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Abstract: The present research develops the parametric estimation of a second-order transfer function
in its standard form, employing metaheuristic algorithms. For the estimation, the step response
with a known amplitude is used. The main contribution of this research is a general method for
obtaining a second-order transfer function for any order stable systems via metaheuristic algorithms.
Additionally, the Final Value Theorem is used as a restriction to improve the velocity search. The tests
show three advantages in using the method proposed in this work concerning similar research and
the exact estimation method. The first advantage is that using the Final Value Theorem accelerates the
convergence of the metaheuristic algorithms, reducing the error by up to 10 times in the first iterations.
The second advantage is that, unlike the analytical method, it is unnecessary to estimate the type
of damping that the system has. Finally, the proposed method is adapted to systems of different
orders, managing to calculate second-order transfer functions equivalent to higher and lower orders.
Response signals to the step of systems of an electrical, mechanical and electromechanical nature
were used. In addition, tests were carried out with simulated signals and real signals to observe
the behavior of the proposed method. In all cases, transfer functions were obtained to estimate the
behavior of the system in a precise way before changes in the input. In all tests, it was shown that
the use of the Final Value Theorem presents advantages compared to the use of algorithms without
restrictions. Finally, it was revealed that the Gray Wolf Algorithm has a better performance for
parametric estimation compared to the Jaya algorithm with an error up to 50% lower.

Keywords: parameter estimation; metaheuristic; Gray Wolf Optimizer; Jaya algorithm; transfer
function

1. Introduction

Transfer functions are widely used in engineering and other fields to represent physical
systems of various natures. With the transfer function, the stability and the control of
the system are analyzed. In these works [1–5], a transfer function is used to solve and
describe real-life physical phenomena. Identification is essential for industrial processes,
as mentioned in [6–9]. Another example is [10], where a fractional transfer function is
used for modeling and control applications, implementing a low-order algorithm for
their application.

The previously mentioned works demonstrate the application and versatility of the
transfer function; thermal, hydraulic, electric, or hybrid systems can be modeled with
these types of functions. The case of second-order transfer functions is unique since they
represent a large number of physical systems. For example, investigations [11–15] work
with systems described by a second-order transfer function.
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The structure of the transfer function is known. However, the function parameters
are typically unknown and come from the parameters of the original differential equations
model of the system. The estimation of parameters can be carried out through various
techniques. An option that presents greater simplicity and ease of implementation is the
so-called metaheuristic algorithms [16]. This type of algorithm has the advantage of its
relative simplicity and the disadvantage that the process is iterative [16]. The disadvantage
does not pose a significant problem in parametric estimation when the process does not
require constant updating and its parameters vary very slowly with time.

This work presents the estimation of the coefficients of second-order transfer func-
tions from their response to the step using two metaheuristic algorithms—the Gray Wolf
Optimizer (GWO) [17] and the Jaya algorithm [18]. These algorithms were chosen for their
speed and because they do not contain parameters of a specific search. Only the search
range, the original population, and the number of iterations should be adjusted.

The contribution of the proposed research is the use of the Final Value Theorem (FVT)
to accelerate the search of the parameters, improving one of the weaknesses of metaheuristic
algorithms. The proposed method can be used for all those systems described by this type
of transfer function. Therefore, once the parameters have been obtained, multiple analyses
and control techniques can be performed for each system.

The proposed method was tested in a mechanical system, an electrical system, and an
electromechanical system to demonstrate the multiple fields in which the method can be
applied. For tests, the systems are subjected to a known step input, and the output is
measured. The simulation tests were obtained using the Matlab–Simulink environment.
Similarly, it was tested experimentally with sampled signals. The results exhibit a paramet-
ric estimate with a Root Median Square Root of 0.00214 and 2 between the estimated and
real signal using the GWO combined with the FVT.

The rest of the article is organized as follows: In Section 2, the related works are
addressed. In Section 3, the description and structure of the second-order transfer function
are described. Section 4 presents the metaheuristic algorithms used and the proposed
modification applied with signals obtained by simulation. Section 5 describes the results
obtained with the real signals. Finally, Section 6 presents the conclusions of the research.

