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An integrated pore size distribution 
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Small-angle neutron scattering and high-pressure mercury intrusion capillary pressure testing 
are integrated to analyze the pore size distribution of the broad sense shale oil reservoir samples 
of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, China. The results show 
that, compared with the measurement method integrating gas adsorption and mercury intrusion, 
combination of small-angle neutron scattering and mercury intrusion can more accurately characterize 
full-scale pore size distribution. The full-scale pore size distribution curve of the rock samples in the 
study area includes two types: the declining type and submicron pore-dominated type. The declining 
type is mainly found with silty mudstone and dolomitic mudstone, and most of its pores are smaller 
than 80 nm. Silt-fine sandstones and dolarenite are mostly of the submicron pores-dominated type, 
with most pores smaller than 500 nm. They also present large specific pore volumes and average pore 
diameters of macropores and are the favorable lithogenous facies for development of high-quality 
reservoirs.

Conventional oil and gas resources have been highly explored and exploited over the past years, and the remain-
ing resources are declining. Unconventional oil and gas resources, represented by tight oil and shale oil, emerge 
rapidly and have become an important relay area for China’s petroleum industry to increase reserves and stimu-
late  production1–3. The nano scale ranges from near-atomic scale (nano) to near-optical scale (micron). In recent 
years, non-optical probing methods such as the diffraction method and electron microscopy have gradually 
replaced the optical microscopy and serve as the main tool for investigating nano-scale structures, which suc-
cessfully raise the measurement precision of pore sizes from microns to  nanometers4.

At present, the commonly used pore size distribution testing techniques include the fluid intrusion approach, 
e.g. the high-pressure mercury intrusion capillary pressure method (MICP), the gas adsorption approach (low-
temperature  N2 adsorption and the  CO2 adsorption)5–12, and the non-intrusive approach, e.g. the small-angle 
neutron scattering (SANS)13–17.

Scholars in both China and other countries have extensively applied the gas adsorption method to investigate 
the properties of both the adsorbent and adsorbate, fractal dimensions, and pore  types18–23, and this method is 
also combined with the fluid intrusion method to carry out systematic research on pores with diameters above 
0.35  nm24.  N2 adsorption and  CO2 adsorption can only use powder samples for experiments, so it is necessary 
to fully consider the impact of sample particle sizes and water content. If the particle size is too large, the meas-
urement of pores will be incomplete, while part of closed pores will turn into open pores in the case of exces-
sively small particle  sizes25. In the full-scale pore size characterization, the experimental temperature varies with 
different methods. The experimental temperatures of  N2 adsorption,  CO2 adsorption and MICP methods are 
respectively -196.15ºC, 0ºC, and the room temperature. Moreover, the MICP method is also able to provide not 
only pore diameter measurements but also information of pore-throat distribution. In terms of measurement 
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merging, only measured data of parallel samples (thus not exactly the same sample) can be used. Therefore, the 
treatment of the data overlap remain considerably controversy.

SANS can analyze samples non-destructively at different temperatures, and simultaneously measure con-
nected pores and closed pores in the sample, with high  accuracy26. Using the SANS technique, Yang Rui et al. 
used the Porod invariant method and the PDSP model to calculate the pore size distribution, specific surface area 
and porosity of nanopores, and compared them with the results of the MICP  method27. Subsequently, by study-
ing the Longmaxi shale samples, it was found that the pore volume distribution presents a power-law pattern; 
the measured pore size distribution is consistent with the result of the  N2 adsorption method in the same size 
range; the specific surface area and porosity of the PDSP method increase with growth of total organic carbon 
(TOC)28. Zhang Yuxiang et al. analyzed the Bakken shale by integrating SANS and MICP, which reflected the 
difference between the results of connected pores and total porosity, and with the help of the FE-SEM technol-
ogy, identified the high contribution of organic pores to the total  porosity29. Jitendra Bahadur et al. studied the 
microstructure of New Albany shale samples with different thermal maturities, and extracted information about 
the size range and number density of micropores from the relative fluorescence scattering intensity observed in 
the range of a large scattering vector Q. Moreover, they compared the results of the model-independent Porod 
invariant method with the calculation results of the PDSP  model30. Sang Guijie et al. used SANS,  N2 adsorption 
and MICP to study the nanopore structure characteristics of one clay and four shale samples. It was shown that 
the measured pore volume distributions are consistent in the range from one nm to several hundred nanom-
eters, which demonstrates that micropores and mesopores have major contributions to the total pore volume. 
Furthermore, this research pointed out that the water absorption capacity of the sample is positively correlated 
with the total porosity, with the help of the dynamic water steam adsorption  technique31.

