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Abstract

Asthma is the most common chronic disease in childhood. Although several therapeutic
options are currently available to control the symptoms, many drugs have significant side
effects and asthma remains an incurable disease. Microbial exposure in early life reduces
the risk of asthma and several studies have suggested protective effects of Toll-like receptor
(TLR) activation. We showed previously that modified mMRNA provides a safe and efficient
therapeutic tool for in vivo gene supplementation. Since current asthma drugs do not take
patient specific immune and TLR backgrounds into consideration, treatment with tailored
mRNA could be an attractive approach to account for the patient’s individual asthma pheno-
type. Therefore, we investigated the effect of a preventative treatment with combinations of
Tir1, Tlr2 and TIr6 mRNA in a House Dust Mite-induced mouse model of asthma. We used
chemically modified mRNA which is—in contrast to conventional viral vectors—hon-integrat-
ing and highly efficient in gene transfer. In our study, we found that treatment with either
Tir1/2 mRNA or Tir2/6 mRNA, but not TIr2 mRNA alone, resulted in better lung function as
well as reduced airway inflammation in vivo. The present results point to a potentially protec-
tive effect of TLR heterodimers in asthma pathogenesis.

Introduction

Based on the principles of the hygiene hypothesis, several studies indicate that the onset of
atopy and allergic asthma is less frequent in children having been exposed to an environment
rich in microbes in their early childhood [1-3]. Increased hygiene standards in Western life-
style however go along with a reduced contact to microbes, facilitating the development of
these diseases and contributing to the rise of atopy in developed countries [4-6].
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As primary sensors of the immune system, Toll-like receptors (TLRs) are responsible for
recognizing and responding to microbes and microbial components, so-called pathogen-asso-
ciated molecular patterns (PAMPs). By inducing the secretion of certain “instructive” cyto-
kines, TLRs furthermore influence T-cell development, mainly towards a T helper cell type 1
(Th1) dominant phenotype [7]. PAMPs are involved in the pathogenesis of atopic diseases
such as asthma, allergic rhinitis and allergic dermatitis. The initial triggers for these diseases
are still not entirely understood. However, in the last years, multiple studies demonstrated that
an imbalance of T helper cell responses plays an important role in their development [8,9]. In
the case of asthma, the predominance of a Th2 pattern leads to an increased production of che-
mokines, as well as allergen-specific immunoglobulins, thus causing airway inflammation,
eosinophilia and mucus hypersecretion in the lung [10-12]. The clinical presentation of atopic
asthma eventually consists of wheezing, airway obstruction, breathlessness and cough, often
accompanied by recurrent bronchitis or pneumonia [13,14].

The perspectives of gene therapies in the field of immunology have been of great interest in
recent years. DNA-based gene therapy however implies the threat of genomic integration and
immunogenicity and is furthermore often limited by low transfection efficiency. The applica-
tion of nucleotide chemically modified mRNA (cmRNA) however, circumvents these threats
and further ensures high stability, thus representing a promising therapeutic tool [15-19]. Pre-
vious work by our group and others has shown that delivery of cmRNA leads to therapeutic
levels of protein expression as a result of high gene transfer efficiency, higher stability and/or
low immunogenicity, and hence, can even be utilized for live-saving genome editing in vivo
[17,19,20].

We found that polymorphisms in TLRI, 6 and 10, all capable of forming heterodimers with
TLR2, have shown protective effects on atopic asthma in humans [21]. These effects were fur-
ther associated with an increased expression and elevated peripheral blood mononuclear cell
secretion of Th1 cytokines. Recent studies suggest a protective role of TLR6 activation in
asthma via the regulation of cytokine expression by dendritic cells [22].

Here, based on the data of asthma-protecting TLR-haplotypes, we investigated the intratra-
cheal application of combinations of chemically modified TIr1, Tlr2 and Tlr6 mRNA in a
House Dust Mite (HDM)-induced mouse model of asthma. We further analyzed how this
treatment in vivo differentially modulates neutrophilic and eosinophilic airway inflammation
and lung function.

Methods and Materials
mMRNA production

mRNA transcripts of Tlr1, 2 and 6 were produced as previously described [17]. In brief,
T7-promoter-containing pVAX.A120-vectors encoding for Tlr1, 2 and 6 were linearized and
transcribed in vitro into chemically modified mRNA, incorporating 25% 2-Thio-UTP and 25%
5-Methyl-CTP (TriLink Bio Technologies) using the T7 MEGAscript kit (Ambion). Modified
mRNA was purified using the MEGACclear kit (Ambion) and dissolved in RNase-free DEPC-
water.

