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Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member strongly
expressed on renal tubular epithelia in the urinary tract. Enzymatic cleavage of its
ectodomain increases in chronic kidney disease (CKD), and is assumed to contribute
to tubulointerstitial lesion formation. Because the cleaved ectodomain fragments
are likely to be released into the urine, a sandwich enzyme-linked immunosorbent
assay (ELISA) system for urinary CADM1 was developed using two anti-ectodomain
antibodies. Urinary CADM1 concentrations in patients with CKD based on various
forms of glomerulonephritis and nephropathy (n = 127) were measured. A total of
44 patients (35%) had elevated CADM1 concentrations over the normal upper limit
(362 pg/mL), with a mean of 1,727 pg/mL. Renal biopsy specimens of all patients
were pathologically scored for tubulointerstitial lesions using epithelial degeneration,
interstitial inflammation, and fibrosis. There were no correlations between urinary
CADM1 concentrations and pathological scores or any widely used renal markers,
including glomerular filtration rate (GFR), but there was a weak inverse correlation
between pathological scores and GFR (R2 = 0.292). Notably, this correlation gradually
increased in patients with increasing CADM1 concentrations, and reached a maximum
R2 (0.899) at a cutoff of 1,569 pg/mL. The results of this study suggest that urinary
CADM1 is a useful marker indicating tubulointerstitial damage from elevated GFR
levels in CKD.

Keywords: chronic kidney disease, tubulointerstitial lesion, cell adhesion molecule 1, ectodomain
shedding, ELISA
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INTRODUCTION

Chronic kidney disease (CKD) is defined as a condition
involving gradual loss of renal function over a period of months
or years, and includes diverse diseases that are primarily
inflammatory, immunological, metabolic, and circulatory
(Webster et al., 2017). Although CKD may start in the
glomeruli, tubules, or interstitium, the cortical lesions are
usually steadily progressive and evolve into patterns with
shared histopathological characteristics of glomerulosclerosis,
tubular degeneration, interstitial inflammation, and fibrosis
(Satirapoj et al., 2012). Once CKD reaches this stage, the
glomerular filtration rate (GFR) and tubulointerstitial damage
negatively affect each other via proteinuria and tubuloglomerular
feedback (Nangaku, 2004). Many past studies have shown that
tubulointerstitial damage correlates with progressive decline
in renal function (Risdon et al., 1968; Schainuck et al., 1970;
Mackensen-Haen et al., 1981; Nath, 1992; D’Amico et al., 1995).
Several tubular biomarkers, including β2-microglobulin (β2MG)
and N-acetyl-β-D-glucosaminidase (NAG), have long been used
to indicate tubular damage, but new biomarkers, such as liver-
type fatty acid-binding protein and kidney injury molecule 1,
have recently been established as more sensitive indicators
(Piscator, 1991; Fiseha and Tamir, 2016; Gluhovschi et al., 2016).
In clinical practice, patients with CKD often must undergo renal
biopsy to monitor the severity of tubulointerstitial damage as
well as to facilitate a diagnostic pathological classification (Hsu
et al., 2017). These protocols have been used because the marker
molecules are probably released from damaged tubular cells into
the urine, and are sensitive to subtle damages in tubular cells.
However, they are not sufficient to reflect the entire scope of
tubulointerstitial damages, including interstitial inflammation
and fibrosis.

We recently described a new mechanism to assess tubulo-
interstitial damage during CKD (Kato et al., 2018). Cell adhesion
molecule 1 (CADM1) is a member of the immunoglobulin
superfamily that is expressed in renal tubular cells (Nagata
et al., 2012), and is enzymatically shed in the juxtamembrane
region of the extracellular domain (Nagara et al., 2012; Mimae
et al., 2014). In diabetic nephropathy and arterionephrosclerosis,
this ectodomain shedding is increased, and causes tubular
epithelial apoptosis (Kato et al., 2018). When we evaluated
tubulointerstitial lesions in terms of the three pathological
categories of inflammation, epithelial degeneration, and
interstitial fibrosis, we found a positive correlation between the
degree of total tubulointerstitial damage and the rate of CADM1
ectodomain shedding in the kidney (Kato et al., 2018). Increased
CADM1 shedding appeared to cause tubular cell apoptosis, and
was involved in interstitial inflammation and fibrosis. CADM1
shedding produces two molecular fragments: the C-terminal
remnant on the cell membrane (αCTF) and the N-terminal
fragment (NTF) separated from the cell surface (Nagara et al.,
2012; Mimae et al., 2014). The NTF is likely released into the
tubular lumen, i.e., into the urine. If this occurs, the urinary NTF
concentration increases during tubulointerstitial damage, and
the damage is exacerbated. In our screening of CADM1 tissue
distributions, we found that CADM1 expression was restricted to