The pore size span of shale oil reservoirs is very large, from less than one nanometer to sub-millimeters, and 
thus there is no test methods that are able to solely obtain the full-scale pore size and distribution characteristics 
of shale. Accurately capturing the characteristics of full-scale pore size distribution of shale is the basis of the 
micro-scale reservoir evaluation and have important guiding significance for studying the regularity of shale oil 
and gas occurrence. At present, the main testing methods for studying the pore size distribution of shale samples 
include  CO2 adsorption, low-temperature  N2 adsorption, SANS, and high-pressure MICP. The  CO2 adsorption 
measures the pore size range below 2 nm, and the low-temperature  N2 adsorption measures pores of 2–200 nm. 
SANS probes pores no more than 100 nm, and the high-pressure MICP (with test pressure up to 413 MPa) meas-
ure pores no smaller than 3.2 nm.  CO2 adsorption, low-temperature  N2 adsorption, and high-pressure MICP 
are commonly used to obtain the full-scale pore size of shale. However, this approach cannot measure the same 
sample because  CO2 adsorption and low-temperature  N2 adsorption require powder samples of 30–100 mesh, 
while high-pressure MICP can only accept cylinder or blocky samples, and the samples after MICP tests cannot 
be used for other experiments. Hence one shale sample has to be divided into two parts for different tests, and 
otherwise parallel samples will be used for measurement.

This paper proposes a SANS-MICP integrated measurement method for full-scale pore size distribution. 
Samples of the broad sense shale oil reservoir of the Permian Lucaogou Formation, the Jimsar Sag, Xinjiang, 
were used to carry out the quantitative analysis of pore size distribution characteristics, in an attempt to provide 
a novel idea and method for studying the pore size distribution of such broad-sense shale oil reservoirs.

Materials and methodology
Experimental samples. The core samples used in the experiment were collected from the Permian Luca-
ogou Formation broad sense shale oil reservoir in Jimsar, Xinjiang Uygur Autonomous region, China. The res-
ervoir is located in the Jimsar Sag in the eastern Junggar Basin, 150 km away from Urumqi, as shown in Fig. 1.

The geological structure, a monoclinal high in the east and low in the west, is stable. The main part of the 
formation has a dip angle of 3°–5°, and faults are not developed. According to physical properties and oil-
bearing properties, the Lucaogou Formation vertically has two oil layer-concentrated sections, defined as “the 

Figure 1.  Geological map showing the sample location.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17458  | https://doi.org/10.1038/s41598-021-97027-7

www.nature.com/scientificreports/

upper and lower sweet-spot bodies”, within which there are multiple thin oil layers, with the single-layer average 
thickness of 0.32 m. TOC content of the sweet-spot reservoirs is generally greater than 1%, and the reservoir is 
alternatively interbedded by the source rock, which is considered favorable association. The upper sweet spot 
is the most important set of reservoirs in the Lucaogou Formation in the Jimsar Sag. The lithology is mainly 
dolarenite, feldspar lithic silt-fine sandstone, dolomitic mudstone, and silty mudstone, among which dolomitic 
mudstone is the main source rock. According to the results from X-ray diffraction (XRD) bulk rock analysis of 
more than 170 core samples, it is concluded that a diverse variety of minerals are present in the sweet-spot inter-
val in the Lucaogou Formation, the Jimsar Sag, with the majorities being silt-fine grained sandstone, mudstone 
and carbonate rock. Silt-fine grained sandstone includes dolomitic silt-fine grained sandstone and feldspathic 
silt-fine grained sandstone, and carbonate rock is mainly dolarenite, as demonstrated in Fig. 2. Layers of silt-fine 
grained sandstone, shale, and dolarenite are all found with thickness at centimeters and demonstrable rhythms. 
These rocks experience heterogeneous mineral alterations such as silicification, dolomitization and albitization 
during diagenesis, which leads to complicated mineral composition, rapid vertical lithologic variation, and 
consequently limited thickness.