2. Related Work

The parameters estimation of a transfer function is a wide-interest problem. There are
multiple examples of works oriented to this task, such as the one presented in [19], where
the transfer function of an electrohydraulic servo is determined based on the amplitude–
frequency characteristics.

The estimation has been developed through different techniques. Heuristic, meta-
heuristic, and exact methods have been implemented for this task. For example, in [20],
the parametric estimation of a transfer function is performed through the frequency re-
sponse of the system using the System Identification Toolbox from Matlab and the Vector
Fitting. In [21] the authors use the Newton iterative identification method for estimating
the parameters of a second-order dynamic system. This technique is an example of heuristic
algorithms. Another heuristic example is in [22,23], where the authors use the hierarchical
Newton with least squares for parameter estimation and the damping iterative parameter
identification method. The impulse response is another option for parameter estimation
instead of a step response, as demonstrated in studies [24–26]. On the other hand, some
works explore the identification of parameters through the gradient [27,28].

Another example of estimating the parameters of a transfer function is the one pre-
sented in [1], where the authors identify the parameters based on Green’s function and
successfully test their proposal with an experimental case. The authors of [29] focus on
identifying a Flame Transfer Function to find the Wiener–Hopf inversion motif without
obtaining biased results for a feedback system. The authors test different identification
methods and compare them with each other to achieve this.
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Some works for the identification of the parameters of the transfer function based
on the frequency response. For example, in [30], the authors identify the parameters of a
high-frequency induction machine from its frequency response. Another example is the
research in [31], where the authors use an incomplete frequency response function and
modal data to detect structural damage. On the other hand, as in the present investigation,
some works exploit the response in the time domain, such as the one presented in [32].

The identification of parameters via metaheuristic algorithms is a widely studied topic.
It is possible to find multiple works, such as [2,33], that work with different platforms
and algorithms for identification. There are a wide variety of bio-inspired metaheuristic
algorithms. In general, this type of algorithm can be adapted to multiple problems and can
be easily adapted to work in parallel. However, its solutions are usually approximate and
depend on the search space. If the solution is not in the search range, the algorithm will
find a locally optimal solution.

Genetic algorithms are the most widely used algorithms. Their use in different fields
can be seen from optimizing crude oil operations in refineries [34] to motor control [2].
However, their performance depends on multiple specific key parameters, which are not
trivial in their estimation. For that reason, works such as [35] are based on only general
parameter algorithms (population, stop condition and search range). Another popular
option is the particle swarm optimization algorithm, which has multiple variants and
applications. However, in its original form, it tends to achieve crazy optimizations quickly,
so some authors have proposed substantial improvements to the algorithm [36]. On the
other hand, algorithms such as cuckoo search use the levy flight to find their target [37].
The cuckoo algorithm has shown similar results to those of genetic algorithms with fewer
parameters to configure. Nevertheless, their convergence is slow.

For this work, two algorithms were chosen (GWO and JAYA) and tested in multiple
physical applications, and have shown a similar performance to genetic algorithms. In par-
ticular, the Jaya algorithm has been chosen for being one of the simplest metaheuristic
algorithms without any additional parameters. The case of the GWO algorithm requires
an intrinsic parameter—the alpha factor. It allows the comparison of two fast and proven
metaheuristic algorithms with different characteristics in their original form.

The parametric estimation is made in an exact way without resorting to the meta-
heuristic algorithms. However, the system is not applied in a general way, as exhibited
in the present article. It highly depends on the type of damping factor, which is often
unknown; the simplest case of the stable cases to distinguish is the underdamped ξ < 1,
where the parameters are estimated with Equation (1):

tp = π
ωd

Mp = e
−ξπ√
1−ξ2 ,

 (1)

where tp is the peak time, and Mp is the maximum overshoot. For the critically damped case
ξ = 1, and using the criteria of a settling time within 2% of the final response, Equation (2)
is used for the parametric estimation.

