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A B S T R A C T   

Compared with traditional evaluation methods of cancer prognosis based on tissue samples, 
single-cell sequencing technology can provide information on cell type heterogeneity for pre-
dicting biomarkers related to cancer prognosis. Therefore, the bulk and single-cell expression 
profiles of breast cancer and normal cells were comprehensively analyzed to identify malignant 
and non-malignant markers and construct a reliable prognosis model. We first screened highly 
reliable differentially expressed genes from bulk expression profiles of multiple breast cancer 
tissues and normal tissues, and inferred genes related to cell malignancy from single-cell data. 
Then we identified eight critical genes related to breast cancer to conduct Cox regression analysis, 
calculate polygenic risk score (PRS), and verify the predictive ability of PRS in two data groups. 
The results show that PRS can divide breast cancer patients into high-risk group and low-risk 
group. PRS is related to the overall survival time and relapse-free interval and is a prognosis 
factor independent of conventional clinicopathological characteristics. Breast cancer is usually 
regarded as a cancer with a relatively good prognosis. In order to further explore whether this 
workflow can be applied to cancer with poor prognosis, we selected lung cancer for a comparative 
study. The results show that this workflow can also build a reasonable prognosis model for lung 
cancer. This study provides new insight and practical source code for further research on cancer 
biomarkers and drug targets. It also provides basis for survival prediction, treatment response 
prediction, and personalized treatment.   

1. Introduction 

Cancer prognosis models can predict the development trend and prognosis results based on patient biomarkers, clinical features, 
and other information to help doctors better assess the probability of future recurrence, death, disability, or complications of patients, 
thereby formulating more personalized treatment plans, improving treatment effectiveness and life quality of patients. Constructing a 
cancer prognosis model requires collecting and integrating multiple data types. In addition to clinical data such as age, gender, and 
medical history collected during diagnosis and treatment, molecular-level information such as DNA, RNA, or protein extracted from 
patient tissue samples should also be used. Many studies have identified cancer-related genes using bulk RNA-seq [1,2] and detected 
differentially expressed genes (DEGs) by comparing their expression profiles in normal and cancer tissues. These DEGs may be closely 
related to the occurrence, development, and prognosis of cancer and can, therefore, be used to construct cancer prognosis models. 

Compared to bulk transcriptome sequencing of a tissue, the recently developed single-cell transcriptome can sequence individual 
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cells, thus detecting gene expression heterogeneity at single-cell resolution [3,4] and more cell subpopulations and biological dif-
ferences [5]. Single-cell transcriptome can also detect rare cell subpopulations [6], which may have different gene expression patterns 
and biological characteristics, and these subpopulations may be masked in bulk RNA-seq. Therefore, the single-cell transcriptome can 
provide additional information and play an essential role in identifying cancer-related genes. For example, Zhou et al. comprehensively 
analyzed gene regulatory networks for the intrinsic subtypes of triple-negative breast cancer patients using scRNA-seq. The subtypes of 
the malignant cells were assigned based on the PAM50 model. The authors constructed gene regulatory networks by integrating gene 
co-expression and enrichment of transcription-binding motifs and identified the critical genes based on the centrality metrics of genes 
[7]. The prognosis of different cancers varies greatly; breast cancer and lung cancer can represent two prognosis types. Breast cancer is 
generally considered to have a better prognosis, and the 5-year survival rate can reach more than 80% [8]. Compared with breast 
cancer, lung cancer has a higher degree of malignancy and a significantly worse prognosis. More than half of patients will die within 
one year after diagnosis of lung cancer, and the five-year survival rate is only 17.8% [9]. Therefore, breast cancer and lung cancer can 
represent two types of prognosis. 

To mine potential targets for clinical diagnosis and treatment from the expression profile data of breast cancer and lung cancer, our 
research explored whether single-cell transcriptome and bulk expression data can be effectively integrated to identify prognostic- 
related genes of breast cancer and lung cancer. In this paper, we identified differentially expressed genes from breast cancer and 
normal tissues based on bulk expression profiles and predicted genes related to cell malignancy based on single-cell transcriptome 
data. Then, we integrated the two groups of genes to obtain eight critical genes related to breast cancer and validated the performance 
of the polygenic risk score. We also conducted extensive research on lung cancer with poor prognosis. Our study provides two par-
adigms for fully mining bulk and single-cell transcriptomic data to construct prognosis models. The source code has been uploaded to 
the GitHub and can help subsequent researchers use this workflow to mine other cancer data. 