The core sample used in this experiment has average permeability of 0.0213 mD, average porosity of 9.96%, 
and an average density of 2.348 g/cm3. The basic physical properties of each sample are shown in Table 1. The 
S-Series samples are located in the orange area in Fig. 2, and the M-series samples are located in the light blue 
area in Fig. 2.

Experimental methodology. For the SANS and high-pressure MICP tests, one core sample was divided 
into two parts. The SANS test obtains the specific pore volume distribution of pores with diameters ≤ 100 nm, 
while the MICP test obtains that of pores with diameters ≥ 3.4 nm. The MICP test, affected by the low mercury 
intrusion saturation when dealing with nano-scale pores, cannot cover all nano pores, and moreover high pres-
sure may lead to occurring of secondary pores, which thus lead to inaccurate measurements. Therefore, in this 
research SANS was used to test the specific pore volume distribution of pores ≤ 100 nm, and MICP was used to 
measure the specific pore volume distribution of pores > 100 nm. Then the results of the two tests were merged 
to produce the specific pore volume distribution over the full pore size range. This procedure is a quantitative 
investigation method of full-scale pore-size distribution for shale reservoir core samples.

Figure 2.  Ternary diagram of sandstone, mudstone and carbonate.

Table 1.  Basic physical properties of core samples.

No. Permeability (mD) Porosity (%) Density (g/cm3)

S6857 0.1046 11.42 2.377

S6819 0.0196 14.13 2.242

S6820 0.0420 15.36 2.205

M6859 0.0014 9.32 2.346

M6858 0.0006 5.98 2.418

M6822 0.0016 8.60 2.379

M6856 0.0001 10.37 2.339

M6860 0.0004 4.51 2.478

Average 0.0213 9.96 2.348
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Principles of SANS. Sans experiment was carried out in China spallation neutron source (CSNS) by small 
angle neutron scattering spectrometer. The wavelength of the incident neutron is 1–10  Å, and the distance 
between the sample and the detector is 4 m. The test time of each sample is about 120 min and the size of samples 
measured by SANS is 10 mm × 10 mm × 1 mm. Neutron scattering based on diffraction has been widely applied 
to material science. Neutrons interact with each other via short-range nuclear reactions and have very strong 
penetrating capability. Meanwhile they will not heat and damage the sample. Hence it is able to elaborately inves-
tigate the volume structure of the sample. The wavelength of neutrons and the wavelength of atoms are compa-
rable in magnitude and spacing, and the energy of neutrons is equivalent to the energy of normal modes in the 
material (for example, phonons, diffusion modes), so they can be used for research on the dynamics of solid and 
liquid materials. Since the interactions of neutrons with hydrogen and deuterium are very different, deuterium 
labeling is a classic method in neutron scattering, which is mainly practiced by using deuterated molecules in a 
non-deuterated environment. The sub-coherent scattering lengths of hydrogen and deuterium are highly differ-
ent, which helps to enhance the contrast of specific structural features.

SANS is essentially caused by the variation of the scattering length density (SLD). SANS analyzes the micro 
structural of samples by measuring the intensity of neutron scattering occurring at small angles (scattering angles 
2θ ≤ 5°) after long-wavelength neutrons penetrating the sample. In Fig. 3, K1 is the incoming beam and K2 is the 
scattered beam. Small-angle scattering specifically refers to scattering with a small Q value, and moreover the dif-
fraction phenomenon must meet the Bragg condition, when a neutron beam passes through a crystalline material:

where, d is the distance between the lattice planes in meter; θ is the angle between the incident light source and 
the scattered light source in degree. When n = 1, the scattering vector formula Q = 2π/d applicable to crystalline 
materials can be obtained. For disordered porous shale with an average radius of R, R = 2.5/Q, which means that 
Q is dependent on the pore size of the sample. This is the theoretical basis for measuring the pore size distribu-
tion of rock samples via SANS.