0.02 = (1 + ωnts)e−ωnts . (2)

For the overdamped case (ξ>1):

0.02 =
s2

s2 − s1
e−s1ts +

s1

s1 − s2
e−s2ts , (3)

where s1 and s2 are the real roots in the transfer function denominator. Finally, for the heav-
ily overdamped (ξ»1), the response system is based on a dominant pole, and Equation (2)
is used to find the domain pole, posteriorly obtained from the rest of the parameters:

0.02 = e−s1ts . (4)
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The exact method provides a helpful answer when there is a single function. However,
automating the estimation process can be more complex because the technique requires
knowing the type of damping that the system has. While it is simple to distinguish an
underdamped system, the other cases can be complicated to differentiate from a time
response signal. On the other hand, the exact method requires using numerical methods
for three cases. For this reason, the present method becomes relevant when there is no
more information, and only the entry and exit of the system are known.

The present investigation is considerably different to the works mentioned above. It
uses the response in time, which is more straightforward to measure for most physical
systems. Unlike heuristic algorithms, it is simpler to implement and easier to adapt to
new systems, only varying the search range. Regarding parametric estimation works
with metaheuristic algorithms, no relevant work was found on the estimation of transfer
functions until the moment of the review. Finally, regarding the exact method, the present
method allows the estimation of the parameters of the transfer function without knowing
the damping factor. Although distinguishing one underdamped system from the others is
simple, distinguishing between the other three cases is not.

3. Background and Typical Uses from a Second-Transfer Function

This section aims to describe the second-order transfer function and some systems that
are usually represented by it. In addition, a first-order system and a higher-order system
are described, which can be represented by an equivalent second-order function. Thus,
the second-order transfer function can represent a wide variety of engineering systems.
Typically, it has the form expressed in Equation (5):

G(s) =
D

As2 + Bs + C
. (5)

Expression (5) represents a large set of physical systems that do not have zeros. If the
equation is reorganized and the dynamic response is taken into account, the same equation
is rewritten as follows:

G(s) = K
ω2

n
s2 + 2ξωns + ω2

n
, (6)

where K is the dc gain defined as the ratio of the amplitude response and the steady-state
when a stable system is excited with a step input, ξ is the damping factor, and ωn is the
undamped natural frequency. On the other hand, the definition of a transfer function is the
output over the input as expressed in Equation (7):

G(s) =
Output(s)
Input(s)

. (7)

Therefore, the output of a system is defined as in Equation (8):

Output(s) =
D

As2 + Bs + C
∗ Input(s). (8)

Considering the above, the vector of unknown parameters is [A, B, C, D]. If the input
to the system is a step-type signal of magnitude a, the transfer function is rewritten as in
Equation (9).

Output(s) =
D

As2 + Bs + C
a
s

. (9)

On the other hand, the FVT allows us to know the final value of a transfer function
without knowing the transient stage. Moreover, the theorem applies to stable systems and
is described in Equation (10).

lim
s→0

sF(s) = lim
t→∞

f (t). (10)
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If the FTV is applied to a transfer function, such as Equation (10), then the final value
of the transfer function is described by Equation (11).

Output(s) =
D
C

a. (11)

Therefore, the final value for this type of function is determined by the value of the
coefficients D and C. The FVT was used as a restriction that the algorithms must comply
with when searching for the coefficients.

3.1. Transfer Function of an Electrical System

If an RLC circuit, such as the one in Figure 1, is considered, it is known that, using the
laws of Ohm and Kirchhoff, the dynamic model of the circuit is determined by Equation (12).
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Vo(tR 

L 

I(t) 
V(t) 

+ 

b2 

X1 X2 k2 k1 
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b1 

Figure 1. RLC circuit used to obtain the second-order transfer function in electrical systems.

V(t) = Vo + LC
d2Vo

dt2 + RC
dVo

dt
, (12)

where V(t) is the voltage applied for the source power, I(t) is the current in the mesh, R is
the resistor value, L the inductor value, and C the capacitor value.

If the voltage source V(t) is taken as the input and the voltage in the capacitor (Vo) as
the output, then the dynamic model of the circuit is described by Equation (12):

Considering null initial conditions and applying the place transform, the following
was obtained:

G(s) =
Vo(s)
V(s)

=
1

LCs2s + CR + 1
. (13)

If a voltage input of magnitude a is applied, the expected output of the system is obtained
from Equation (14).

