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tRNA-derived fragments (tRFs) constitute a novel class of small non-coding RNA cleaved
from tRNAs. In recent years, researches have shown the regulatory roles of a few tRFs in
cancers, illuminating a new direction for tRF-centric cancer researches. Nonetheless, more
specific screening of tRFs related to oncogenesis pathways, cancer progression stages
and cancer prognosis is continuously demanded to reveal the landscape of the cancer-
associated tRFs. In this work, by combining the clinical information recorded in The Cancer
Genome Atlas (TCGA) and the tRF expression profiles curated by MINTbase v2.0, we
systematically screened 1,516 cancer-associated tRFs (ca-tRFs) across seven cancer
types. The ca-tRF set collectively combined the differentially expressed tRFs between
cancer samples and control samples, the tRFs significantly correlated with tumor stage
and the tRFs significantly correlated with patient survival. By incorporating our previous
tRF-target dataset, we found the ca-tRFs tend to target cancer-associated genes and
onco-pathways like ATF6-mediated unfolded protein response, angiogenesis, cell cycle
process regulation, focal adhesion, PI3K-Akt signaling pathway, cellular senescence and
FoxO signaling pathway across multiple cancer types. And cell composition analysis
implies that the expressions of ca-tRFs are more likely to be correlated with T-cell
infiltration. We also found the ca-tRF expression pattern is informative to prognosis,
suggesting plausible tRF-based cancer subtypes. Together, our systematic analysis
demonstrates the potentially extensive involvements of tRFs in cancers, and provides a
reasonable list of cancer-associated tRFs for further investigations.
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INTRODUCTION

As its name implied, tRNA-derived fragment (tRF), is a novel class of non-coding RNA (ncRNA)
cleaved from mature transfer RNAs (tRNA) (Lee et al., 2009; Thompson and Parker, 2009). In early
days, tRFs were widely misunderstood as tRNA degeneration byproducts. However, in recent years,
extending scope of tRFs’ biological functions had been uncovered, bringing tRFs back to researchers’
view (Li et al., 2018). For example, tRFs can be loaded onto Argonaute (AGO) family proteins to
perform microRNA-like post-transcriptional regulations on target RNAs (Li et al., 2012; Shao et al.,
2017). Some tRFs are also found capable of facilitating ribosome biogenesis by interacting with Twi12
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to enhance pre-rRNA processing (Couvillion et al., 2012) or
accelerating the mRNA translation of ribosomal proteins (Kim
et al., 2017). Besides, some other tRFs were also reported to be
capable to reduce global translation efficiency (Yamasaki et al.,
2009; Ivanov et al., 2011), regulate immuno-functions (Wang
et al., 2006) and serve as epigenetic regulators (Chen et al., 2016).

Comparable to tRFs’ functions, their dysregulation could be
associated with various diseases such as nonalcoholic fatty liver
disease (Zhu et al., 2020), Alzheimer’s disease (Wu et al., 2021),
arterial injury (Zhu et al., 2021) and especially cancers (Balatti
et al., 2017; Shao et al., 2017; Falconi et al., 2019; Zhu et al., 2019;
Gu et al., 2020; Zhang et al., 2021). Especially, a series of
investigations have uncovered novel associations between tRFs
and cancers. For instance, Falconi et al. found that a new tRF
derived from the 3′-end of tRNA-Glu is significantly down-
regulated in breast cancer, and finally validated its tumor
repressive role (Falconi et al., 2019). Zhu et al. compared the
plasma tRNA levels between liver cancer patients and healthy
donors, and rationally determined four tRFs as diagnostic
biomarkers (Zhu et al., 2019). However, in most of the above
experimental researches on tRF-cancer associations, only few
tRFs and cancer types were considered due to the limitation of
low-throughput approaches or sample size. Therefore, specific
computational screening of cancer-associated tRFs based on
high-throughput datasets is continuously in demand to better
understand the roles of tRFs in cancer, including but not limited
to tRF dysregulation in various cancer types, key oncogenesis
pathways targeted by tRFs and the associations between tRF
expression pattern and cancer progression and prognosis.

Recently, Rigoutsos lab established a comprehensive database for
human tRFs termed MINTbase v2.0 (Pliatsika et al., 2018), which
provides detailed annotations of 26,744 tRFs. More importantly, by
re-analyzing the small RNA-sequencing library from TCGA project
(Cancer Genome Atlas Research et al., 2013), MINTbase v2.0 also
provides 10,814 tRF expression profiles. This dataset provides an
unprecedented chance for extensive investigating the characteristics
of tRFs in cancer. Indeed, based on this dataset, Rigoutsos lab has
revealed a lot of biological characteristics of tRFs in various cancer
types. For example, in 2015 they firstly investigated the tRF length
distribution in the breast cancer dataset and revealed the tRF
expression dependence on race (Telonis et al., 2015). Subsequently
in 2018, The tRF profiles of prostate cancer were also uncovered
(Magee et al., 2018). In the same year, they constructed a complex
tRF-miRNA-mRNA co-expression network for triple-negative breast
cancer and then discovered many altered mRNA-mRNA co-
expression associations depending on disease state and race. More
importantly, this heterogeneity could be largely explained by
differential tRF-mRNA co-expression, demonstrating tRFs’
important biological functions (Telonis and Rigoutsos, 2018). The
investigation of tRF-mRNA co-expression network was soon
extended to a pan-cancer scale (32 cancer types) (Telonis et al.,
2019), where they identified more tRF-involved pathways and
additionally found some pathways are regulated by tRFs in a sex-
dependent manner, further highlighting the regulatory roles of tRFs.
However, on the other hand, their researches tended to depict the
general biological characteristics of tRFs (for example, tRF length
variation, sex- and race-dependent disparity and tRF-mRNA co-

expression pattern) on thewhole set of widely-expressed tRFs, but not
focused on the specific screening about tRFs that are associated with
oncogenesis, cancer progression and prognosis. Therefore, it is still
necessary to investigate the roles of tRFs in cancer by a more
specifically designed computational pipeline that combines tRF
expression with available clinical data of cancer patients. In this
work, based on the annotations fromMINTbase v2.0 and the clinical
information of TCGA samples, we firstly screened cancer-associated
tRFs (ca-tRFs) across seven TCGA cancer types, including breast
invasive carcinoma (BRCA), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal
papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung squamous cell carcinoma (LUSC) and thyroid
carcinoma (THCA). Then, a series of analyses were conducted to
define the functional characteristics of ca-tRFs. In the following text,
we will firstly describe our integrative analysis pipeline, and then the
analysis results and discussion thereof.