2. Materials and methods 

2.1. Bulk and single-cell expression datasets 

The datasets and workflow chart in this study are shown in Fig. 1. The expression datasets GSE65194, GSE93601 [10], GSE109169 
[11], and GSE202203 [12] are all from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/), where the first three 
are microarray data and the last is high-throughput sequencing data. The dataset GSE65194 contains 11 normal breast tissues and 167 
breast cancer tissues or cell lines. The dataset GSE93601 contains 602 tumor and 508 tumor-adjacent tissues from patients diagnosed 
with invasive breast cancer. The dataset GSE109169 contains 25 normal breast tissues and 25 breast cancer tissues. GSE202203 
contains 3207 breast cancer tissues, 2913 of which have clinical information and were selected for analysis. The dataset GDC TCGA 
Breast Cancer is from UCSC Xena (https://xenabrowser.net/datapages/), which contains bulk RNA-seq data of 1104 breast cancer 
tissues and 113 normal tissues, as well as clinical data of 1099 breast cancer samples. The single-cell expression profile data 
GSM5956094 [13] of primary breast cancer also comes from the GEO database (Table S1). 

Fig. 1. The workflow of the study.  
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2.2. Identification of up-regulated and down-regulated genes from bulk expression profile 

Firstly, the gene names of datasets GSE65194, GSE93601, and GSE109169 were converted to gene symbol form. If several probes 
detect a gene, its expression is defined as the average value of the genes calculated on all probes. Finally, the limma package (v3.50.3) 
[14] was used for differential expression analysis. The DEGs in the GDC TCGA Break Cancer RNA-seq dataset were identified using the 
DESeq2 software package (v1.34.0) [15]. Based on a criterion of padj < 0.05, the “subset” function was used to filter the genes 
up-regulated and down-regulated in the datasets GSE65194, GSE93601, GSE109169, and GDC TCGA Breast Cancer. Subsequently, 
up-regulated and down-regulated genes were ranked based on log2 (Fold Change) in a single dataset. Then, the RobustRankAggreg 
package (v1.2.1) [16] was used to merge the up-regulation and down-regulation gene sets from the four datasets mentioned above and 
sort them by p-value to extract the top 100 significantly up-regulated genes and the top 100 significantly down-regulated genes. 

2.3. Processing and analysis of single-cell data 

Breast cancer single-cell expression profiling data GSM5956094 was imported and pre-processed using the R package “Seurat” 
(v4.3.0.1) [17]. The “CreateSeuratObject” function created a Seurat object; the “min.cells” parameter was set to 3, and the “min. 
features” parameter was set to 500. Then, the “subset” function was used to filter out low-quality cells meeting any of the following 
conditions: (1) the number of expressed genes is greater than or equal to 5000; (2) unique molecular identifiers (UMIs) mapping to 
mitochondrial genes is greater than or equal to 15%; (3) UMIs mapping to red blood cell genes is greater than or equal to 1%; and (4) 
the number of UMI is greater than or equal to 40,000. 

The data remaining after filtering were normalized using the “SCTransform” function, and then principal component analysis was 
performed using the “RunPCA” function. The first 33 principal components that could explain most of the variance were used for 
subsequent analyses. The “FindNeighbors” and “FindClusters” functions were then used for cell clustering analysis with the resolution 
parameter of 0.2. Furthermore, uniform manifold approximation and projection (UMAP) dimensionality reduction was conducted and 
visualized using the “RunUMAP” function. 

Then, R package “DoubletFinder” (v2.0.3) was used to remove inferred doublets, using default parameters [18]. The “Find-
Neighbors” and “FindClusters” functions were used again for cell clustering analysis of the remaining cells. 