Vo(s) =
1

LCs2s + CR + 1
a
s

. (14)

Equation (14) is a second-order transfer function that describes the circuit and, in this
case, is known. However, the equivalent expression is obtained directly with metaheuristic
algorithms and the standard structure of a second-order transfer function, without the
dynamic model or its parameter values. This is particularly useful when the system details
are unknown, and only its output can be measured.

Another example in electrical systems is the RL circuit (Figure 2). The RL circuit is
modeled as a first-order transfer function. The output of the system is taken as the voltage
in the resistor. The differential equation that represents the dynamic model of the RL
circuit is expressed in Equation (15), and the corresponding transfer function is exhibited
in Equation (16).
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Figure 2. RL circuit used to obtain the first-order transfer function in electrical systems.

V(t) = Vo +
R
L

dVo

dt
(15)

G(s) =
Vo(s)
V(s)

=
R

Ls + R
. (16)

3.2. Transfer Function of Mechanical Systems

A mass-spring-damper (MSD) system is used to exemplify the transfer function in
a mechanical system (Figure 3). The dynamic model is obtained using the second law of
Newton, leading to the model described in Equation (17).
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Figure 3. Mass-spring-damper to obtain the second-order transfer function in mechanical systems.

m
d2x
dt2 + b

dx
dt

+ kx = Fext, (17)

where Fext is the external force, x is the displacement, m is the mass, b is the coefficient of
friction, and k is the spring constant. The transfer function of the system is expressed by
Equation (18).

G(s) =
X(s)

Fext(s)
=

1
ms2 + bs + k

. (18)

In the mechanical system, the application of the proposed algorithm becomes especially
useful since the measurements of the variables and the coefficients tend to be more complex
than in an electrical system. The coefficient of friction and the spring constant are often
particularly difficult to obtain and require specific tests. Another mechanical system is
that displayed in Figure 4. This type of system is a mechanical high-order (ho) system; the
differential equation that describes the mechanical circuit is Equation (19) and its transfer
function for the displacement in m1 is expressed in Equation (20).
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Figure 4. Mass-spring-damper to obtain the high-order transfer function in mechanical systems.

m1 ẍ1 = k2(x2 − x1) + b2(ẋ2 − ẋ1)− k1x1 − b1 ẋ1
m2 ẍ2 = F− k2(x2 − x1)− b2(ẋ2 − ẋ1),

}
(19)

G(s) =
X1(s)
F(s)

=
b2S + k2

l
, (20)

where l is m1m2s4 + (b2m1 + m2(b1 + b2))s3 + (m2(k1 + k2) + k2m1 − b2
2 + b2(b1 + b2))s2 +

(k2(b1 + b2)− 2b2k2 + b2(k1 + k2))s + k2(k1 + k2)− k2
2. Although the system contains a

zero, its order is still greater than 2.

3.3. Transfer Function of an Electromechanical System

A common electromechanical system is the direct current motor composed of an
electrical component and a mechanical component, as shown in Figure 5. Its model is made
up of two differential equations, one expression is the electrical part, and the other is the
mechanical part, as exhibited in Equation (21).

 

 

 

 

 

 

  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

k 

x 

Fext 

m 

J 

BW 

W T 
kmI(t) V(t) 

+ 

- 

I(t) 

R L

DC    
Motor 

Figure 5. DC motor scheme used to obtain the second-order transfer function in electromechani-
cal systems.

V(t) = RI(t) + L dI(t)
dt + Keω(t)

km I(t) = J dω(t)
dt + Bω(t),

}
(21)

where V(t) is the voltage, I(t) is the current, R is the armature resistance, L is the armature
inductance, Ke and Km are the constant electrical and mechanical, respectively, J is the
momentum of inertia, and B is the friction coefficient.

If both motor equations are combined, and with zero initial conditions, it is possi-
ble to obtain the transfer function that relates the speed to the voltage, as exhibited in
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Equation (22). This function is one of the most used for control since it allows the control
of a mechanical variable, such as the speed of an electrical input such as voltage.

G(s) =
ω(s)
V(s)

=
Km

LJs2 + (RJ + LB)s + (RB + KmKa)
. (22)

The direct measurement of some of these parameters is complicated or invasive. Conse-
quently, parametric estimation techniques are used.