MATERIALS AND METHODS

Screening of ca-tRFs
The overall computational pipeline of this work is depicted in
Figure 1. Datasets and key source code used in this work were
also uploaded to the GitHub (https://github.com/Load-Star/ca-tRF/).
In this work, we screened ca-tRFs by integrating the tRF expression
profiles and the clinical information of the TCGA samples, which
were obtained from the MINTbase V2.0 (Pliatsika et al., 2018)
database and the TCGA official portal (Cancer Genome Atlas
Research et al., 2013), respectively. To adapt downstream analyses,
the tRF expression data was log2-transformed and processed with
batch effect correction by R package limma (Ritchie et al., 2015),
where the tissue source site and plate ID of each sampleweremodeled
as the correction covariates. In the following step for ca-tRF
screening, we considered three candidate tRF sources: 1) the
differentially expressed tRFs between cancer samples and normal
samples (referred as cde-tRF hereafter) identified by multivariate
limma-trend approach (by R package limma), where the tissue type
(cancer or normal), patient sex and race were modeled as dummy
variables while patient age was modeled as numeric variable; 2) the
tRFs significantly correlated with clinical tumor stage (referred as
tsca-tRF hereafter) identified by Spearman’s rank correlation test (by
python package Scipy); 3) the tRFs significantly correlated with
patient survival (referred as psca-tRF hereafter) detected by
multivariate Cox proportional hazards model (by python package
lifelines), where the patient sex and race were modeled as dummy
variables while tRF expression abundance and patient age were
modeled as numeric variables. The p-values were corrected by
Storey’s q-value approach. To ensure the robustness of the results,
here we only considered the cancer types with sufficient samples and
clinical information about tumor stage and survival, including BRCA,
HNSC, KIRC, KIRP, LIHC, LUSC, andTHCA. Besides, only the tRFs
detectable (with an expression threshold of no less than 1 RPM) in no
less than 10% samples were retained. In addition, we applied a “two
out of three” strategy for further false positive control. More
specifically, only if one tRF passed at least two of the total three
tests (namely the above-mentioned multivariate limma-trend
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approach, Spearman’s rank correlation test and multivariate Cox
proportional hazards model), it could be listed as a ca-tRF of the
corresponding cancer type. According to our observations, the
amounts of tRFs overrepresented by Spearman’s correlation test
and Cox regression model are much smaller than those
overrepresented by limma-trend approach. Therefore, to screen
enough ca-tRFs for downstream analyses, a relaxed but acceptable
q-value cutoff 0.1 was used during the ca-tRF screening. The
integrated list of screened ca-tRFs were shown in Supplementary
Data S1.

Identification and Functional Investigation
of Gene Modules Targeted by ca-tRFs
Like microRNAs, some tRFs are also capable of binding AGO-
family proteins and regulate target genes. Recently, we identified a
considerable number of tRFs and genes from AGO-associated
crosslinking-immunoprecipitation and high-throughput
sequencing (AGO-CLIP) libraries and strictly screened AGO-
mediated tRF-gene interactions by computationally simulating

the base pairing (more specifically, annealing processes) between
tRFs and the regions in mRNAs/lncRNAs covered by AGO-CLIP.
The interactions satisfying tight base pairing (normalized free
energy less than −1.25 kcal/mol) had been deposited into a
database named tRFTar (Zhou et al., 2021). Here in order to
understand the biological functions that the ca-tRFs may
participate in, ca-tRF target genes were retrieved from tRFTar.
To control the false positive rate, only the interactions supported
by tRF-gene co-expression in TCGA samples were retained. Our
hypothesis is that tRFs that 1) show tight base-pairing with
potential target genes on Argonaute-covered target regions and
2) show significant expression correlation with potential target
genes potentially act as regulatory targeting factors. It is also likely
that tRFs themselves could be served as the targets of other
regulatory molecules like miRNAs but we here only focused on
tRF-gene interactions to avoid much complicated reasoning that
involves tRF-miRNA-gene triplexes. Then for each cancer type,
taking the ca-tRF target genes as seed genes, an extended gene
module targeted by ca-tRFs was detected by the algorithm of
random walk with restart (RWR) on the protein-protein