The original SANS data was reduced to 1D absolute scale via IGOR Pro  software32 (https:// www. wavem etrics. 
com/ order/ order_ igord ownlo ads. htm). The data were analyzed using PRINSAS  software33 (http:// small angle. 
org/ conte nt/ softw are).

Principles of high pressure MICP. MICP relies on the externally applied pressure to overcome the sur-
face tension and inject mercury into pores so as to determine the pore size distribution. Increasing the applied 
pressure allows mercury to enter smaller pores, and thus more mercury injected into pores. Mercury is a non-
wetting phase for general solids. To inject mercury into pores, an external pressure must be applied. The greater 
the external pressure is, the smaller the radius is, for pores that mercury can enter. By measuring the amount of 
mercury entering pores under different external pressures, the pore volume of the corresponding pore size can 
be known. The high pressure mercury intrusion experiment was completed by poremaster mercury injection 
instrument produced by Quantachrome instrument company (Fig. 4). The maximum applied pressure of the 
high-pressure MICP in this study is 413 MPa, and the measurable pore diameter ranges from 3.2 to 950,000 nm. 
The samples measured by SANS and MCIP are all from the same one sample, The sample measured by MCIP 
was made into a plunger with a diameter of 25 mm and a length of 15 mm.

The Washburn equation is used to calculate the pore size distribution of the shale pores ≥ 3.2 nm. The Wash-
burn equation is shown below:

where ∆P is the pressure applied on the liquid surface, Pa; γ is the surface tension of the liquid, Pa; θ is the contact 
angle of the liquid, °; R is the pore radius, m. The surface tension of mercury equals to 0.48 N/m, and the contact 
angle between mercury and various substances is between 135° and 150°. Usually the average value of 140° is 
used for calculation, so the above formula can be simplified as:

Generally, the size of sans test sample is 10 mm × 10 mm × 0.5 mm to ensure neutron penetration and avoid 
multiple scattering. Therefore, in this research SANS was used to test the specific pore volume distribution of 
pores ≤ 100 nm。 In the future, the extension of Q-range can be completed by ultra small angle neutron scatter-
ing (USANS), which has reached a larger overlap with mercury intrusion characterization scale.

(1)n� = 2d sin (θ)

(2)�P =
−2γ cos θ

/

R

(3)�P =
0.736

/

R

Figure 3.  Schematic diagram of the experimental principle of SANS.

https://www.wavemetrics.com/order/order_igordownloads.htm
https://www.wavemetrics.com/order/order_igordownloads.htm
http://smallangle.org/content/software
http://smallangle.org/content/software


5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17458  | https://doi.org/10.1038/s41598-021-97027-7

www.nature.com/scientificreports/

Experimental results. SANS data. The two-dimensional raw data has been deducted by the background 
scattering of the empty sample pool, and the absolute intensity is one-dimensional by the IGOR Pro software. 
The data is analyzed by Irena macro plug-in of IGOR Pro software. The samples are all taken parallel to the direc-
tion of bedding, which eliminates the problem of orientation. The two-dimensional spectra of typical samples 
are shown in Fig. 5. One dimensional results are obtained by integrating the two-dimensional spectra.

The original data of the scattering intensity I(Q) and the scattering vector I(Q) can be obtained using the IGOR 
Pro software. The presence of hydrogen atoms in the sample will cause an incoherent scattering background. 
The correlation coefficient needs to be adjusted to obtain the value of the horizontal incoherent background of 
the sample. The SANS curve, after removing the horizontal background, should follow the power law pattern, 
so the incoherent background value can be subtracted from the scattering intensity I(Q) in the original data to 
obtain the corrected scattering intensity I(Q), and then the correlation between the corrected scattering intensity 
I(Q) and scattering vector Q. The polydisperse size-distribution model (PDSM) was used to analyze to data. 
The assumption of the PDSM was that pore network conforms to polydisperse spherical pore network in shale 
and ignores the contribution from the structure factor  term34,35. The PSD of samples can be calculated from the 
polydisperse spheres (PDSM) model in the PRINSAS software. The SANS curve of the sample after PDSM model 
fitting and removing the horizontal background is shown in Fig. 6.