The R package “celldex” (v1.11.1) was used to obtain the built-in dataset “HumanPrimaryCellAtlasData” [19], which was sub-
sequently used as the reference dataset for cell annotation. R package “SingleR” (v1.8.1) was used for cell annotation to infer the cell 
type of each cell [19]. Cluster names were named as the most common cell type in each cluster. Then, the expression profiles of T cells 
and epithelial cells were extracted. The “SCTransform” function standardized and normalized the extracted expression profiles. 
Finally, the “FindNeighbors” and the “FindClusters” functions were used for cell clustering with the resolution parameter 1.0. 

Copy number variation in epithelial cells was inferred using R package “inferCNV” (v1.10.1) using T cells as a reference [20]. The 
cell cluster with the highest copy number variation score was considered the most malignant. In contrast, the cell cluster with the 
lowest copy number variation score was considered the weakest malignant. Then, we used the “FindMarkers” function to obtain the 
DEGs between the two clusters, with the following parameter settings: min.pct = 0.25, logfc.threshold = 0.5, test.use = “roc”. 

2.4. Construction of prognosis model 

Merging 100 up-regulated and 100 down-regulated genes (Table S2) obtained from the bulk expression profiles with 185 DEGs 
(Table S3) obtained from single-cell data, 354 genes remained after removing genes that do not exist in the validation dataset GDC 
TCGA Breast Cancer and GSE202203. After loading the standardized GDC TCGA Breast Cancer data, only the expression profiles of 
these 354 genes were retained, and the expression matrix and survival information were merged. After merging, 70% of the data was 
used as the training set and 30% as the validation set. 

Univariate Cox regression analysis was performed on the training set to identify genes significantly associated with survival (p <

0.05). Then, these genes were used for multivariate Cox regression to create a Polygenic Risk Score (PRS): 

PRS=B ⋅ XT (1)  

where B = [b1,b2,b3, ...bn], X = [x1,x2,x3, ...xn]. “x1,x2,x3, ...xn” represents the expression value of the genes in the multivariate Cox 
regression analysis, and “b1,b2,b3, ...bn” is the corresponding estimated regression coefficient. 

2.5. Validation of prognosis model 

A polygenic risk prediction model was used to calculate the PRS for each sample in the TCGA validation set and GSE202203 
validation set, and patients were categorized into high-risk and low-risk types based on the median PRS. Survival analyses were 
performed using the R package “survival” (v3.2-13) [21]. Time-dependent receiver operating characteristic curve (tROC) analyses 
were performed using the R package “survivalROC” (v1.0.3.1) [22]. 
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3. Result 

3.1. Identification of highly reliable up-regulated and down-regulated genes in breast cancer by integrating multiple bulk expression profiles 

We first identified breast cancer-related up-regulated and down-regulated genes (Fig. 2A–B) from four bulk expression datasets. In 
the GDC TCGA Breast Cancer dataset, 27,800 DEGs were identified, of which 17,101 genes were significantly up-regulated, and 10,699 
genes were significantly down-regulated in tumor samples. In the dataset GSE109169, 7494 DEGs were identified, of which 4091 genes 
were significantly up-regulated, and 3403 genes were significantly down-regulated. In the dataset GSE93601, 9568 DEGs were 
identified, of which 4492 genes were significantly up-regulated, and 5076 genes were significantly down-regulated. In the dataset 
GSE65194, 13,005 DEGs were identified, of which 4798 genes were significantly up-regulated, and 8207 genes were significantly 
down-regulated. Notably, the up-regulated (Fig. 2A) and down-regulated genes (Fig. 2B) varied substantially across the four datasets, 
making it necessary to integrate different datasets. After integrating with the “aggregateRanks” function, a total of 19,894 up-regulated 
genes and 18,235 down-regulated genes were obtained. Then, genes with p ≥ 0.05 were filtered out, resulting in highly reliable 1231 
up-regulated genes and 1325 down-regulated genes from the bulk expression profiles. 