renal tubular cells lining the epithelia of the urinary tract lumens
and cavities. We therefore proposed that urinary CADM1 is
a good biomarker to estimate the degree of tubulointerstitial
damage during CKD.

In the present study, we developed a sandwich enzyme-
linked immunosorbent assay (ELISA) for urinary CADM1 using
two monoclonal antibodies against the ectodomain of CADM1,
to measure CADM1 concentrations in the urine of CKD
patients undergoing renal biopsy. We compared the CADM1
concentrations with pathological scores of the tubulointerstitial
lesions of biopsy specimens and with conventional renal
biomarkers. We also conducted Western blot analyses of the
urine samples to confirm that the urinary CADM1 measured by
the ELISA was CADM1-NTF, and used cell culture experiments
to determine whether CADM1 shedding was induced in tubular
cells by ischemia.

MATERIALS AND METHODS

Cells, Proteins, and Antibodies
A mouse L fibroblast subclone that exogenously expressed
full-length CADM1 was established previously (Koma et al.,
2004). Rabbit CNT renal distal tubular cells were described
previously (Takahashi and Suzuki, 1994). A recombinant soluble
isoform of CADM1 fused with the Fc portion of human
IgG1 (sCADM1-Fc) and the deletion form that lost the three
Ig-like loops from sCADM1-Fc (1sCADM1-Fc) were purified as
described previously (Koma et al., 2004; Hagiyama et al., 2009),
and the concentrations were determined using the Bradford
assay (Bio-Rad Laboratories, Hercules, CA, United States).
Antibodies against the CADM1 ectodomain (3E1 and 9D2,
chicken monoclonal) and the C-terminus (rabbit polyclonal)
were described previously (Furuno et al., 2005; Hagiyama et al.,
2009). 3E1 and 9D2 were biotinylated using the Biotin Labeling
Kit-NH2 (Dojindo Molecular Technologies, Inc., Kumamoto,
Japan) according to the manufacturer’s instructions. Other
primary antibodies used in this study targeted human IgG Fc
(goat polyclonal; Jackson ImmunoResearch Laboratories, West
Grove, PA, United States) and β-actin (Medical & Biological
Laboratories, Nagoya, Japan). Peroxidase-conjugated secondary
antibodies were purchased from Amersham (Buckinghamshire,
United Kingdom). A chicken IgY clone (U04) was purchased
from R&D Systems (Minneapolis, MN, United States).

Sandwich ELISA
The 96-well microtiter plates were coated with 100 µL/well
phosphate-buffered saline (PBS) containing 9D2 monoclonal
antibodies (0.1 µg) and allowed to adhere overnight at 4◦C.
The plates were washed with Tris-buffered saline supplemented
with Tween 20 (0.05%) (TBS-T) and blocked with 300 µL/well
of 5% (w/v) bovine serum albumin (BSA) in PBS for 1 h at
room temperature. Following five washes with TBS-T, 100 µL
aliquots of test samples or sCADM1-Fc as a standard that was
serially diluted (40 ng/mL to 1.28 pg/mL) in PBS containing
1% BSA, were added in triplicate and duplicate, respectively,
to the wells and incubated at room temperature for 2 h.
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After five washes with TBS-T, 100 µL of biotinylated 3E1
monoclonal antibody (0.3 ng/mL) was added to each well and
incubated for 1 h at room temperature. In parallel with this
incubation, avidin–biotin complexes were formed by mixing
1 µL Reagent A (avidin DH) with 1 µL Reagent B (biotinylated
alkaline phosphatase) from the Vectastain ABC-AP Staining
Kit (Vector Laboratories, Burlingame, CA, United States) in
100 µL TBS-T for 30 min at room temperature, then diluted
100× in TBS-T immediately before use. The wells were washed
five times with TBS-T, and then 100 µL of freshly prepared
Reagents A and B mixture solution was added to each well and
incubated for 1 h at room temperature. During this incubation,
a solution containing CSPD, an alkaline phosphatase substrate,
was prepared using the BM Chemiluminescence ELISA Substrate
(AP) (Sigma–Aldrich, St. Louis, MO, United States) according
to the manufacturer’s instructions. The wells were washed five
times with TBS-T and four times with Tris-buffered saline, and
then 100 µL of the freshly prepared CSPD solution was added
to each well and incubated for 45 min at room temperature.
The chemiluminescence from each well was measured using a
plate reader (Wallac 1420 Arvo Mx2 luminometer; PerkinElmer,
Boston, MA, United States).