MICP data. The mercury injection and withdrawal curves of the 8 samples were similar in shape. At the initial 
stage of mercury injection, the injection pressure rises sharply for a short period of time, and then the mercury 
injection curve gradually reaches a plateau (Fig. 7), indicating that there are extensive macro pores and throats 

Figure 4.  Poremaster high pressure mercury porosimeter.

Figure 5.  Two dimensional spectrum.
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in the samples. The high drainage pressure and low sorting coefficient reflect that the reservoir is characterized 
by low permeability and yet good sorting.

Both the displacement pressure and the median pressure are negatively correlated with the permeability. 
The average displacement pressure is 3.15 MPa and the average median pressure is 12.41 MPa. The maximum 
mercury saturation and mercury withdrawal efficiency of each sample are not much different. The average 
maximum mercury saturation is 87.50%, and the average mercury withdrawal efficiency is 17.19%, as shown in 
Table 2. The broad sense shale oil reservoir has high mercury intrusion saturation and low mercury withdrawal 
efficiency, indicating that the sample has relatively large pores and throats, and good pore-throat connectivity; 
however the pore-throat configuration is nearly dumbbell-shaped with relatively large pore/throat radius ratios.

Analysis and discussion. Shapes of full‑scale pore size distribution curves. The pore size distribution of 
the Jimsar broad sense shale oil reservoir core samples can be mainly divided into two types: the declining type 
and submicron pore-dominated type, as shown in Figs. 8 and 9. The submicron pore-dominated type is mostly 
seen in silt-fine sandstones and dolarenite, with most pores smaller than 500 nm. The declining type is mainly 
attributed to the silty mudstone and dolomitic mudstone, with most pores less than 80 nm in diameter. The po-
rosities of Samples S6819, S6820 and S6857 are 14.1%, 15.4% and 11.4%, respectively, with an average of 13.6%; 
those of M6822, M6856, M6858, M6859 and M6860 are 8.6%, 10.4%, 6.0%, 9.3% and 4.5%, respectively, with an 
average of 7.8%. The results show that the average porosity of the sample with the submicron pore-dominated 
pore size distribution is about 1.7 times that of the sample with the declining pore size distribution. It has larger 
specific pore volumes of macropores and a larger average pore size, so the silt-fine sandstone and dolarenite 
provide the main space for shale oil storage and flow.

Figure 6.  Corrected SANS curve of broad sense shale oil reservoir samples.

Figure 7.  Mercury capillary pressure curves.
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Quantitative analysis of pores of different scales. According to the international convention, pores with diam-
eters of 0.1–100 nm are defined as nano-scale pores; pores with diameters of 100–1000 nm, submicron pores; 
pores greater than 1000 nm, micron-scale pores. Samples S6819 and S6820 are of the submicron pore-dominated 
type. Their average specific pore volume of nano-scale pores is 10.60  mm3/g; that of the submicron pores is 59.91 
 mm3/g. The submicron pore dominated type feature large pore space at the submicron scale, and also has a small 
quantity of micron-scale pores. Samples M6822, M6856 and M6858 are of the declining type, with almost no 

Table 2.  Results of high-pressure MICP tests.

Sample no. Displacement pressure (MPa) Median pressure (MPa)
Maximum mercury saturation 
(%)

Mercury withdrawal efficiency 
(%) Sorting coefficient Skewness

S6857 1.24 3.52 85.7 17.19 0.069 0.18

S6819 2.91 6.57 93.01 13.82 0.039 0.04

S6820 2.88 6.87 87.89 16.67 0.045 0.09

M6859 2.91 6.57 93.01 13.82 0.039 0.04

M6858 2.88 6.87 87.89 16.67 0.045 0.09

M6822 5.43 14.41 88.98 18.34 0.057 0.03

M6856 3.94 26.14 92.45 7.62 0.106 0.09

M6860 2.98 28.32 71.1 9.42 0.105 -0.01

Average 3.15 12.41 87.5 14.19 0.063 0.07

Figure 8.  Declining-type pore size distribution curve.