Animal experiments

Female BALB/c mice were purchased from Charles River Laboratories at an age of six to eight
weeks. Mice were kept under specific pathogen-free conditions and maintained on a 12-h
light-dark cycle. Food and water were provided ad libitum. All animal experiments were
approved by the ethics committee of the regional board of Tiibingen and carried out in strict
accordance with the recommendations in the Guide for the Care and Use of Laboratory
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Animals at the University of Tuebingen, the German Law for the Protection of Animals and
FELASA regulations. All efforts were made to minimize suffering of the animals.

Intratracheal procedures were carried out using a high-pressure spraying device (PennCen-
tury) under antagonizable anesthesia with a mixture of medetomidine (0.5 mg/kg), midazolam
(5 mg/kg) and fentanyl (50 pg/kg). After treatment antidot (atipamezol (50 ug/kg), flumazenil
(10 pg/kg) and naloxon (24 pg/kg)) was injected s.c. Per time point, mice received 100 pl
DEPC-water containing either 20 pg of the respective Tlr mRNA or water as control. HDM
(Greer Laboratories) was administered as 100 ug extract dissolved in 100 ul PBS. At experimen-
tal endpoints, animals were euthanized using 120 mg/kg Na-Pentobarbital.

Cell preparations

Lungs were lavaged with 1 ml PBS in order to obtain BALF. Total BAL cells were subsequently
centrifuged and analyzed. Differential cell counts were performed by counting at least 100 cells
(macrophages, monocytes, neutrophils, eosinophils, basophils and lymphocytes) from different
fields of view on cellspin preparations (CellspinlI, 6°C, 75 g, Ramp 4, Break 6; Tharmac). Lungs
were harvested and incubated for 1 hour at 37°C in a digestion solution containing 1 mg/ml
collagenase type 1 (Life Technologies), 1 mg/ml Dispase (Corning) and 500 U DNase (EPI-
CENTRE Biotechnologies). Thereafter, digested lungs were passed through a 70 um cell-
strainer in order to receive a single-cell suspension. Erythrocytes were lysed using ACK-Lysing
Buffer (Life Technologies) and cells were counted and subsequently subjected to flow cytome-
try (FACS) analysis.

For FACS, monoclonal anti-mouse antibodies F4/80-Pacific Blue rat IgG2A (final dilution
1:100; AB_893475, clone BM8), CD19-PerCP/Cy5.5 rat IgG2A (final dilution 1:200;
AB_2072925, clone 6D5), CD3g -Brilliant Violet rat IgG2b (final dilution 1:20; clone 17A2,
AB_2562555) (all BioLegend), Siglec-F PE rat IgG2A (final dilution 1:100; AB_394341, clone
E50-2440), CD11b-PE.Cy7 (final dilution 1:200; AB_2033994, clone M1/70), CD11c-APC/Cy7
hamster IgG1 (final dilution 1:500; AB_10611727, clone HL3) (all BD Pharmingen) and
Ly6G-APC rat IgG2b (1:833; AB_469475, clone RB6-8C5) (eBioscience) were used to stain
lung cells according to the manufacturer’s instructions.

Airway resistance

At the predetermined endpoint of the study, airway resistance in response to methacholine
(Sigma-Aldrich) was determined using the ex vivo model of the IPL as previously described
[19, 20]. In short, in situ mouse lungs were placed in a thorax chamber and mice were venti-
lated via a tracheal cannula. Ventilation was set to 90 breaths/minute with negative pressure
ventilation between -2.8 cm H,0 and -8.5 cm H,O. To prevent atelectasis, a hyperinflation was
triggered every 5 min (-25 cm H,0). Perfusion of lungs was done with a 4% hydroxyethyl
starch (HES 200/0.5, Serumwerk Bernburg) containing perfusion buffer through the pulmo-
nary artery (1 ml/min). Lung function parameters were recorded automatically and resistance
measured by HSE-HA PulmodynW Software (Harvard Apparatus). After a 20-minute equili-
bration period, lungs were perfused with increasing concentrations of MCh (0.1 uM, 1 pM,

10 uM, and 100 uM) for 10 minutes each, separated by a washout period (10 min) with buffer.
For graphical and statistical analysis, the mean resistance values were calculated from the last
ten time stamps of each 5-min period.

Histopathology

Whole lung tissue sections were fixed in Histofix (4.5%, Carl Roth) overnight and embedded in
paraffin. Slices (4 um) were stained with either H&E or PAS and examined using a Zeiss Axio
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Imager.M2 with the AxioCam MRc camera. Tissue inflammation and infiltration was evalu-
ated on H&E stained sections. PAS-positive goblet cells were quantified in percent of counted
cells which have been determined by visible nuclei.