Validation of the developed ELISA was conducted essentially
according to the guidelines of the International Organization
of Standardization and the National Committee for Clinical
Laboratory Standards Evaluation protocols (International
Organization for Standardization, 2008). Recombinant
sCADM1-Fc protein was used as a quality control (QC). Intra-
assay precision was determined by four repeated measurements
of each QC sample in a plate, and inter-assay precision was
established by assessing each QC sample across three different
plates with quadruple wells.

Human Samples
The present study enrolled all patients who underwent renal
biopsy at Kindai University Hospital (Osaka, Japan) between July
2015 and March 2018. Some patients were excluded because they
suffered from nephritis related to a particular medication, such
as anti-cancer drugs or immunosuppressants, or experienced
acute inflammatory symptoms such as glomerulonephritis with
crescent formation. Urine samples were collected from the
patients ≤ 30 min before they underwent renal biopsy, and were
stored at 4◦C for <2 weeks until they were analyzed using ELISA.
Renal biopsy specimens were fixed in 10% phosphate-buffered
formalin immediately after biopsy, embedded in paraffin, cut
into sections, and stained with several dyes and methods
including hematoxylin and eosin, periodic acid Schiff, periodic
acid methenamine silver, and Masson’s trichrome. Pathological
diagnosis was determined independently by at least two
senior pathologists, and was confirmed by senior nephrologists
(YN and SA). The healthy volunteers consisted of 15 males
and eight females, with ages ranging from 18 to 45 (mean 28)
years. All experiments were approved by the ethics committee of
Kindai University Faculty of Medicine (No. 26-279). This study
was conducted in accordance with the tenets of the Declaration
of Helsinki and its subsequent amendments. Written informed
consent was obtained from all patients.

Other materials and methods are described in the
Supplementary Methods.

RESULTS

Development of a Sandwich ELISA for
Quantification of CADM1 in Urine
Mouse L fibroblasts and subcloned cells that expressed the
full-length form of CADM1 were incubated serially with
two anti-CADM1 ectodomain antibodies, first 9D2 and then
3E1, and were subjected to fluorescence-activated cell sorting
(FACS) analyses. L cells did not react with either antibody,
whereas CADM1-expressing L cells reacted with both antibodies
(Figure 1A). The fluorescence intensities bound to the subclone
increased as the 3E1 concentration increased, indicating that
9D2 and 3E1 recognized different epitopes in the CADM1
ectodomain (Figure 1A).

To develop a sandwich ELISA for urinary CADM1, we
biotinylated one of the two antibodies to use as a detection
antibody and used the other antibody as the capture antibody. We
examined which antibody was suitable as the detection antibody
using a recombinant soluble isoform of CADM1 fused with the
Fc portion of human IgG1 (sCADM1-Fc) (Koma et al., 2004),
and optimized both the quantity of the capture antibody to be
coated on the plate and the dilution factor for detecting the
antibody. After multiple trials, we decided to use 0.1 µg of
9D2 to coat each well as the capture antibody, combined with
0.3 ng/mL biotinylated 3E1 as the detection antibody. The color
(chemiluminescence) was developed using alkaline phosphatase-
conjugated avidin and the chemiluminescent substrate for
alkaline phosphatase. There was no cross-reactivity against the
deletion form of sCADM1-Fc that lost the three Ig-like loops
from sCADM1-Fc (1sCADM1-Fc) (Hagiyama et al., 2009) or
U04, an IgY clone unrelated to CADM1 (Figure 1B).

