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Abstract
Objectives The aim of this study was to determine mono-energetic (monoE) level–specific photon-counting CT (PCCT)
Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we
examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE
levels.
Methods Theoretical CACmonoE thresholds were calculated with data from the National Institute of Standards and Technology
(NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60–75 bpm,
and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT
numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations
(95% confidence interval) < 10% were deemed to be clinically not-relevant.
Results Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and − 4%
for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60–75 bpm, Agatston score deviations were
non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively.
Conclusion MonoE level–specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV.
PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-
density CAC.
Key Points
• Mono-energy level–specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-
energetic images.

• Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at
50% reduced radiation dose for medium- and high-density calcifications.
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CNR Contrast-to-noise ratio
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PCCT Photon-counting CT
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Introduction

Globally, cardiovascular disease (CVD) is still the number
one cause of death [1]. The total amount of calcium in the
coronary arteries has been shown to be a superior predictor
for a cardiovascular event in the near future, and improves risk
prediction when added to conventional risk scores [2, 3].

Traditionally, the amount of coronary artery calcium
(CAC) is quantified according to the Agatston methodology,
which was developed in the early 1990s on a now obsolete
electron beam tomography system [4].With this method, a CT
number specific threshold of 130 Hounsfield units (HU) at a
120-kVp acquisition is used to first discriminate CAC with a
minimum density of 100 mg/cm3 hydroxyapatite (HA) from
surrounding tissue [5]. Next, weighting factors based on the
maximum voxel value within CAC lesions are applied, with
thresholds of 200, 300, and 400 HU.

Since the introduction of the Agatston scoring methodolo-
gy, CT scanners have evolved rapidly, with improvements in
spatial resolution, temporal resolution, longitudinal coverage,
and required radiation dose. Although modern CT scanners
have rotation times as fast as 240 ms, the temporal resolution
can be further increased by the application of a second X-ray
tube and detector in dual-source CT systems [6]. While the
temporal resolution in the isocenter of a single-source CT is
half the rotation time, the temporal resolution of a dual-source
CT is reduced to only a quarter of the rotation time.

Recently, a major new development was introduced in the
field of CT: spectral photon-counting CT (PCCT) [7–10].
Whereas conventional CT systems use energy-integrating de-
tectors, PCCT systems use photon-counting detector technol-
ogy. This enables the detection of photons within certain en-
ergy bins, thereby creating an energy-discriminating photon-
counting system. Siemens Healthineers has very recently in-
troduced such a system, the NAEOTOM Alpha, which is a
dual-source CT scanner with photon-counting detectors. With
this system, data can be acquired at a high temporal resolution,
while maintaining spatial resolution. Moreover, spectral data
is acquired during every scan by both detector arrays, which
enables the reconstruction of CT images for virtual mono-
energetic (monoE) X-ray sources while maintaining the high
temporal resolution of dual-source CT. Thanks to the relative-
ly large increase of X-ray attenuation by calcium when low-
ering the X-ray energy, calcium contrast is enhanced at re-
duced monoE levels of 40 to 60 keV compared to the standard
CAC protocol with 70 keV reconstructions [11]. We hypoth-
esize that this feature could be used to reconstruct reduced
monoE levels from data acquired at a reduced radiation dose
by a reduction of the tube current, and with equal CAC
contrast-to-noise ratios (CNR) in comparison with the full-
dose standard CAC protocol thanks to a balance in the in-
crease in image noise and CAC contrast. However, as CT
values are energy dependent, Agatston thresholds adjustments

are needed in order to calculate Agatston scores at reduced
monoE levels. These thresholds have not been calculated, nor
validated, yet.

The primary aim of the current study was, therefore, to
determine and validate these adjusted thresholds for monoE
images, to yield the same Agatston scores irrespective of the
chosen monoE level. The secondary aim was to examine the
dose reduction potential of PCCT CAC scans reconstructed at
low monoE levels.