Statistics

Statistical significance of differences was defined as a P<0.05 and denoted with asterisks: *0.05,
**0.01 and ***0.001. All calculations were performed using GraphPad Prism 6.0 (GraphPad
Software) and SPSS Statistics Version 22 (IBM). If not stated otherwise, data were statistically
analyzed using Kruskal-Wallis one-way-analyses and Mann-Whitney U tests.

Results and Discussion

Mice received combinations of Tlr mRNA (Table 1) at four determined time points (-17, -14,
-10 and -7 days) before sensitization and challenge with HDM (Fig 1A). At day 15, the prede-
termined endpoint of the study, mice were sacrificed and analyzed.

Bronchial alveolar lavage fluid (BALF) cells were obtained at the time of sacrifice and ana-
lyzed via differential cell count (Fig 1B). Here, delivery of Tlr1/2 mRNA led to decreased levels
of neutrophils and eosinophils in BALF, when compared to untreated controls. Treatment
with TIr2/6 mRNA resulted in higher amounts of eosinophils but still reduced neutrophilic
inflammation. Levels of neutrophils were increased after the administration of Tlr2 mRNA,
eosinophils and lymphocytes were slightly diminished. Representative micrographs shown in
Fig 1C additionally illustrate the decline of inflammatory cells after administration of Tlr1/2
mRNA when compared to the HDM group.

In order to investigate the local effect of Tlr mRNA application on immune cells in lung tis-
sue, we isolated and stained lung cells and subjected them to FACS analysis (Fig 1D). Similar to
observed results in the BALF, delivery of Tlr1/2 mRNA was able to reduce the number of eosin-
ophils in lung tissue. Tlr2 mRNA led to a rise of eosinophils and furthermore markedly
increased levels of neutrophils. Also treatment with TIr2/6 mRNA resulted in higher levels of
neutrophils and did not reduce eosinophilic inflammation in lung tissue.

In lung sections, either stained with H&E or PAS, we observed markedly reduced peribron-
chial, perivascular and interstitial tissue inflammation in lungs of mice treated with Tlr1/2
mRNA (Fig 2A). Delivery of Tlr1/2 mRNA was furthermore associated with a significant
reduction of goblet cells in airways (P = 0.007) (Fig 2B). Administration of TIr2 mRNA did not

Table 1. Groups of mice and their respective treatment following the injection schedule of Fig 1A.

Treatment (n = 9 per group) Endpoint
Day -17, -14, -10, -7 Day 0, 7, 14 Day 15
Tir1/2 mRNA HDM Day 15
TIr2 mRNA HDM Day 15
Tir2/6 mRNA HDM Day 15
PBS HDM Day 15
PBS PBS Day 15

Mice were treated intratracheally with combinations of TIr mRNA at day -17,-14, -10 and -7 prior to the first
sensitization with House dust mite extract (HDM), indicated as day 0. Further intratracheal injections with
HDM followed on day 7 and 14. On day 15, the predetermined endpoint of the study, mice were sacrificed
and several readouts were performed. From each group n = 3 mice were subjected to BALF and FACS
analysis, while IPL was performed on the remaining n = 6 mice.

doi:10.1371/journal.pone.0154001.1001
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Fig 1. Inflammatory cells in BALF and lung tissue. (A) Mice were treated according to the injection
schedule for the HDM-induced asthma model. (B) BALF was centrifuged and cells were analyzed via
differential cell count. Differences remained non-significant. Data are presented as mean + SEM; n = 3. (C)
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Representative micrographs of BALF cellspin preparations are shown (scale 100 um, magnification x200).
(D) Levels of neutrophils and eosinophils in lung tissue were measured via flow cytometry. Differences
remained non-significant. Data are presented as mean + SEM; n = 3.

doi:10.1371/journal.pone.0154001.g001

dampen lung inflammation (Fig 2A) and resulted in a rather higher degree of goblet cell meta-
plasia when compared to untreated HDM controls (Fig 2B). Lung tissue inflammation was
slightly reduced after treatment with TIr2/6 mRNA, whereas no differences in goblet cell meta-
plasia could be detected.

Next, we wanted to determine whether the administration of combinations of chemically
modified TIr1, 2 and 6 mRNA modulates airway hyperresponsiveness of mice in HDM-
induced asthma. We therefore measured lung function in terms of airway resistance by using
the ex vivo model of the isolated, perfused and ventilated lung (IPL).