A representative standard dose–response curve for sCADM1-
Fc is shown in Figure 1B. The limit of detection (LOD) and
lower limit of quantification (LLOQ) were determined to be
60 pg/mL and 213 ng/mL, respectively, as calculated by the
formulas: LOD = average luminescence of the blank + 3 × [SD
of the blank], and LLOQ = average luminescence of the blank
+ 10 × (SD of the blank) (Currie, 1968; Findlay et al., 2000;
Dixit et al., 2010). In particular, for each assay, the SD was
calculated from the measured values of two blank wells that were
prepared for standard dose–response curve drawing, and then the
averages of 3 × SD and 10 × SD were calculated from 24 assays
and were regarded as LOD and LLOQ, respectively. According
to the standard dose–response curve, the linear quantification
range was approximately 0–4,000 pg/mL, with an excellent
linearity between luminescence and sCADM1-Fc concentration
(R2 > 0.99) (Figure 1B). The upper limit of quantification
(ULOQ) was set at 4,000 pg/mL. When the urine samples
contained CADM1 concentrations over the ULOQ, they were
diluted with PBS and measured in the linear range.

The assay precision was validated using sCADM1-Fc spiked
in PBS at three different doses of high, middle, and low
concentrations (Samples A, B, and C, respectively; Table 1).
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FIGURE 1 | Development of a sandwich ELISA for cell adhesion molecule 1 (CADM1). (A) Fluorescence-activated cell sorting (FACS) analysis of L cells expressing
full-length CADM1 using 3E1 and 9D2 antibodies. Original L (upper) or CADM1-expressing L cells (lower) were incubated serially, first with 9D2 and then with 3E1
(0.01, 0.2, or 2 µg/mL; bright to dark gray-painted), or incubated in buffer without any primary antibodies (gray-lined, open), and were then analyzed using FACS.
(B) Calibration curve of the CADM1 enzyme-linked immunosorbent assay (ELISA) for sCADM1-Fc. The ELISA was developed using 9D2 and biotinylated 3E1
antibodies as capture and detection antibodies, respectively. Chemiluminescence intensities were measured for recombinant proteins sCADM1-Fc and
1sCADM1-Fc, and U04 chicken IgY using the ELISA, were shown as dots with bars indicating the SDs, and were then plotted with concentrations determined using
the Bradford assay and serially diluted. Note that most of the SDs are too small to be shown in the graph. Representative results are displayed, with the approximate
line and curve (dotted lines). Pearson’s R2 corresponding to the linear approximation for sCADM1-Fc is shown (range: 0–4,000 pg/mL).

We measured these spiked samples four times in the same
assay at different time points to determine the coefficient of
variation (CV) for intra-assay precision, and also measured these
samples once a day for 3 consecutive days to determine the
CV for inter-assay precision. The CV for each was less than
10%, indicating that the developed ELISA system had good
precision (Table 1).

TABLE 1 | Validation of the CADM1 ELISA kit.

Sample Intra-assay precision Inter-assay precision

Spiked conc. Measured Measured

(pg/mL) conc. (pg/mL) CV (%) conc. (pg/mL) CV (%)

A 3,000 3,077 ± 108 1.4 ± 0.7 3,080 ± 20 3.3 ± 0.8

B 1,500 1,476 ± 65 2.7 ± 2.1 1,485 ± 25 3.6 ± 1.4

C 300 306 ± 11 5.5 ± 2.9 303 ± 15 4.5 ± 4.0

For all measurements, the samples were prepared in triplicate. Measured
concentrations (conc.) and coefficients of variation (CV) are expressed as the
mean ± SD calculated from three independent intra-assays and inter-assays.
CADM1, cell adhesion molecule 1; ELISA, enzyme-linked immunosorbent assay.

Measurement of Urinary CADM1
Concentrations Using the Sandwich
ELISA
Urine samples from healthy volunteers (n = 23) were examined
using the developed ELISA. Urinary CADM1 concentrations of
16 volunteers were lower than the LLOQ (213 pg/mL), and those
of the remaining volunteers had a mean of 269 pg/mL. The
upper limit of the normal CADM1 concentration was estimated
as 362 pg/mL, the value of the mean (161 pg/mL) + [2.58 × SD
(78 pg/mL)], by tentatively allocating the half-value of LLOQ
(107 pg/mL) to the former 16 volunteers to avoid overestimating
or underestimating the data variance (Hashimoto et al., 2015).