Materials and methods

MonoE CAC threshold calculation

Theoretical CAC thresholds at different monoE levels were
calculated with data from the National Institute of Standards
and Technology (NIST) database [12]. For this, the chemical
composition of hydroxyapatite (HA) (Ca10(PO4)6(OH)2) and
its density of 3.15 g/cm3 were used [13]. For this compound,
the attenuation at 40–190 keV (at 10-keV steps) was calculat-
ed with the use of the XCOM NIST database. Furthermore,
the attenuation of water and air was calculated at the same
monoE levels, to be able to calculate the HU values according
to:

CT number HU½ � ¼ 1000
μCAC−μwater

μwater−μair

with the attenuation of CAC (μCAC) equal to the density-
weighted attenuations of water and HA for different mixtures.
The CAC threshold of 130 HU at 120 kVp was based on a
CAC density of 100 mg/cm3 [5]. As the 70-keV reconstruc-
tion is the approximation to a standard reconstruction for 120-
kVp acquisitions typically used for Agatston scoring, a 130-
HU threshold was used for our standard reconstruction. The
CAC densities corresponding to a threshold of 200, 300, and
400 HU at 70 keV were determined as well according to the
above equation.

Data acquisition and reconstruction

An anthropomorphic thorax phantom (QRM-thorax, PTW)
was scanned on a first-generation dual-source PCCT
(NAEOTOM Alpha, Siemens Healthineers, Syngo version
VA40A.1.02). A water compartment was placed at the cen-
ter of the thorax phantom. In this compartment, an artificial
coronary artery (diameter 5 mm) was translated by a
computer-controlled lever (QRM-Sim2D, PTW) at 0 and
20 mm/s, corresponding to 0 and 60–75 bpm, respectively
[14, 15]. The ECG output of the computer-controlled lever
was used for ECG triggering to ensure data acquisition
during linear motion of the artificial coronary artery [15].
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The coronary artery contained three cylindrical calcifica-
tions of equal size (1 mm length, 5 mm diameter) but dif-
ferent densities. The HA densities were 196 ± 3, 408 ± 2,
and 800 ± 2 mg/cm3, i.e., low, medium, and high density,
respectively. Phantom dimensions were increased by a fat
tissue equivalent extension ring (QRM-extension ring,
PTW) to resemble a large patient size [5].

Data was acquired with vendor-recommended sequen-
tial CAC protocols at a tube potential of 120 kVp, tube
current time product (effective mAs) of 20 mAs (equal to

an automatic tube current modulation setting of CARE
keV IQ level 16, where CARE keV represents the auto-
matic exposure control of the PCCT system), volumetric
CT dose index (CTDIvol) of 4.06 mGy, collimation of 144
× 0.4 mm, rotation time of 0.25 s, and a temporal resolu-
tion at the isocenter of 66 ms. Incoming X-ray photons
were counted within two energy bins, which were
predefined by the manufacturer. The data acquisition win-
dow was positioned at 60% of the simulated cardiac cycle
to ensure acquisition during linear motion of the phantom,

Fig. 1 Example images for the medium-density CAC for all monoE levels as indicated in the images. For each monoE level, the theoretical CAC
threshold (as shown in the figure) is used to indicate all voxels which exceed this value
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without turning points of the robotic arm. To assess the
radiation dose reduction potential, additional data was ac-
quired at 50% radiation dose by reducing the tube current
time product to 10 mAs. Images were reconstructed at
3 mm slice thickness, 1.5 mm slice increment, Qr36 re-
construction kernel, 220 mm field of view, 512 × 512
matrix elements, filtered back projection, and monoE
(Monoenergetic Plus, Siemens Healthineers) levels of
40, 50, …, 190 keV. All acquisitions were performed five
times, with manual repositioning of approximately 2 mm
translation along the longitudinal axis and 2° rotation
around the longitudinal axis of the phantom in between
each scan.

Data analysis

For each CAC density at full dose and 0 bpm, maximum CT
numbers from the 5 repetitions were compared to the theoret-
ical CT numbers calculated with data from the NIST database.
These maximum CT numbers were, like the Agatston scores,
calculated with a previously validated, in-house-developed
fully automated quantification method (FQM) written in
Python [16]. For this, the theoretical monoE–specific thresh-
olds for both CAC detection and Agatston score weighting
factors were added to FQM, where they were used instead
of the conventional 130 HU threshold for both CAC detection
and quantification. In order to assess the potential for radiation
dose reduction with reduced monoE level reconstructions, the
CNRs were determined with FQM for all CAC densities, ac-
cording to:

CNR ¼ MeanCAC−MeanBackground
�
�

�
�

Standard deviationBackground

Where all voxels which exceed the CAC threshold were
used to calculate the mean CAC CT number, and where the
background mean CT number and standard deviation were
calculated in a region of interest (50 × 50 mm2) in the water
compartment.

All Agatston scores were compared with the reference at
full dose and a monoE level of 70 keV. Differences (95%
confidence interval) in Agatston score with the reference of
< 10 were deemed to be clinically not-relevant [17].