FIGURE 1 | Analysis pipeline of the work. In this work, based on the tRF expression profiles of TCGA samples provided by MINTbase V2.0, we screened cancer-
associated tRFs (ca-tRF) for seven cancer types, including BRCA, HNSC, KIRC, KIRP, LIHC, LUSC, and THCA, by considering three candidate tRF sets including the
differentially expressed tRFs between cancer samples and normal samples (cde-tRF), the tRFs significantly correlated with clinical tumor stage (tsca-tRF) and the tRFs
significantly correlated with patient survival (psca-tRF). The ca-tRFs were further determined by a “two out of three strategy,”which means a ca-tRF must belong to
at least two of the total three sets. Then we performed extensive analyses on the screened ca-tRF set. First, by incorporating the dataset of Argonaute-mediated tRF-
target gene interactions from the tRFTar database, we located the ca-tRF target genes and further the target gene modules. Then by performing functional enrichment
analysis on the gene modules, the carcinogenic and cancer-promoting roles of ca-tRFs were inferred. Subsequently, we deconvoluted the gene profiles of TCGA
samples via the EPIC tool to measure the immune infiltration degree and further demonstrated the immuno-regulatory roles of ca-tRFs. Next, by means of consensus
clustering, we identified several ca-tRF-based cancer subtypes. Survival curves exhibit significant survival differences among these subtypes, indicating the prognostic
values of ca-tRFs. Finally, to reveal the dependence or independence of ca-tRFs on the other molecular signatures, the relations between ca-tRF subtypes and various
existing external subtypes were investigated.
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interaction (PPI) network. The PPI network was constructed
from 214,666 cross-validated interactions in the PICKLE 3.0
database (Dimitrakopoulos et al., 2020). The RWR algorithm
could be described as the following steps:

(1) Construct an adjacent square matrix A to represent whether
the gene i (the i-th row) and gene j (the j-th column) are
directly adjacent in the network:

Ai,j � Aj,i � { 1, gene i ∈ Neighbor(gene j)
0, else

(1)

whereNeighbor(gene j) represents the gene set directly adjacent to
gene j in the network, including gene j itself.

(2) Construct a transition matrix T to represent the probabilities
from gene i (the i-th row) to gene j (the j-th column) in an
iteration:

Ti,j � Ai,j

∑ngene
k
Ai,k

(2)

where ngene represents the total number of genes in the network.

(3) Construct a column vector e as the input to represent the
initial probabilities of seed genes (ca-tRF target genes here):

ei � { 1/nseed , gene i ∈ {seed genes}
0 , else

(3)

where nseed represents the total number of input seed genes.

(4) Perform iterations according to the following formula until
the s achieves convergent:

sn+1 � { e , n � 1
c · e + (1 − c) · (TTsn) , n ≠ 1

(4)

where n represents the iteration number and c is exactly the
restart probability. If c � 1, then the s will be constantly equal to e;
if c � 0, then the RWR model will reduce to traditional random
walk model. In this work, a moderate c � 0.5 was selected to
balance the local properties of the input and the global properties
of the network.

(5) Determine the genes with top probabilities in the convergent
s for downstream analyses, here we selected the top genes
whose cumulative probability reach at 0.25 as the resulting
gene module.

Next, we conducted gene functional enrichment analyses (by
Fisher’s exact test) for the gene modules so that potential
functional roles of ca-tRFs playing in cancers could be
inferred. Firstly, according to a list of 711 cancer-associated
genes provided by the NCG v6.0 database (Repana et al.,
2019), we evaluated the enrichment degree of cancer-
associated genes in the modules. Then, the R software package
clusterProfiler (Yu et al., 2012) was used to perform enrichment

analyses of Gene Ontology Biological Process (GO-BP) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) to
investigate the biological processes and pathways that the gene
modules are involved in. After semantic deduplication, the terms
with q-value no more than 0.05 were deemed as the statistically
significant results.

Estimation of Immune Infiltration by Gene
Expression Deconvolution
We downloaded tumor samples’ gene expression data from the
TCGA official portal and then deconvolute them into quantitative
cell composition lists by the EPIC tool (Racle et al., 2017). EPIC
supposes different cell types prominently express their own cell
type marker genes. Given the built-in marker genes’ abundance of
several pre-defined cell types (T cell, B cell, macrophage, natural
killer cell, cancer-associated fibroblast and endothelial cell), the
absolute proportions of these cell types inherent in the inputted
TCGA bulk gene expression profiles can be solved by constrained
linear model. Here the immune infiltration degree was quantified
by the proportions of T cells.

Identification and Analysis of ca-tRF-Based
Cancer Subtypes
By using the consensus clustering computational framework provided
by the R package ConsensusClusterPlus (Wilkerson and Hayes, 2010),
we clustered tumor samples’ ca-tRF expression profiles and assigned
subtype labels to each tumor sample according to the clustering result
(Supplementary Data S2). Consensus clustering is a widely used
algorithm in biological clustering problems (Niu et al., 2016; Lu and
Leong, 2018; Zhang et al., 2018). For a consensus clustering task, a
basic clustering method needs to be assigned and here the PAM
clustering algorithm, an improved version of K-mean clustering
which is more robust to noises and outliers, was adopted. The
principle of consensus clustering is measuring the distances within
every sample-sample pairs by their probabilities of being clustered into
the same group (called “consensus index” below) in several times of
sub-sampling processes. Specifically, a sub-sampling proportion p (0.8
here) and times T (100 here) are required to be pre-defined. Then for
each time, a subset of sampleswill be randomly selected according to p
and then clustered by the PAM clustering algorithm. The sub-
sampling process disturbs the original data structure to an extent,
thus if two samples are objectively similar, they will resist this
disturbance and present a high consensus index. On the contrary,
two dissimilar samples will exhibit low consensus indexes. Therefore,
if the clustering performed well, the overall consensus indexes of
sample-sample pairs will be concentrated at 0 (for samples belonging
to different groups) or 1 (for samples belonging to the same group).
According to this property, we rationally determined the cluster
number k for each cancer, namely the number of ca-tRF-based
subtypes, where a smaller slope of the cumulative distribution
curve between the interval of (0.2, 0.8) was preferred. In case the
slopes are comparable among different k choices, the area under the
cumulative distribution curve, which is usually approximating to the
maximum when the k saturated, was considered as the secondary
metric for the optimization of k.
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After clustering, the timeline-dependent survival rates of distinct
subtypes were visualized by Kaplan-Meier plot for each cancer type
using the R packages survival and survminer. Meanwhile the overall
and specific inter-subtype survival differences were evaluated by log-
rank test (Supplementary Data S3). For KIRC, KIRP, and LIHC, we
also collected previous subtyping results based on the other indicators
such as mRNA, microRNA, methylation level and so on
(Supplementary Data S4) (Cancer Genome Atlas Research
Network. Electronic address and Cancer Genome Atlas Research,
2017; Ricketts et al., 2018) to check their accordance and discrepancy
with ca-tRF-based subtypes. The overlapping significance between
ca-tRF subtypes and the other subtypes were measured by Fisher’s
exact test. We further calculated enrichment scores (ES) for LIHC
samples in 236 biological pathways from KEGG and Molecular
Signatures Database Hallmark (MSigDB Hallmark)
(Supplementary Data S5), by single sample gene set enrichment
analysis (ssGSEA) (Barbie et al., 2009). The ESs among different
cancer subtypes were compared by Kruskal-Wallis test (for multi-
group comparison) or Mann-Whitney test (for two-group
comparison) to measure the differences of pathway activities. For
all above statistical tests, a p-value cutoff 0.05 was used.