Urine samples were collected from CKD patients immediately
before undergoing renal biopsy at Kindai University Hospital
(n = 127), and urinary CADM1 concentrations were measured
using ELISA. Characteristics of the patients are summarized
in Table 2. Urinary CADM1 concentrations over the upper
normal limit (362 pg/mL) were detected in 44 patients
(35%), and ranged up to 14,899 pg/mL, with a mean of
1,727 pg/mL (Figure 2). A total of 64 patients (50%) had
urinary CADM1 concentrations below the LLOQ (213 pg/mL);
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TABLE 2 | Patient characteristics.

n

Age range
Renal disease Sex

(median)

M F

Diabetic nephropathy 14 10 4 40–84 (64)

Arterionephrosclerosis 11 7 4 28–82 (75)

Membranous nephropathy 16 9 7 42–81 (71)

Minor change disease 12 4 8 36–80 (67)

Mesangioproliferative glomerulonephritis 22 13 9 20–79 (56)

Pruritic nephritis 8 4 4 31–85 (67)

IgA nephropathy 29 14 15 19–79 (43)

Membranoproliferative glomerulonephritis 10 6 4 23–85 (74)

Amyloid nephropathy 4 1 3 57–76 (70)

Lupus nephritis 1 1 0 28

Total 127 69 58 19–85 (63)

M, male; F, female.

the half-value of LLOQ (107 pg/mL) was tentatively allocated
to these patients in the present statistical analyses (Figure 2).
The patients were classified into 10 groups according to the
primary disease, which was diagnosed histologically using the
individual biopsy specimens. The diseases included various forms
of glomerulonephritis and nephropathy that were generally
recognized to cause CKD (Table 2). There was at least
one patient with an increased urinary CADM1 concentration
(>362 pg/mL) in every group of diseases except for the
smallest two groups, amyloid nephropathy (n = 4) and lupus
nephropathy (n = 1) (Figure 2). CADM1 concentrations were
not associated with the pathological classification of primary
diseases (minimal P = 0.36 for diabetic nephropathy vs.
mesangioproliferative glomerulonephritis).

We conducted Western blot analyses on several urine samples
that showed CADM1 at low, middle, or high concentrations
using ELISA. CADM1-NTF was detected on the blot using 3E1,
and its densitometric intensity was well correlated with the
urinary CADM1 concentrations measured by ELISA (R2 = 0.957;
Figures 3A,B). However, the antibody against the CADM1
C-terminus did not yield specific immunoreactive bands in
any samples, although both CADM1 antibodies appeared to
cross-react with urinary IgG (Figure 3A). Urinary CADM1
detected by the ELISA therefore appeared to be exclusively
CADM1-NTF. Note that because sCADM1-Fc used as the
standard protein has a somewhat larger molecular weight
than CADM1-NTF, the measured values of urinary CADM1
concentrations in this study are useful just as the values
relative to each other, and should be corrected accordingly
in future studies.

The Correlations of Urinary CADM1 With
Tubulointerstitial Damage and
Renal Biomarkers
Renal biopsy sections were pathologically evaluated, and
tubulointerstitial damage was rated on a scale of 0–3 in each

FIGURE 2 | Urinary cell adhesion molecule 1 (CADM1) concentrations in
patients with chronic kidney disease (CKD). Urine samples were collected
from CKD patients who underwent renal biopsy, and their CADM1
concentrations were measured using ELISA. Patients were classified into 10
groups according to primary diseases. The parentheses immediately above
the disease names show the numbers of patients whose CADM1
concentrations were below the lower limit of quantification (LLOQ;
213 pg/mL). The Y-axis is logarithmic. DN, diabetic nephropathy; AS,
arterionephrosclerosis; MemN, membranous nephropathy; MCD, minor
change disease; MSGN, mesangioproliferative glomerulonephritis; PrurN,
pruritic nephritis; IgAN, IgA nephropathy; MPGN, membranoproliferative
glomerulonephritis; Amyl, amyloid nephropathy; Lupus, lupus nephritis.

of three aspects of tubular epithelial degeneration involving
interstitial inflammation, lymphocyte infiltration, and fibrosis.
The three scores were summed for each patient and expressed as
the total pathological score, which indicated the degree of overall
damage of the tubulointerstitial lesions. Correlations between
urinary CADM1 concentrations and these four pathological
scores were analyzed. In an analysis of the entire patient cohort,
CADM1 concentration was not correlated with any of the four
scores, or with the estimated GFR (eGFR) (Figures 4A,B).
The same result was found in an analysis of a selected
group of patients who had elevated CADM1 concentrations
(over the normal upper limit of 362 pg/mL) (Figure 4B
and Supplementary Figure S1).