Figure 9.  Submicron pore-dominated pore size distribution curve.
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micron-scale pores. Their average specific pore volume of nano pores is 21.60  mm3/g; that of submicron pores is 
16.650  mm3/g, indicating that the pore space declines as the pore size grows (Table 3).

In view of the average proportions of pores at different levels, about 84% of the total pore space is attributed 
to the submicron pores in the submicron pore-dominated sample, with about 1% to micron pores and 15% to 
nano pores. For the declining-type sample, about 60% of the total pores space is contributed by nano pores, with 
the rest 40% attributed to submicron pores (Fig. 10).

Testing method comparison. It can be seen from the nano-scale pore size distribution curve measured by SANS 
that the value of the dV/dlD pore volume at the merging interface (100 nm) has the same order of magnitude 
with that of submicron pores measured by high-pressure MICP, and the two values are similar. However, the 
dV/dlD pore volume of nano pores at the merging interface, measured by the low-temperature  N2 adsorption 
(LTNA), is about an order of magnitude lower than that measured by high-pressure MICP, as shown in Fig. 11a 
and b. For the LTNA-MICP full-scale pore size distribution test method, the particle sizes of the prepared sam-
ples are quite different. The samples used for LTNA need to be made into 30–100 mesh particles (powder), while 
the samples used for MICP are usually cylinders with a diameter of 2.5 cm and height of 1 cm. 30–100 mesh 
particle samples may have destructed pores between 50–100 nm, resulting in the corresponding dV/dlD pore 
volume of such pores is significantly lower than that measured by SANS, as shown in Fig. 11c and d. The sample 
used for SANS is fabricated into a 10 mm × 10 mm × 0.5 mm sheet specimen, which is more similar in size to 
the sample for high-pressure MICP. Moreover, two adjacent parts of one core sample can be tested via SANS 
and MICP, respectively. Therefore, pore size distribution curve merging between SANS and MICP is better than 
that of the LTNA-MICP full-scale pore size distribution test, and thus is more applicable to shale oil reservoir 
samples.

SANS is an effective method for characterization of mesoporous materials, and has been widely used in the 
shale gas industry over recent years. This study confirms that SANS is an effective and powerful tool for non-
destructive characterization of internal structures. In addition, SANS has obvious advantages in characterizing 
micropores, and MICP is more suitable for investigating macropores. Therefore, the integration of SANS and 
MICP can not only capture the characteristics of the full-scale pore size distribution, but also improves the accu-
racy of PSD evaluation. For broad sense shale oil samples, using SANS to measure nano pore size distribution 
and MICP to measure submicron pore size distribution is a more reasonable method.

Table 3.  Specific pore volume of pores of different scales (unit:  mm3/g).

Sample no. Nano pores Submicron pores Micron pores

S6819 10.66 58.72 0.91

S6820 10.53 61.09 0.30

M6822 28.53 12.43 0.06

M6856 25.19 29.71 0.00

M6858 11.08 7.81 0.00

Figure 10.  Proportions of pores at different scales.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17458  | https://doi.org/10.1038/s41598-021-97027-7

www.nature.com/scientificreports/

Conclusions
Integration of small-angle neutron scattering (SANS) and mercury intrusion capillary pressure testing (MICP) 
provides an effective tool for full-scale pore size characterization. The samples measured by SANS and MICP are 
both in centimeter scale, and there is no pore damage or pore generation during the sample preparation process, 
which eliminates possible errors in the particle preparation process of the sample used for the gas adsorption 
method.

The pore size distribution of broad sense shale oil reservoir samples of the Permian Lucaogou Formation 
in the Jimsar Sag is mainly divided into two types: the declining type and the submicron pore-dominated type. 
Approximately 84% of the total pore space in the submicron pore-dominated sample is contributed by submicron 
pores. About 60% of the total pore space in the declining-type sample is contributed by nano pores.

The declining type is mainly silty mudstone and dolomitic mudstone, and most of its pores are smaller than 
80 nm. Silt-fine sandstone and dolarenite are mostly of the submicron pore-dominated type, with most pores 
smaller than 500 nm, and high specific pore volume and average pore diameter of macropores. They are favorable 
lithogeneous phase for development of high-quality reservoirs.

Received: 15 April 2021; Accepted: 9 August 2021
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