RESULTS

Overview of ca-tRFs Across Seven TCGA
Cancer Types
In this work, we screened ca-tRFs for seven TCGA cancer types
with sufficient samples and clinical information, including BRCA,
HNSC, KIRC, KIRP, LIHC, LUSC, and THCA. Three tRF sets,

including the differentially expressed tRFs between cancer
samples and normal samples (cde-tRF), the tRFs significantly
correlated with clinical tumor stage (tsca-tRF) and the tRFs
significantly correlated with patient survival (psca-tRF), were
firstly constructed as candidate sources of ca-tRFs (See
Materials and Methods). If one tRF is detectable (no less than
1 RPM) in no less than 10% samples and exists in at least two sets,
then it was determined as a ca-tRF (Figure 2; Supplementary
Data S1). We firstly investigated the major parental tRNA
isoacceptors from which these ca-tRFs were derived by using
Fisher’s exact test. As the result, the ca-tRFs are found widely
originated from the tRNA Val (TAC) and Arg (CCT) while the
tRNA Leu (CAG) and Gly (CCC) could serve as secondary
sources of ca-tRFs (Figure 3A). Then we defined cancer-
specific tRFs and cancer-general tRFs as the ca-tRFs identified
in only one cancer and those identified in no less than two
cancers, respectively (Figure 3B). For all cancer types, a
considerable proportion of cancer-general tRFs were observed.
For comparison purpose, we also defined the tRFs staggered no
more than 2 nt with the general ca-tRFs in their parental tRNAs
as the tRFs near cancer-general tRFs. In the same way, tRFs
staggered more than 2 nt with the general ca-tRFs in their
parental tRNAs were defined as the tRFs far away from the
cancer-general tRFs. By procedure, we found that for most
cancers the cancer-specific tRFs significantly prone to be
derived near the general ones in comparison with background
(Fisher’s exact test; Figure 3C), outlining the sequence similarity
and therefore the potential functional similarity between cancer-
specific and cancer-general tRFs. Inspired by this point, we
visualized the cleavage site distribution of tRFs in mature

FIGURE 2 | Venn diagram illustrating the intersections of three candidate ca-tRF sources. Three candidate ca-tRF sources, including the differentially expressed
tRFs between cancer samples and normal samples (cde-tRF), the tRFs significantly correlated with clinical tumor stage (tsca-tRF) and the tRFs significantly correlated
with patient survival (psca-tRF) were considered. For each cancer, the tRF numbers of these three sets and their intersections are shown by Venn diagram. If one tRF
belongs to at least two sets (i.e., appears in any intersection area), then it was listed as a ca-tRF of the corresponding cancer. The finally determined numbers of ca-
tRFs are shown following the cancer names.
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tRNAs (Supplementary Figure S1). Firstly, the background tRFs
sourced from the middle or middle-latter sections of tRNAs are
relatively less than those from the other sections, which is
accordant with previous reports (Telonis et al., 2019). Further,
in comparison with the background, the ca-tRFs of BRCA,
HNSC, KIRP are found more likely from the 5′ half parts of
mature tRNAs whereas the ca-tRFs of LUSC and LIHC prone to
come from the 3′ half parts. That is to say, the cancer-associated
tRFs may exhibit more prominent location bias in comparison
with background tRFs for several cancer types.

We also noticed 19 most widely identified general ca-tRFs that
are presented in at least five cancer types (Supplementary Data
S1). As an instance, the statistical results of tRF-28-
RS9NS334L2DB, a ca-tRF across six cancer types, are depicted
in detail in Figure 4. Specifically, tRF-28-RS9NS334L2DB is
significantly differential expressed in all considered seven
cancer types when comparing cancer samples with normal
control, and in most cancers (i.e., BRCA, HNSC, LIHC, LUSC,
and THCA), an up-regulation was observed (bar plots in
Figure 4). tRF-28-RS9NS334L2DB expression abundance was
also found significantly positively correlated with clinical tumor
stage in 5 cancers (HNSC, KIRC, KIRP, LUSC and THCA;
correlograms in Figure 4) and poor prognosis in 2 cancers

(KIRC and LIHC; Kaplan-Meier plots in Figure 4). Therefore,
tRF-28-RS9NS334L2DB may be positively indicative in a
noticeable range of cancer onset and development.

ca-tRFs Tend to Target Cancer-Related
Pathways and Associate With Tumor
Immune Infiltration
After the ca-tRF screening, we further investigated their potential
functions. In consideration of tRFs’ microRNA-like, AGO-
dependent mRNA targeting ability, we firstly asked whether
the target genes of ca-tRFs could participate in important
biological processes related to cancer. According to the AGO-
mediated tRF-gene interactions recorded in the tRFTar database
(Zhou et al., 2021), for each cancer type we detected a significant
gene module targeted by ca-tRFs by means of the RWRmodel on
the PPI network (See Materials andMethods). We first noted that
the ca-tRF target modules are enriched with the curated cancer-
associated genes (Figure 5A), demonstrating the dysregulation of
ca-tRFs is likely to contribute to oncogenesis and cancer
development. Subsequently, referring to the gene sets of GO-
BP and KEGG, we performed functional enrichment analysis for
each ca-tRF target module (Figure 5B–C). Extensive terms well-