We next analyzed whether the pathological scores corre-
lated with the eGFR. A weak inverse correlation was found
between the eGFR and the total pathological score in a
group including all patients (R2 = 0.292), as well as between
the eGFR and inflammation or fibrosis scores (R2 = 0.253
for each) (Figure 4C). This correlation was stronger in a
selected group of patients with higher CADM1 concentrations
(>362 pg/mL; R2 = 0.449) (Figure 4D). When patients
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FIGURE 3 | Comparison between Western blot analysis and the enzyme-linked immunosorbent assay (ELISA) for the detection of urinary cell adhesion molecule 1
(CADM1). (A) Western blot analyses of urine samples for CADM1. Urine samples with various CADM1 concentrations (measured by ELISA) were blotted in triplicate
with antibodies against the ectodomain (3E1) or C-terminus of CADM1. The other blot was probed with an anti-human IgG Fc antibody to detect IgG in urine. ∗ and
∗∗ indicate albumin and IgG (heavy and light chains), respectively, that were detected non-specifically in the blots for CADM1. (B) Scatter plots of urinary CADM1
concentrations (ELISA) and the band intensities of NTF detected by 3E1 (Western blot analyses). The means of the N-terminal fragment intensities from three
independent Western blot analyses are plotted as dots with bars indicating the SDs, and are approximated (dotted line). Pearson’s R2 is shown.

with higher CADM1 concentrations, ranging from 700 and
1,000 to 1,500 pg/mL were selected, the correlation gradually
became stronger, with R2 values reaching 0.84 (Figure 4D).
Notably, the approximated lines were nearly identical among
the three scatter plots of patient groups selected by CADM1
concentrations of >700, 1,000, and 1,500 pg/mL (Figure 4D).
The optimal CADM1 concentration cutoff that maximized
the R2 value (0.899) was calculated as 1,569 pg/mL, with a
P-value of 3.02E-05.

Urinary CADM1 concentrations were then compared with the
conventional urinary tubular biomarkers β2MG and NAG, but no
significant correlation was found with either of the two markers
(Supplementary Figure S2A). The correlation between eGFR
and the tubulointerstitial pathological score was not significant
when the patients were selected using high values of either β2MG
or NAG as a cutoff (Supplementary Figure S2B). In the present
group of patients, there was no correlation between β2MG and
NAG (Supplementary Figure S2C).