We observed considerably reduced airway resistance values following ex vivo methacholine
(MCh) challenge after delivery of Tlr1/2 mRNA prior to HDM administration (Fig 2C). Like-
wise, application of TIr2/6 mRNA was associated with diminished airway resistance, indicating
decreased airway hyperresponsiveness in these two groups. However, delivery of Tlr2 mRNA
led to slightly higher resistance values than in untreated asthmatic controls and thus to a
decline in lung function.

In conclusion, we observed that intratracheal administration of Tlr1/2 and Tlr2/6 mRNA
resulted in markedly reduced lung inflammation. TIrl/2 mRNA application led to a concomi-
tant improved lung function in vivo. Administration of Tlr2 mRNA alone showed no improve-
ment compared to untreated HDM controls.

Whereas some aspects, such as the role of TLR4 [23-26], in asthma pathogenesis have been
studied elaborately, little is known about TLR1/2 and TLR2/6 heterodimers in this context and
some studies reveal contrary results [27-30].

As mentioned before, previous studies presented protective effects of TLR1 and 6 on atopic
asthma in humans [21,31]. In line with these findings, we observed that treatment with the
combination of Tlr1/2 -and to some extent TIr2/6 mRNA- tended to result in a better asthma
outcome in vivo. Percentages of neutrophils and eosinophils in BALF were reduced after Tlr1/2
administration when compared to the HDM control group, also absolute numbers of eosino-
phils in lung tissue were diminished. Furthermore, these mice showed notably improved lung
function and significantly reduced pulmonary mucus production.

However, these findings did not hold true for treatment with TIr2 mRNA alone. In contrast,
Tlr2 mRNA treatment promotes a rather proinflammatory phenotype regarding not only
BALF and lung tissue but also lung function and histological analyses. These observations are
in line with reports describing a crucial role of TLR2 being overexpressed in fatal asthma
patients [32] and in patients suffering from persistent allergic rhinitis [33]. In a study investi-
gating an ovalbumin-induced mouse model of asthma, the allergic response appeared to be
largely TLR2 dependent, with significantly reduced allergic immune responses in TLR2-defi-
cient mice [34]. The specific interaction of HDM components with TLR2, promoting a Th2
biased allergic immune response and close cross-talk between receptor pathways might serve
as another explanation for this observation [35].

Conclusions

Allergic asthma is a major burden worldwide and although several therapeutic options are
available to treat asthma symptoms, especially cases of severe asthma are still difficult to con-
trol [36-38]. To target individual patient’s needs and provide tailored treatment, clinical
approaches in the field of immunotherapy to target TLRs and Th responses are already subject
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Fig 2. Tissue reaction and lung function after TIr mRNA treatment. (A) Tissue inflammation and goblet cell metaplasia were analyzed on H&E- and PAS-
stained lung sections. Representative micrographs are shown (original magnification of H&E sections: x200, scale 100 um, PAS sections: x400). (B) PAS
stained lung sections were analyzed to quantify PAS* cells. Data are represented as individual mice, horizontal lines state means; n = 9. (C) Airway
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resistance was measured in response to rising concentrations of methacholine (MCh) using the isolated, perfused and ventilated lung (IPL). Statistical
analysis was separately performed for each MCh concentration, * and # are PBS vs. the respective group, § is Tlr1/2 vs. TIr2. *P < 0.05, **P < 0.01, and
***P < 0.001. Statistical results for each concentration can be found in S1 Table. (D) Data at 10 uyM MCh are presented as Box and Whiskers blot. Medians
are shown as +. Tukey’s Multiple Comparison Test **P < 0.01. Data are represented as means; data at 10 uM MCh are additionally stated as means + SEM;
n=6(TIr2n=5, Tlr2/6 n = 4). Tabular values at 10 yM MCh (cmH20/ml/s), values stated as “0” were excluded due to damage of the lungs.

doi:10.1371/journal.pone.0154001.g002

of current research [39]. Due to the rather small number of mice, the present data should be
interpreted in the context of the experimental design and considered as a pilot-study for future
research. In this regard, analysis of TLR1/2 and/or TLR2/6 overexpressing mice would be of
special interest. Despite some limitations of the study, our data point to a potentially protective
effect of TIr1/2 mRNA treatment on HDM induced asthma. New insights into the role of TLRs
in atopic asthma combined with novel therapeutic tools, such as cmRNA transcripts, can be
considered promising targets of future research in the field of asthma management and
prevention.

Supporting Information

S1 Table. Tabular statistical results obtained by performing the one-way ANOV A with
Tukey’s Multiple Comparison Test as post test for comparison of individual groups at each
MCh concentration. *P < 0.05; **P < 0.01 and ***P < 0.001.
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