FIGURE 3 | Overview of ca-tRF distribution. (A) The major parental tRNA isoacceptors of ca-tRFs of each cancer type. (B) The distribution of associated cancer
type number among ca-tRFs. (C) The proportions of the cancer-general ca-tRFs (blue), the cancer-specific ca-tRFs near the general ca-tRFs (yellow) and the cancer-
specific ca-tRFs away from the general ca-tRFs (blue). For comparison, the pie charts depicting the proportions of background tRFs near (red) and far away from (purple)
the general ca-tRFs are also shown below. Here the “near” and “away from” are defined by whether the two compared tRFs are staggered with each other no more
than or more than 2 nt in their parental tRNA, respectively. The statistical significance about whether the cancer-specific ca-tRFs are tending near to the general ca-tRFs
than the background was measured by Fisher’s exact test and the significant cancer types were highlighted with blue and bold font.
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known to be associated with cancer such as ATF6-mediated
unfolded protein response (Lin et al., 2021), blood vessel
development (Carmeliet and Jain, 2011), regulation of cell
cycle process (Evan and Vousden, 2001), focal adhesion (Eke
and Cordes, 2015), PI3K-Akt signaling pathway (Martini et al.,
2014), cellular senescence (Campisi, 2013) and FoxO signaling
pathway (Farhan et al., 2017) are presented across multi-cancer
types, further supporting the associations of ca-tRFs with the
cancer-related functions. It should be noted that among these
terms, blood vessel development, regulation of cell cycle process,
focal adhesion and PI3K-Akt signaling pathway are also
identified by Telonis et al. as the pathways universally
regulated by tRFs (Telonis et al., 2019). But on the other
hand, there are still novel tRF target pathways that are not
previously overrepresented such as ATF6-mediated unfolded
protein response, cellular senescence and FoxO signaling
pathway. This result also highlights the importance of specific
screening the pathways that are likely disturbed by tRFs through
the extensive tRF-target analysis.

The functional enrichment results also revealed a few
immuno-pathways and infectious processes like myeloid
leukocyte activation, hepatitis, human T-cell leukemia virus 1
infection and bacterial invasion of epithelial cells, implying
plausible immuno-regulatory roles of ca-tRFs. To further
explore this point, we estimated the T-cell infiltration degree

of tumor samples by gene expression deconvolution (See
Materials and Methods) and further studied its correlation
with ca-tRF expression abundance for each cancer type. As
expected, ca-tRFs exhibit significantly higher correlations with
T-cell infiltration than other tRFs (Figure 6). Considering the
significance of T-cell infiltration in cancer prognosis (Gu-
Trantien et al., 2013; Ge et al., 2019; Zhang et al., 2019), this
result indicates the closer link between ca-tRFs and tumor
immunity.

ca-tRF-Based Cancer Subtypes are
Informative to Prognosis
Given the above-mentioned associations of ca-tRFs with cancer-
related pathways and tumor immune infiltration, we further
tested whether the ca-tRFs, if collectively investigated, could
serve as an informative indicator of cancer prognosis.
According to the ca-tRF expression profiles, we clustered the
tumor samples under the consensus clustering framework (See
Materials and Methods). Consequently, we identified five
subtypes for HNSC, LIHC, and LUSC, six subtypes for KIRC,
seven subtypes for BRCA and THCA and nine subtypes for KIRP
(panels A–B of Figures 7, 8 and Supplementary Figures S2–S6;
Supplementary Data S2). Among these cancers, HNSC, KIRC,
KIRP, and LIHC exhibit significant survival differences among

FIGURE 4 | Statistical results of a widely identified ca-tRF (tRF-28-RS9NS334L2DB) in ca-tRF screening. Bar plot (with error bars), correlogram, Kaplan-Meier plot
for tRF-28-RS9NS334L2DB in the statistical tests of cde-tRF, tsca-tRF, and psca-tRF screening are respectively depicted and q-values as well as key indicators (i.e., rho
of Spearman’s correlation and beta of Cox regression) are shown above the plots. The significant q-values (<0.1) are highlighted with blue and bold font. Meanwhile, if
tRF-28-RS9NS334L2DB is listed as ca-tRF in one cancer type (two out of three sets), the cancer type name is also highlighted. The results in (A) BRCA; (B)HNSC;
(C) KIRC; (D) KIRP; (E) LIHC; (F) LUSC, and (G) THCA are shown accordingly.
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subtypes in overall, and the differences are especially obvious in
KIRC and LIHC (p-value less than 0.0001) (panel C of Figures 7,
8 and Supplementary Figures S2–S6), suggesting the indicative
role of ca-tRF-based subtyping in cancer prognosis. By contrast,
the prognostic divergence is not significant in BRCA, LUSC, and
THCA. Previous researches had reported the phenomenon of tRF
expression disparity depending on sex and race (Telonis et al.,
2015; Magee et al., 2018; Telonis and Rigoutsos, 2018; Magee and
Rigoutsos, 2020). Inspired by this point, we further grouped the
ca-tRF subtypes by sex and race (only the sex and race with
sufficient samples considered) to investigate whether the disparity
is also presented in survival rate (panel D of Figures 7, 8 and
Supplementary Figures S3–S4). BRCA, LUSC, and THCA were

not included in this analysis because their original ca-tRF
subtypes are failed to show decent survival differences. As a
result, the patterns of survival curves among different subtypes
are still maintained when considering specific sex and race,
indicating the robustness of ca-tRF subtyping.