Induction of CADM1 Shedding and
Apoptosis in CNT Renal Tubular Cells
Under Ischemia-Like Conditions
CNT renal distal tubular cells (Takahashi and Suzuki,
1994) abundantly expressed full-length CADM1 without
accompanying αCTF under standard culture conditions
(10% serum and 21% O2), indicating that CADM1 shedding did
not occur (Figure 5A). CNT cells were cultured for 3 days under
conditions mimicking in vivo ischemia, i.e., serum-starvation
(0.5% serum), hypoxia (15% O2), or both. The expression of
αCTF was detectable in association with a reduction in the
full-length level, and these changes in CADM1 concentrations
were increased under combined conditions (0.5% serum and 15%
O2), suggesting that ischemia caused CADM1 shedding in distal
tubules (Figures 5A,B). When the ischemia-like conditions were
restored to standard conditions, CADM1 expression returned to
its original level in 2 days (Figures 5A,B).
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FIGURE 4 | Correlation among urinary cell adhesion molecule 1 (CADM1) concentrations, pathological scores, and the estimated glomerular filtration rate (eGFR).
(A) Urinary CADM1 concentration (pg/mL) vs. pathological scores (inflammation, degeneration, fibrosis, and total). (B) Urinary CADM1 concentration (pg/mL) vs.
eGFR (mL/min). (C,D) eGFR (mL/min) vs. pathological scores (inflammation, degeneration, fibrosis, and total) in a group including all patients (C). In D, urinary
CADM1 concentrations (pg/mL) were used as a cutoff to select patients, as indicated. Approximate lines (dotted line), Pearson’s R2, and P-values are shown.
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FIGURE 5 | Induction of urinary cell adhesion molecule 1 (CADM1) ectodomain shedding and apoptosis in CNT renal tubular cells under ischemia-like conditions.
(A) CNT cells were cultured for 3 days under normal conditions [10% fetal calf serum and 21% O2] or ischemia-like hypoxic conditions [10% serum and 15% O2,
serum-starved (0.5% serum and 21% O2)], or both (0.5% serum and 15% O2). The combined condition was restored to normal, and the cell culture was continued
for another 2 days (serum→10% and O2→21%). Cell lysates were analyzed by Western blotting with anti-CADM1 C-terminus antibody (upper panel). The blot was
reprobed with an anti-β-actin antibody to indicate the amount of protein loading per lane (lower panel). Representative results are shown. (B) Expression levels were
densitometrically measured from five independent experiments and were plotted. The mean ratios of αCTF/full-length CADM1 and the SDs are depicted as cross
lines. P-value using one-way ANOVA is shown, and the Bonferroni correction was applied to particular two groups: ∗P < 0.01. (C) CNT cells were cultured for 3
days under normal or ischemia-like conditions as indicated, and were then labeled with pSIVA (green) and propidium iodide (PI; red). A boxed area is enlarged in the
inset. Arrowheads indicate pSIVA and PI double-positive cells. Bar = 50 µm.

pSIVA is an annexin-based fluorescent biosensor that binds
to phosphatidylserine exposed on the outer leaflet of the cell
membrane. It can be monitored in living cells during the

progression of the apoptotic pathway from early stages to
complete cell death (Kim et al., 2010). We examined whether the
induced CADM1 shedding is associated with apoptotic reactions
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in CNT cells, using a combination of pSIVA and propidium
iodide (PI), a fluorescent indicator for late-stage cell death.
We observed a few pSIVA- or PI-positive CNT cells under
standard culture conditions (Figure 5C and Supplementary
Figure S3). In contrast, when cells were cultured under ischemia-
like conditions for 3 days, the number of pSIVA- and PI-positive
cells increased, and some cells were double-positive (Figure 5C).

DISCUSSION

We have developed a sandwich ELISA for urinary CADM1
using two monoclonal antibodies against the ectodomain of
CADM1. The normal concentration of urinary CADM1 was
below the LLOQ (213 pg/mL), and its upper limit was estimated
to be 362 pg/mL. The ELISA was therefore sensitive enough to
detect an abnormal increase in urinary CADM1 concentration.
Overall, our ELISA identified increased CADM1 concentrations
in 39% of patients examined. Western blot analyses of urine
samples from these patients confirmed that the form of urinary
CADM1 detected by the ELISA was exclusively CADM1-NTF,
consistent with our hypothesis that increased CADM1 shedding
in tubular epithelial cells was involved in the pathogenesis of
CKD (Kato et al., 2018).

Urinary CADM1 concentrations were not associated with
primary renal diseases, tubulointerstitial pathological scores,
eGFR, β2MG, or NAG, but were useful for selecting patients with
strong correlations between tubulointerstitial damage and eGFR.
Although the precise mechanism underlying this correlation
remains unknown, this function of CADM1 may be based
on the finding that CADM1 is expressed in the distal tubule
(Nagata et al., 2012), unlike β2MG or NAG, which are derived
from the proximal tubule (Bazzi et al., 2002; Zeng et al.,
2014). It is known that proximal tubules are sensitive to
ischemia, whereas distal tubules are resistant (Jennette et al.,
2015; Chevalier, 2016). Urinary CADM1 may subsequently
increase when ischemia is relatively severe in the renal cortex.
Consistent with this possibility, CADM1 shedding was induced
in CNT distal tubular cells under ischemia-like conditions, in
association with the induction of cell apoptosis (Figure 5).
In addition, distal tubules contain the macula densa, the epithelial
cellular region adjacent to the glomerulus and responsible for
tubuloglomerular feedback (Ren et al., 2004; Ferenbach and
Bonventre, 2016). Patients with increased urinary CADM1 may
have cellular degeneration in the macula densa and therefore
tend to develop defective tubuloglomerular feedback. Because
CADM1 is derived from the distal tubule, urinary levels of
CADM1 may reflect tubulointerstitial lesions that are severe
enough to reduce the GFR.