4. Parameter Estimation with Simulated Signals via Metaheuristic Algorithms

In Section 3, it is observed that each system has a transfer function with different
coefficients but with the same structure. In contrast, the models expressed with differential
equations are based on distinct principles. In the case of hybrid models, a model of
differential equations is used to obtain the model. However, it is possible to represent all
these models with a second-order transfer function.

The Gray Wolf Optimizer [17] and the Jaya algorithm [18] were decided on for the
parametric estimation, because both algorithms have high convergence speed and results
that are similar to those of genetic algorithms. They also have the advantage of not requiring
the adjustment of any specific search parameter, both algorithms having fully equivalent
general parameters. The comparison of both algorithms is displayed in Figure 6.

START

Identify best and worst 
solution in the population

Keep the previous
 solution

No

Initialize parametes (Population size,  number 
of variables and termination criterion)

Save the best solution

Is the solution corresponding to A(i*1,j,k)
better than that corresponding to A(i,j,k)

No
Yes

Accept and replace
 the previous solution

END

Modify the solutions based on best and worst solutions
A(i+1,j,k)=A(i,j,k)+r(i,j,1)(A(i,j,b)-|A(i,j,k)|)-r(i,j,2)(a(i,j,w)-|A(i,j,k|)

Is the termination criterion satisfied?

Yes

(a)

START

Initialize the populations of 
Alpha, Beta, Delta and Omega wolves

Evaluate the grey wolf position 
with respec to target position

Update the grey wolf position by 
the equation s(t+1)=(s1+s2+s3)/3

No

Initialize parameters (number of gray wolves,
 number of iterations, limits, etc.)

Save the best solution

iteration< Max iterations
Yes

Estimate the target positions, SA, SB, and SD
 by Alpha, Beta, and Delta wolves respectively

END

(b)

Figure 6. Metaheuristic algorithms used: (a) Gray Wolf Optimizer; (b) Jaya algorithm.
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The standard procedure was carried out for the estimation. A step type input was
used to excite the system and analyze its response. Therefore, the output of the system
and its input are known. Later, the parametric estimation was carried out by employing
metaheuristic algorithms.

The cost function for all cases is the Root-Mean-Square Error (RMSE) between the
estimated signal and the measured signal. The parameter cost function calculates the
similarity between the estimated output signal and the real output signal. Hence, the RMSE
represents a measure of error throughout the entire signal. All simulations were run with
100 iterations and 50 individuals for the two algorithms. The parameters are described in
Table 1.

Table 1. General parameters for Jaya and GWO algorithms.

System Population Iterations Cost Function Upper Limit Lower Limit

RLC circuit [1× 10−5 100 10 10] [0 0.1 0.1 0.1]
RL circuit [1× 10−5 1 4× 105 4× 105] [0 0 0.01 0.01]
Mechanical 50 100 RMSE [2.4 4.2 40 40] [0 0 0.1 0.1]
Mechanical ho [200 200 200 200] [0 0 0 0]
Electro-mechanical [1× 10−6 1× 10−3 0.1 0.1] [0 0 0 0]

The simulation was carried out using the Matlab–Simulink environment. Simulink
simulates the transfer function and Matlab executes the metaheuristic algorithms. The per-
formance of each algorithm was measured to determine which has the best performance.
An instability detection system was added to Simulink, based on the magnitude of the
signal and the oscillations it presents, to rule out solutions that tend to instability. All
Simulink simulations were performed with the simulation displayed in Figure 7, which
uses the general structure of a second-order transfer function.

Second-order	Transfer	Function

Step	Input Dynamic	response	To	Workspace

Figure 7. Simulation for obtaining the step response of a second-order transfer function for all systems.

Different simulations were run to obtain the step time response. The values to simulate
each system are summarized in the Table 2. The output was obtained by programming
the dynamic model in Simulink as exhibited in Figure 8. The simulations were used
in both algorithms (Jaya and GWO) to obtain the output of the second-order transfer
function’s time response.The numerical method, ODE 45, was used for the simulations
with a minimum step of 1× 10−10.

The parameter estimation results for second-order systems and the comparison with
the use of the FTV are shown graphically in Figure 9 and numerically in Table 3.