Comparison of ca-tRF-Based Subtypes
With the External Subtypes
Next, we further surveyed whether the ca-tRF-based subtypes
could be linked or independent with the previous subtyping
methods. In this comparison, only cancer types with sufficient
external subtype data and showing significant prognostic

FIGURE 5 | Enrichment analysis results of ca-tRF target gene modules. (A) The enrichment degree of cancer-associated genes (curated by NCG v6.0 database) in
ca-tRF target genemodules. The dashed line represents the statistically significant cutoff (p-value < 0.05). (B) The GO-BP enrichment results of tRF target genemodules.
Only the significant results (q-value < 0.05) are colored and only the terms presented in no less than 6 cancer types are depicted. (C) The KEGG enrichment results of tRF
target gene modules. Only the significant results (q-value < 0.05) are colored and only the terms presented in no less than 5 cancer types are depicted. BRCA is not
shown in subplot B and C because there are no significant terms.
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divergence in ca-tRF-based subtyping were considered,
containing LIHC (Figure 9), KIRC (Supplementary Figure
S7) and KIRP (Supplementary Figure S8). For these three
cancer types, various existing external subtypes based on
mRNA, miRNA, methylation level and so on were covered in
this comparison (Supplementary Data S4), including but not
limited to the subtypes delineated by TCGA Consortia and
identified by non-negative matrix factorization (Cancer
Genome Atlas Research Network. Electronic address and
Cancer Genome Atlas Research, 2017; Ricketts et al., 2018).
We found most ca-tRF-based subtypes could decently overlap
with at least one external subtype. However, as for subtype 2 of
KIRC as well as subtype 2 and 6 of KIRP, no matched external
subtype was found. Moreover, for all the surveyed cancers,
although there are wide overlaps between ca-tRF-based
subtypes and external subtypes, few ca-tRF-based subtypes
could be fully represented by another external subtype. In
other words, there are also detectable independence between
ca-tRF subtypes and external subtypes, indicating tRFs’
potential to serve as novel prognostic factors that could
supplement known subtyping.

To better demonstrate the associations and independence
between the ca-tRF-based subtypes and the external subtypes,
we further investigated LIHC subtypes in details because 1) ca-
tRF-based subtypes show prominent survival differences in LIHC
and 2) there are the largest number of external subtypes for
reference in LIHC (8 kinds of subtypes in total), which could
maximally reflect the relationships between the subtypes based on
ca-tRFs and the other indicators. As depicted in Figure 8C, in
LIHC, ca-tRF subtype 2 is of the best survival (low-risk group),
ca-tRF subtypes 1 and 3 are with medium risks (medium-risk
group) and ca-tRF subtypes 4 and 5 are the most malignant (high-
risk group). Besides, the ca-tRF subtype 2, 4, and 5 significantly
overlap with five, four, and six external subtypes, respectively.
More importantly, the subtype 2, 4, and 5 were found significantly

overlapped with iCluster subtypes (Figure 9H), which
comprehensively integrate multi-dimensional data including
transcriptome, miRNA expression pattern, methylome,
proteome and genomic variation. Unlike ca-tRF subtype 2, 4,
and 5 that show decent overlap with external subtypes, ca-tRF
subtype 1 and 3 only match three and two external subtypes,
respectively, and show no significant overlap with any iCluster
subtypes, indicating they are relatively independent to the
external subtypes (Figure 9).

We further noted that samples assigned to different ca-tRF-
based subtypes would be associated with different pathways, even
in the same iCluster subtype group. To compare the molecular
signatures of different ca-tRF subtypes, we evaluated the activities
of 236 biological pathways for LIHC samples (Supplementary
Data S5) by ssGSEA enrichment scores (ES) and further screened
50 most variable pathways among ca-tRF subtypes by Kruskal-
Wallis test (see Materials and Methods for more details). The
screened pathways could be clustered into four pathway sets: the
set 1 involves cell cycle, DNA repair, RNA process and apoptosis;
the set 2 involves glycometabolism, mTOR signaling, ROS
signaling and unfolded protein response; the set 3 includes
many metabolism- and degradation-associated pathways; and
the few other pathways were assigned to the pathway set 4
(Figure 10A). As expected, further pairwise comparisons
demonstrate the pathway activities among ca-tRF subtypes are
significantly different and meanwhile the low- and high-risk
group exhibit more distinctive signatures than the medium-
risk group (Figure 10A). More interestingly, we noted that the
ES differences in pathway set 1 and 2 are still maintained when
specifically considering iCluster subtype 1 (Figure 10B) and 3
(Figure 10C). That is to say, although the samples within the
iCluster subtype 1 or 3 are of similar multi-omics characteristics,
they will be distinguishable in many important pathway activities
when further considering ca-tRF expression patterns. Such
observation indicates that ca-tRF-based subtyping would

FIGURE 6 | ca-tRFs are more likely to be correlated with T-cell infiltration. The correlation of tRF expression and T-cell infiltration degree are measured by
Spearman’s correlation test. And the -log10 (p-value) distribution of (A) all ca-tRFs and (B) cancer-general ca-tRFs are respectively compared with background byMann-
Whitney test. The significant p-values (<0.05) and cancer names are shown with blue and bold font.
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specifically reveal the functional characteristics between different
sample groups that are independent to the external multi-omics
characteristics-based subtyping.