Results

Whereas the mass attenuation coefficients of air, water, and
pure hydroxyapatite at monoE levels of 130 keV and larger
are very similar and in the range of 0.10 to 0.16 cm2/g, at
lower monoE levels, the mass attenuation of HA strongly
diverges from the mass attenuation of water and air
(Supplemental Figure 1). Application of the Agatston score

threshold on monoE level reconstructions of 40 to 190 keV is
shown in Fig. 1. All four Agatston score thresholds for these
monoE levels are shown in Fig. 2.

In Fig. 3, a comparison between the theoretical CT num-
bers for the known CAC densities and the measured maxi-
mum CT number per CAC density is shown. Averaged over
all monoE levels, measured CT numbers deviated from the
theoretical CT numbers by 6%, 13%, and − 4% for the low-,
medium-, and high-density CAC, respectively.

For each CAC density, CNR increased at reduced monoE
levels (Fig. 4). The median (total range) CNR at 100% radia-
tion dose and a monoE level of 70 keV was 7.7 (7.4;8.2), 11.4
(10.8;13.2), and 20.0 (19.3;20.7) for the low-, medium-, and
high-density CAC, respectively. Virtually the same CNRs at
50% radiation dose were found at monoE levels of 40 and
50 keV for low- and medium-density CAC, while for the
high-density CAC, a similar CNR was found at 40 keV only.

For the high- and medium-density CAC, 100% radiation
dose static coronary Agatston scores deviated less than 10%
from the reference (70 keV, 100% dose) for almost all monoE
levels (Fig. 5). Only for the medium-density CAC at 40 and 50
keV, relevant deviations were found. For the low-density
CAC, however, relevant deviations were found for all
monoE levels. At monoE levels of 40 and 50 keV, mean
Agatston score deviations were again non-relevant.
However, confidence intervals for these reconstructions over-
lapped the 10% threshold.

For all calcification densities and monoE levels, 82% and
69% of all combinations led to non-relevant differences in
Agatston score for 100% and 50% radiation dose, respective-
ly. Therefore, at 50% reduced radiation dose, an increase in
the number of relevant Agatston score deviations was found
(Fig. 5). At 50% radiation dose, non-relevant differences in
Agatston score deviation with the reference were obtained for

Fig. 2 Thresholds for CAC discrimination and Agatston score weighting
factors for different monoE levels, with respect to the conventional
thresholds of 130, 200, 300, and 400 HU at the reference of 70 keV
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60 keV, 60 to 120 keV, and 40 to 130 keV for low-, medium-,
and high-density CAC, respectively.

The dynamic coronary scan, corresponding to heart rates of
60–75 bpm, showed a similar behavior, although with slightly
less non-relevant deviations from the reference Agatston score
(Fig. 6). At 50% radiation dose reduction, non-relevant differ-
ences in Agatston score with the reference were found for 60
to 100 keV and 60 to 120 keV for medium- and high-density
CAC, respectively. For dynamic low-density CAC, non-
relevant differences were not shown at 50% radiation dose
reduction.

Discussion

In this study, we determined and applied monoE level–
specific Agatston score thresholds for CAC scoring on
PCCT. Due to an increased CNR at reduced monoE levels, a
potential dose reduction of 50% was found for medium- and
high-density CAC with appropriate CAC density–specific
monoE levels.

With decreasing CAC density, an increase in the deviations
from the reference was found. Especially for the low-density
CAC at high monoE levels, large deviations (up to −83%)
were shown. These deviations were due to the low CNR
levels, in comparison with the reference CNR. Furthermore,
while low-density CAC showed a further reduced Agatston
score at increased monoE levels, the opposite was found for
the medium- and high-density CAC. At increased heart rate,
overall Agatston score variability increased, in particular for
the low-density CAC. A post hoc power analysis revealed that
particularly this low-density category was statistically under-
powered (1 – β: 0.07) to detect clinically relevant differences.
For low-density CAC, the threshold for relevant deviations in
Agatston score > 10% may be too strict, especially consider-
ing the large number of parameters (including patient size,
heart rate, CT system, slice thickness, and CAC quantification
parameters) which influence this measurement [15, 16,
18–24].