Although signals that are graphically very similar are observed, a more significant
difference is noted if the values of the RMSE in each parameter are analyzed (see Table 3).
The convergence speed of each algorithm is displayed in Figure 10 and show the effect of
using the FVT.

The positive effect of using FTV is observed in the decrease of the RMSE in the first
iterations. Due to the random nature of the metaheuristic algorithms, it is necessary to
validate the performance of the proposed method statistically. Therefore, 120 simulations
were executed, half of them without FTV, to verify the performance in the second-order
systems. The RMSE average and standard deviation are shown in Figure 11.
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Table 2. Values used for step simulation in different systems.

System Parameters Input Time

RLC R = 200 kΩ L = 4.7 mH 10 V 120 s
C = 100 µF

RL R = 200 kΩ L = 4.7 mH 10 V 1 µs
Mechanical m = 1.2 Kg k = 20 N

mm 10 N 20 s
b = 2.1 Ns

mm
Mechanical ho k1 = 14 N

mm k2=20.8 N
mm 10 N 20 s

m1 = 5.91 Kg m2 = 6.48 Kg
b1 = 12.8 Ns

mm b2 = 20.6 Ns
mm

Electromechanical Ra = 3.136 Ω La = 13.07 mH 10 V 2.8 s
TL = 0 Nm Km = 0.048774

Ke = 0.048774 B = 0.169 gm2

s2
J = 9 µNm

Voltaje

Resistor

Capacitor

Inductor

(a)

b

m

F

K

(b)

I

Km

L

J

B

R

Ke

TL

(c)

Figure 8. Simulations used for generating the step response signal. (a) Simulation for step response of RLC circuit; (b)
Simulation for step response of mass-spring-damper system; (c) Simulation for step response of electromechanical system.
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Table 3. Numerical results for second-order systems.

RMSE
System GWO Jaya GWO & FTV Jaya & FTV

RLC 0.0147 0.01127 0.0165 0.00214
MSD 0.0006 0.0015 0.0006 0.0008
Electromechanical 0.892 3.64 0.0104 0.1451
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Figure 9. Comparison between estimated signal and simulated signal in second-order systems:
(a) Algorithms using the FVT as a constraint for the RLC system; (b) Unconstrained algorithms for
the RLC system; (c) Algorithms using the FVT as a constraint for the MSD system; (d) Unconstrained
algorithms for the MSD system; (e) Algorithms using the FVT as a constraint for the DC motor
system; (f) Unconstrained algorithms for the DC motor system.
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Figure 10. Convergence speed of metaheuristic algorithms: (a) Comparison of performance of the
Jaya using the FTV in the RLC system; (b) Comparison of performance of the GWO using the FTV in
the RLC system. (c) Comparison of performance of the Jaya using the FTV in the mechanical system;
(d) Comparison of performance of the GWO using the FTV in the mechanical system; (e) Comparison
of performance of the Jaya using the FTV in the electromechanical system; (f) Comparison of
performance of the GWO using the FTV in the electromechanical system.
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Figure 11. Comparison of the average values of the RMSE and the standard deviation for a set of ten
simulations for each type of system.

On the other hand, and to verify the adaptability to the method, a first-order (RL
circuit) and a high-order (MSD ho) system was probed with the metaheuristic algorithms
and the FVT. The results of the tests are shown in Figure 12.
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Figure 12. Result for different order systems via metaheuristic algorithms using FTV: (a) First order
system (RL circuit); (b) High-order system (MSD ho).

The response of the RL system is extremely fast when removing the capacitor. It allows
the evaluation of the proposed method in systems with very different response speeds.
The RMSE between both signals was 0.2283 for the Jaya algorithm and 0.2284 for the GWO
algorithm. On the other hand, the RMSE for the MSD ho system was 0.0064 for the Jaya
and 0.0063 for the GWO.