DISCUSSION

As a novel class of non-coding RNA, tRF has been getting
increasing attention in recent years. Experimental researches

have revealed that some tRFs could serve as biomarkers in
some cancers (Falconi et al., 2019; Zhu et al., 2019). However,
these low throughput experimental researches are not sufficient
to explore the landscape of dysregulated tRFs at the pan-cancer
level. In this work, according to TCGA samples’ tRF expression
data provided by MINTbase v2.0, we screened ca-tRFs for seven
TCGA cancer types with a “two out of three” strategy. From the
pan-cancer perspective, the ca-tRFs are found significantly
derived from the tRNA Val (TAC) and Arg (CCT). Moreover,

FIGURE 7 | ca-tRF-based subtypes and corresponding survival distinction in KIRC. (A) The subtypes suggested by ca-tRF expression pattern. Columns and rows
represent samples and ca-tRFs, respectively, and the color blocks along columns and rows represent subtypes and various ca-tRF-related biological features,
respectively. (B) Heatmap of Kolmogorov-Smirnov statistics showing relative ca-tRF expression abundance across subtypes. (C) Kaplan-Meier plots showing the
distinction of survival among different subtypes. The risk table showing the sample number at risk is also shown below for reference. (D) Sex-specific Kaplan-Meier
plots showing the distinction of survival among different subtypes.
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we observed that most identified ca-tRFs are presented in
multiple cancer types, and more interestingly, a considerable
fraction of cancer-specific ca-tRFs are actually derived from
the proximal region of cancer-general ca-tRFs on tRNAs.
Unlike the biogenesis of canonical RNAs which are directly
transcribed from the genome, tRFs are originated from the
cleavage of mature tRNAs. Our results indicate the
distribution of ca-tRFs on tRNAs are not random, and there
are likely “hotspots” in tRNAs to produce ca-tRFs in tumors.

We also noticed that the variation tendency of ca-tRFs in three
candidate tRF sets (i.e., cde-tRFs, tsca-tRFs, and psca-tRFs) are
not always unidirectional. For example, a tRFmay be significantly
down-regulated in cancer samples in comparison with normal
control but positively correlated with clinical tumor stage
(Supplementary Data S1). This phenomenon demonstrates
some tRFs may play opposite roles in oncogenesis and cancer

progression. Meanwhile, it also reflects the advantages of our
multi-view screening to capture comprehensive features of ca-
tRFs.

Subsequent functional analysis reveals that the ca-tRF target
gene modules participate in many oncogenesis and tumor
progression-related processes such as ATF6-mediated unfolded
protein response, angiogenesis, cell cycle process regulation, focal
adhesion, PI3K-Akt signaling pathway, cellular senescence and
FoxO signaling pathway. Meanwhile, the ca-tRFs also tend to be
correlated with T-cell infiltration in comparison with other tRFs.
Both results imply that ca-tRFs could play critical roles in cancer
development and thus be of prognostic values. Indeed, cancer
subtyping based on the ca-tRF expression pattern exhibit
significant differences in survival and the differences are
especially obvious in KIRC and LIHC. In addition, the
survival patterns are still robust when considering specific sex

FIGURE 8 | ca-tRF-based subtypes and corresponding survival distinction in LIHC. (A) The subtypes suggested by ca-tRF expression pattern. Columns and rows
represent samples and ca-tRFs, respectively, and the color blocks along columns and rows represent subtypes and various ca-tRF-related biological features,
respectively. (B) Heatmap of Kolmogorov-Smirnov statistics showing relative ca-tRF expression abundance across subtypes. (C) Kaplan-Meier plots showing the
distinction of survival among different subtypes. The risk table showing the sample number at risk is also shown below for reference. (D) Sex- and race-specific
Kaplan-Meier plots showing the distinction of survival among different subtypes.
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and race, therefore ca-tRFs are potential to serve as universal
prognostic factors. We also found most ca-tRF subtypes could
decently link with external subtypes. But on the hand, the decent
but not prominent overlaps also imply detectable independence
between ca-tRF subtypes and external subtypes, indicating ca-
tRFs would provide novel predictive clues for cancer prognosis.
As a demonstration, we deeply investigated the relationships
between ca-tRF subtypes and iCluster subtypes in LIHC, by
means of ssGSEA. We found the ca-tRF expression patterns
could associate with many pivotal biological pathways such as
cell cycle, apoptosis, mTOR signaling pathway and so on
regardless of the multi-omics characteristics of iCluster
subtype 1 and 3, underlining the important regulatory roles of
ca-tRFs.

Our analysis has systematically uncovered the potential roles
of tRFs in oncogenesis and development and provided a
reasonable ca-tRF list for future researches. However, there are
still limitations in current work. The first limitation is in the step
of investigating ca-tRF functions by the tRF-target interaction
analysis, where we only considered the AGO-mediated tRF-gene

interactions based on AGO-CLIP datasets. However, as we
describe before, beyond binding with AGO-family proteins,
tRFs also have various other functions which may involve
some other RNA-binding proteins (RBP) (Couvillion et al.,
2012; Kim et al., 2017). But to our best knowledge, so far
there has not been tRF dataset focusing on the other RBPs
because high-throughput techniques for profiling RBP
interactions like CLIP-seq are mainly designed for mRNAs
rather than tRFs. Suffering from this limitation, our results
could only reveal partial ca-tRF functions in cancer. On the
other hand, although there are evidences that the functions of
some tRFs are indeed AGO-dependent, AGO-association
presented in CLIP data do not necessarily indicate AGO-
dependent mechanism-of-action. Therefore, in comparison
with some technologies which can directly capture AGO-
mediated small RNA-gene interactions (for example, CLASH)
(Helwak et al., 2013), CLIP-derived interactions should contain
more false positives. However, in the current stage, such CLASH-
based datasets like are insufficient (usually identifying
∼1,000 tRF-gene pairs) to profile large-scale tRF-gene