To the best of our knowledge, this study is the first to
calculate Agatston scoring thresholds for monoE images on
PCCT. For this, the conventional minimum CAC density of
100 mg cm−3 was used [5]. While the current study showed
that the increased CNR at reduced monoE levels could be
used to reduce the radiation dose, CAC sensitivity with CT

Fig. 4 Contrast-to-noise ratio for different monoE levels from 40 to 190 keV (left to right mean and 95% confidence interval plots) for the static low (L),
medium (M), and high (H) CAC at 100% (left) and 50% (right) dose

Fig. 3 Comparison of the theoretical CT number (red triangles) with the
measured CT number (mean and 95% confidence interval plots) for the
static low (L)–, medium (M)–, and high (H)–density CAC for all monoE
levels
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could potentially be increased, when the theoretical thresholds
are based on a reduced minimum CAC density (< 100 mg
cm−3). This might especially be of potential interest for the
detection of small and/or low-density CAC, given the impor-
tant role of zero CAC scores for the risk estimation of cardio-
vascular disease [25]. Moreover, small and/or low-density
CAC show reduced CAC scores at increased heart rates
[15]. This could result in an erroneous zero Agatston score,

when no voxels exceed the conventional primary threshold of
130 HU at a reference tube voltage of 120 kVp.

In the current study, tube current reduction was used to
reduce the radiation dose. Many other methods are available
to reduce radiation dose for CT CAC assessment, including
tube voltage reduction [26]; however, this will also affect the
resulting CT numbers. While the current study is the first to
assess changes in CT numbers based on monoE

Fig. 5 Deviation of the Agatston scores of mono-energetic reconstruc-
tions at 40 to 190 keV (left to right mean and 95% confidence interval
plots) on PCCT with respect to the reference Agatston scores for static

low (top)–, medium (middle)–, and high (bottom)–density CAC, at 100%
(left) and 50% (right) dose
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reconstruction levels, Nagazato et al previously described a
100-kVp-specific Agatston threshold of 147 HU [27].
Although this increased CAC threshold for reduced energies
is in line with our results, a direct comparison is hampered by
the fact that the threshold for 100 kVp is based on a polychro-
matic spectrum, while our theoretical threshold is based on a
virtual monochromatic reconstruction.

Our study had some limitations which merit consider-
ation. First, the resulting measured CT numbers showed, on

average over allmonoE levels, deviations up to 13%from the
theoretical values for the used CAC densities. However,
many factors apart from image noise influence the measured
CT numbers, like the limited spatial resolution and limited
accuracy of the reported keV levels. Second, anthropomor-
phicphantomswereused insteadof invivomeasurements for
the current study, with artificial CAC–containing coronary
arteries and artificial tissue–simulatingmaterials. The densi-
ties of the artificialCACwith constant volumeweremixtures

Fig. 6 Deviation of the Agatston scores of mono-energetic reconstruc-
tions at 40 to 190 keV (left to right mean and 95% confidence interval
plots)) on PCCT with respect to the reference Agatston scores for low

(top)–, medium (middle)–, and high (bottom)–density CAC at 60–75
bpm, at 100% (left) and 50% (right) dose
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of HA and so-called solid water. In addition, movement of
the coronary artery for the dynamic scans was only in one
direction. However, the scan times were relatively short as a
result of fast rotation times, whereby the constant linear mo-
tion of our phantom was deemed sufficient as a model of the
complex in vivo motion of coronary arteries [14]. Also, the
mass of the calcifications was in the range which is observed
in patients [28]. Finally, only a large patient size resembling
phantomwas used for the current study. While this phantom
study indicates the potential of reduced radiation dose CAC
assessment when reduced monoE levels are used, these re-
sults should be validated in vivo. For this, CAC assessment
can be performed on both standard (70 keV) and reduced
monoE level reconstructions of patient scans. For the current
study, however, one phantom size was deemed sufficient as
Leng et al indicated accurate CT numbers on different
monoE level reconstructions for different phantom sizes on
a previous prototype PCCT system from the same vendor;
therefore, we did not anticipate substantial differences in
VMI accuracy across phantom sizes [29]. Third, our CAC
contrast calculation was based on all voxels which exceeded
theCAC threshold. This approachwas chosen because of the
small diameter, and therefore a small number of voxels of the
calcification. Consequently, the resulting CNR was
underestimated compared to what to expect for the known
CAC densities. Fourth, our results were validated and ap-
plied on a single PCCT system. Although this PCCT system
is currently the only clinically available PCCT systemwhich
can provide monoE reconstructions at high temporal resolu-
tion, additional validation of the proposed Agatston method
for monoE reconstruction is needed on other PCCT systems
as well.

Overall, virtual monoE images at low energy levels allow
for a radiation dose reduction of 50% for medium- and high-
density CAC when using energy-specific Agatston score
thresholds.
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