeuro, MedImmune, Merck, Novartis, Opexa,

Receptos Celgene, Roche, Sanofi Genzyme, CSL Behring,

Octapharma and Teva, with approval from the Rector of

Heinrich-Heine-University. D.K. received travel grants

from GeNeuro and Merck, refund of congress participa-

tion fees from GeNeuro, Merck and Servier, consulting

fees from Grifols, payment for lectures from Grifols, sup-

port for research projects from Teva and was funded by

the Deutsche Forschungsgemeinschaft (DFG) while carry-

ing research on human endogenous retroviruses at

Cleveland Clinic. The MS Center at the Department of

Neurology is supported in part by the Walter and Ilse

Rose Foundation and the James and Elisabeth

Cloppenburg, Peek, and Cloppenburg Düsseldorf Stiftung.

References
Al Saiegh F, Ghosh R, Leibold A, Avery MB, Schmidt RF, Theofanis

T, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients
with COVID-19 and stroke. J Neurol Neurosurg Psychiatry 2020;

91: 846–8.
Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et
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Barré syndrome: a case-control study. Neurology 1998; 51: 1110–5.
Kim H-C, Yoo S-Y, Lee B-H, Lee SH, Shin H-S. Psychiatric findings in

suspected and confirmed middle east respiratory syndrome patients
quarantined in hospital: a retrospective chart analysis. Psychiatry
Investig 2018; 15: 355–60.

Kim J-E, Heo J-H, Kim H-O, Song S-h, Park S-S, Park T-H, et al.
Neurological complications during treatment of Middle East respira-
tory syndrome. J Clin Neurol 2017; 13: 227–33.

Kim KS, Wass C, Cross A, Opal S. Modulation of blood-brain barrier
permeability by tumor necrosis factor and antibody to tumor necro-

sis factor in the rat. Lymphokine Cytokine Res 1992; 11: 293–8.
Kim SY, Grady C. Ethics in the time of COVID: what remains the

same and what is different. Neurology 2020; 94: 1007–8.

Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D,
Kant KM, et al. Incidence of thrombotic complications in critically

ill ICU patients with COVID-19. Thromb Res 2020; 191: 145–7.
Krauer F, Riesen M, Reveiz L, Oladapo OT, Martinez-Vega R, Porgo

TV, et al. Zika virus infection as a cause of congenital brain abnor-
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associated with SARS-CoV-2 infection: causality or coincidence?

Lancet Neurol 2020a; 19: 383–4.
Zhao J, Li H, Kung D, Fisher M, Shen Y, Liu R. Impact of the

COVID-19 epidemic on stroke care and potential solutions. Stroke
2020b; 51: 1996–2001.

Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after

SARS-CoV-2 infection: a case report. MedRxiv 2020c.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and

risk factors for mortality of adult inpatients with COVID-19 in
Wuhan, China: a retrospective cohort study. Lancet 2020; 395:
1054–62.

Zhu Y, Jiang M, Gao L, Huang X. Single cell analysis of ACE2 ex-
pression reveals the potential targets for 2019-nCoV. Preprints
2020; 2020020221.

12 | BRAIN COMMUNICATIONS 2020: Page 12 of 12 M. Förster et al.


	tblfn1
	tblfn2