However, increased urinary CADM1 levels were not a
direct hallmark of severe tubulointerstitial damage, but instead
may have indicated that the severity was strongly correlated
with eGFR. As shown in Figure 4D, there were some
patients with elevated urinary CADM1 concentrations who
also had good eGFR and low pathological scores. Because
urinary CADM1 reflects cortical ischemia, as discussed in the
previous paragraph, the prognoses of these patients may be

defined by the concurrence of a future low GFR and severe
tubulointerstitial damage. For these patients, the time point of
CADM1 measurement in the present study may simply have
been in the very early stage of their disease progression. We are
planning follow-up studies to examine this possibility.

The mechanisms involved in increasing CADM1 levels remain
to be fully elucidated. Notably, ischemia has been reported
to upregulate ADAM10, a candidate protease responsible
for CADM1 shedding in distal tubules (Schramme et al.,
2008; Herzog et al., 2014). When considering that urinary
CADM1 concentrations were not correlated with the pathological
classification of renal disease, patients with elevated urinary
CADM1 may have originally had (or been genetically predisposed
to) anatomical or functional defects in the cortical vasculature
that made them susceptible to developing local ischemia.
Previous studies have suggested that cortical ischemia may be a
central factor in the progressive nature of CKD (Shoji et al., 2014;
Fu et al., 2016), and the results of the present study are consistent
with this possibility.

Based on the urinary CADM1 concentrations found in the
present study, it may be clinically meaningful to group CKD
patients by their urinary CADM1 concentrations, independently
of histological typing. The percentages of patients with CADM1
concentrations > 362, > 1000, and > 1,500 pg/mL were 35,
14, and 9%, respectively, and they showed a strong correlation
between tubulointerstitial damage and eGFR, with high R2 values
of 0.449, 0.629, and 0.843, respectively. This indicates that in
these patients, the degree of tubulointerstitial damage could
be estimated from the GFR with an accuracy that increased
as the CADM1 concentration increased. These results suggest
that urinary CADM1 measurements can potentially replace
renal biopsies for monitoring the severity of tubulointerstitial
damage in a significant proportion of CKD patients. We are
currently designing large cohort studies to verify this clinically
valuable possibility.

Western blot analyses of urine samples revealed that uri-
nary CADM1 concentrations reflected the NTF produced by
ectodomain shedding that has been postulated to contribute to
distal tubular cell apoptosis (Kato et al., 2018). It is reason-
able to consider the possibility that NTF released from the
tubular epithelia is not only excreted into urine, but is also
deposited into the interstitium around the tubules. We previously
showed that an interstitial soluble form of CADM1 bound to
the full-length CADM1 ectodomain present on cell membranes,
which served as a guide molecule for directional outgrowth
of nerve fibers (Hagiyama et al., 2009). In addition, the class
I-restricted T cell-associated molecule (CRTAM) is known as a
trans-heterotypic binding partner of CADM1, and is expressed
on lymphocytes, including CD8+ cytotoxic T cells (Boles et al.,
2005; Galibert et al., 2005). Considering that NTF is structurally
almost identical to the soluble form of CADM1, NTF accu-
mulated in the renal cortical interstitium is likely to be involved
in inflammation by serving as a scaffold for CRTAM-express-
ing lymphocytes (Arase et al., 2005). This hypothesis merits
further testing, as it provides a molecular basis for the general
pathological link between epithelial degeneration and concurrent
local inflammation (Shanley, 1996; Kumar et al., 2018).
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CONCLUSION

We developed a sandwich ELISA for urinary CADM1, and
showed that urinary CADM1 concentrations increased in a
significant proportion of patients with CKD, independent of
their primary disease. This new urinary biomarker provides
clinically important information, indicating a strong correlation
between tubulointerstitial damage and the GFR when CADM1
levels are elevated in CKD. The mechanism underlying this
observed correlation is thought to involve the unique distribution
of CADM1 in the distal tubule, which is generally known
to be resistant to ischemia. Further characterization of this
marker will hopefully identify the precise mechanisms underlying
the development and progression of tubulointerstitial lesions
in CKD patients.
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