The above results indicate that the system can be adapted despite being a lower order
function or a high-order system and can calculate an equivalent second-order transfer
function. The proposed method has been successfully tested in systems of different natures
and orders, in addition to systems with varying levels of damping. The Jaya algorithm
tends to 0 in denominator coefficients. Therefore, the cost was artificially modified when
the three coefficients in the denominators tend to have a value of zero.
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5. Parameter Estimation with Real Signals

In this section, the parameter estimation tests are carried out starting from signals
obtained experimentally from the electromechanical system analyzed in the previous
section. The acquisition of real data implies noise added by the precision of the hardware
used. The Mavilor motor was used with the known nominal parameters described in
Table 2 to observe the performance of the metaheuristic algorithms against this type of
signal. The signal was acquired with an ADC with a sampling period of 0.001 s, employing
the integrated quadrature encoder. Knowing the parameters allows evaluation of the
performance of the algorithms for the parametric estimation of a function of second-order
transfer in a real test. The results are shown in Figure 13 and the convergence speed is
displayed in Figure 14.
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Figure 13. Comparison between estimated signal and real measured signal in the electromechanical
system: (a) Comparison of Jaya and GWO & FTV for the electromechanical system with real signals;
(b) Comparison of Jaya and GWO for the electromechanical system with real signals.
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Figure 14. Convergence speed of metaheuristic algorithms for the real electromechanical system:
(a) Comparison of the performance of the Jaya using the FTV in the real electromechanical system;
(b) Comparison of the performance of the GWO without the FTV in the real electromechanical system.

The results show that the algorithm can also recreate the signal of the transfer function
with real signals. However, the error that increases its effect is expected since the measure-
ment of the signal itself provides a greater degree of uncertainty. Finally, Figure 15 shows
the comparison of the result between the estimation of the transfer function from a real
signal and the estimation from a simulated signal.
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Figure 15. Comparison of the result between the estimation of the transfer function from a real signal
and the estimation from a simulated signal: (a) Estimation with GWO and FTV; (b) Estimation with
Jaya and FTV.

Again, the Jaya algorithm tends to acquire first-order values, making it lose efficiency
compared to the GWO algorithm, which correctly estimates values for the A coefficient.
Its worst performance is for first-order functions, although they continue to be acceptable
values. The use of FVT was beneficial regardless of the nature of the system since the
function structure does not change. The results indicate a high precision in the parametric
estimation, showing RMSE errors ranging from 0.0006 to 0.1451 when the FTV is used and
an error up to 3.64 when it is not considered. This represents a reduction of up to 25 times
the RMSE.

6. Conclusions

In this investigation, a parametric estimation of a second-order transfer function via
metaheuristic algorithms was developed. The general structure of a transfer function and
its adaptation to systems of different natures is presented. The method could represent
equivalent functions of first-order systems and higher-order systems. The parametric
estimation of the parameters was carried out with the Jaya and GWO algorithms. This
research proposed to perform a parameter estimation with a high degree of precision for
second-order systems.

Additionally, it was verified that the use of the Final Value Theorem as a restriction
in the parameter search with two algorithms accelerated the convergence. All the tests
carried out presented an increase in the convergence rate, especially in the first iterations,
accelerating the processing speed of these algorithms and improving one of their weakest
points, which is the execution time.

The main advantage is that this method represents a general way to predict the behav-
ior of any stable system regardless of its order or type, or its dynamic model. The proposed
method will find an equivalent second-order transfer function that can accurately predict
the behavior of the system in the face of a change in the input.

The disadvantage of the proposed method is that it does not identify the order of
the function or the type of damping from the signal. The proposed method has a clear
disadvantage compared to the exact method, where it is possible to identify what kind
of damping the open-loop system has. Since we are working with transference functions,
all zero initial conditions are considered. Another consideration is also only starting with
signals from stable systems, the method being inappropriate for highly oscillating systems
or systems that tend to instability.

The two metaheuristic algorithms used both exhibit similar results. It should also be
remembered that the algorithms start from random numbers, therefore the results vary
slightly from one simulation to another, which means that the minor numerical differences
presented in this research should not be extensively considered. Finally, all metaheuristic
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algorithms have problems with local optimum. The search ranges must be adapted in
order to avoid falling into a local optimum for this work, changing these ranges to typical,
expected values. Finding a relationship between the search ranges and the dynamic
response would be beneficial to the method. The Jaya algorithm has a greater tendency to
local minimums close to the lower limit. Thus, the use of GWO is recommended for this
type of parametric estimation.
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