FIGURE 9 | Stacked bar plots showing the relations between ca-tRF subtypes and external subtypes in LIHC. Stacked bar plots showing the enrichment of
external subtypes (clustered by TCGAConsortia) in ca-tRF subtypes, including (A)mRNA subtypes identified by consensus clustering, (B)miRNA subtypes identified by
non-negative matrix factorization, (C–E) hyper-methylation, hypo-methylation and SNP-based copy number subtypes identified by hierarchical clustering, (F) protein
subtypes (namely, RPPA subtypes) identified by consensus clustering, (G) Paradigm subtypes and (H) multi-omics subtypes identified by iCluster. The statistical
significance was measured by Fisher’s exact test with the p-value cutoff 0.05 and the significant relations are highlighted by black frames. The sample numbers of
subtypes and subtype overlaps presented in the significant relations are also shown in the tables below.
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interactions. Therefore, we still adopted the more widely-used
CLIP datasets, and to reduce false positives, we constrained the
results with tight base pairing. In the previous work (Zhou et al.,
2021), we validated the tRFs presented in the screened tRF-gene
duplexes exhibit much better complementarily pairing abilities
with CLIP-peaks than randomly generated small RNAs. Besides,
the screened tRF-gene pairs are more prone to be co-expressed
than background in TCGA samples, indicating the regulatory
roles of these tRFs. Moreover, in accordance with the fact that
AGO proteins are prone to bind smaller RNAs, ∼89% of the
screened interactions involve tRFs less than 24 nt. When filtering
the interactions with consistent co-expression in TCGA samples

(i.e., the tRF-gene interaction set we used in this work), the ratio
of interactions involving smaller tRFs will be dominating (∼98%).
Overall, it could be rationally inferred that these interactions are
with decent reliability. Another thing should be noted that Kumar
et al. found the abundance of tRFs loaded on AGO2 are much
lower than AGO1, AGO3 and AGO4 (Kumar et al., 2014), based
on Hafner el al.’s HEK293 datasets (Hafner et al., 2010), plausibly
indicating tRFs’ poor AGO2-binding ability. However, we found
this phenomenon is not very repeatable in some other datasets
such as Vongrad et al.’s human macrophage datasets (Vongrad
et al., 2015), Benway et al.’s HK-2 datasets (Benway and Iacomini,
2018) and Hamilton et al.’s DU145 datasets (Hamilton et al.,

FIGURE 10 | Distinct activities of biological pathways in LIHC revealed by ca-tRF-based subtyping regardless of the multi-omics characteristics-based iCluster
subtypes 1 and 3. (A) Heatmap showing the enrichment scores (ES) of 50 most variable biological pathways among LIHC ca-tRF-based subtypes. The ca-tRF subtype
and iCluster subtype assignments of each sample are indicated by the color stripes above the heatmap. The pathways could be clustered into four pathway sets, as
annotated on the right side of the heatmap. (B)Heatmap showing the ESs of pathway set 1 and 2 among five ca-tRF subtypes under specific iCluster subtype 1. (C)
Heatmap showing the ESs of pathway set 1 and 2 among five ca-tRF subtypes under specific iCluster subtype 3. For all panels, pairwise ES comparison results between
ca-tRF subtypes are shown under the heatmap (Mann-Whitney test, * p-value < 0.05, ** p-value < 0.01).
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2016). For example, in the AGO2-specific PAR-CLIP data of
human macrophages generated by Vongrad et al., many tRFs are
of hundreds of RPMs (median 150.13 RPMs of top 30 tRFs) and
more surprisingly, much more abundant than miRNAs (median
5.80 RPMs of top 30 miRNAs). Higher abundances of tRFs
relative to miRNAs were also observed in Benway et al.’s
AGO2 PAR-CLIP data (median 32.86 RPMs of top 30 tRFs
versus median 1.08 RPMs of top 30 miRNAs) and Hamilton
et al.’s AGO2 PAR-CLIP data of DU145 cell line. What’s more,
some publications have experimentally validated some tRFs
should rely on AGO2 protein to perform downstream
regulation (Li et al., 2012; Luo et al., 2018; Green et al., 2020).
Therefore, the AGO2 protein is still considered in our pipeline.

The second limitation is due to the extreme scarcity of small
RNA-sequencing data in public databases, we could not validate
the ca-tRF-based subtyping in a totally independent dataset.
Therefore, we could only perform validation on the original
TCGA sample set. Specifically, for each cancer type, we
randomly split the original set into training set and testing set
with the ratio of 1:1, and then re-screened ca-tRFs on the training
set and re-clustered tumor samples on both training and testing
set based on the re-screened ca-tRFs. Subsequently, we measured
the set similarity between the original ca-tRF subtypes and the re-
clustered ca-tRF subtypes by Ochiai coefficient. As a result, the re-
clustered subtypes exhibit decent consistency with the original
subtypes, where most cancer types can reach at an Ochiai
coefficient of 0.5 in average (Supplementary Figure S9). In
other words, each original subtype could expectedly match
with a highly overlapped re-clustered subtype, reflecting the
robustness of ca-tRF-based subtyping. Nevertheless, the ca-tRF
subtypes are still required to be further validated when the
external resource of small RNA-sequencing is abundant
enough in the future.

The third limitation worth discussing is, in this work wemainly
surveyed tRF-cancer associations from the perspective of
expression pattern. However, in recent years, many
computational approaches based on machine learning and
graphic theory are proposed to predict the associations between
non-coding RNAs and diseases (Chen et al., 2018; Zeng et al.,
2018), which provides another approach to discover novel tRF-
cancer associations. However, an obligate perquisite of these

algorithms is a sizable training dataset derived from prior
experimental knowledge. And to our best knowledge, existing
publications about tRF and cancer are extremely scarce (actually
less than 200, by querying the keywords “tsRNA cancer” and
“tRNA-derived fragment cancer” in PubMed). Therefore, in
current stage, existing data have not been able to support these
algorithms, but we believe it would be feasible with the
accumulation of experimental data in the future.
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