3.2. Heterogeneity analysis of breast cancer cells based on single-cell RNA-seq data 

The single-cell dataset GSE5956094 contains 13,434 cells, and 9256 high-quality cells were screened using the quality control steps 
described in the Methods section, including 25,953 expressed genes (Fig. S1). 

After dimensionality reduction and clustering, 9256 cells were divided into 10 clusters, which were annotated as nine cell types 
using the “SingleR” method, and the main cell types of breast tissue were included in them (Fig. 2C), including epithelial cells, 
chondrocytes, macrophages, T cells, and endothelial cells. The results show that breast cancer cells are highly heterogeneous, and cell 
types have different gene expression patterns; cell type-specific information can be extracted from single-cell expression profiles. 

The annotation results of epithelial and T cells were validated using marker genes of epithelial cells and T cells. Epithelial marker 
genes CDH1, EPCAM, ESR1, KRT18, and KRT19 are highly expressed in annotated epithelial cells. In contrast, T cell marker genes CD2, 
LCK, CD247, CD96, and IL7R are highly expressed in annotated T cells (Fig. 2D). These results indicate that the annotation results of T 

Fig. 2. (A) Venn plot of overlap up-regulated genes in the four datasets. (B) Venn plot of overlap down-regulated genes in the four datasets. (C) 
UMAP shows cell heterogeneity of breast cancer. (D) Distribution of epithelial and T cell marker genes. 
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Fig. 3. (A) Epithelial and T cells are divided into 12 clusters. (B) Dot plot of epithelial and T cell marker genes shows the identity of different 
clusters. (C) Distribution of copy number variation among different clusters. 
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cells and epithelial cells are accurate. The identified T cells would be used to infer copy number variation in the next step. 

3.3. Inferring genes related to malignancy based on copy number variation 

Compared with other cell types, canceration of immune cells is relatively rare, so this study used T cells in immune cells as a 
reference to infer the gene copy number variation in a single cell. We first selected T cells and epithelial cells for cell re-clustering. The 
“Clustree” algorithm was used to calculate the clustering results of different resolutions to find the appropriate resolution (Fig. S2). T 
cells and epithelial cells were divided into 12 clusters (Fig. 3A). According to markers, cluster 0, cluster 3, and cluster 11 were T cells, 
and the remaining 9 clusters were epithelial cells (Fig. 3B). 

Further, we used the R package “inferCNV” to infer the copy number variation in each T cell and epithelial cell. The cell cluster with 
the highest copy number variation score was regarded as the cell cluster with the highest degree of malignancy, and the cell cluster 
with the lowest copy number variation score was regarded as the cell cluster with the lowest degree of malignancy, thereby identifying 
the DEGs of the two clusters. According to the results of “inferCNV”, it can be seen that the amplification and deletion of copy number 
in epithelial cells are significantly more than those in T cells and are unevenly distributed on different chromosomes (Fig. 3C). Copy 
number amplification mainly occurred on chromosomes 1, 4, 8, 16, 19 and 20. Copy number deletions mainly occurred on chro-
mosomes 1, 2, 5, 10, 11, 13, 14 and 15. The copy number variation in each cluster of epithelial cells showed different patterns. Clusters 
4 and 1 have the highest and lowest copy number variation scores, respectively. After identifying the DEGs between the two clusters 
and excluding mitochondrial genes, a total of 185 DEGs were obtained, of which 27 genes were highly expressed in cluster 1 with a low 
malignant degree and 158 genes were highly expressed in cluster 4 with a high malignant degree. We inferred that these genes are 
closely related to the malignancy of cells. 

3.4. Prediction of breast cancer prognosis based on polygenic risk score 

By combining 200 genes from bulk expression profiles and 185 genes from single-cell expression profile, 385 genes were obtained. 
After removing the genes that do not exist in the two validation datasets, GDC TCGA Breast Cancer and GSE202203, 354 DEGs 
remained. Univariate Cox analysis showed that there were 26 genes whose p-value was less than 0.05. Multivariate Cox analysis and 
stepwise regression analysis were performed using these 26 genes to obtain a polygenic risk score containing eight genes, namely PIGR, 
S100B, LEF1, ZNF385B, WWOX, RYR2, SLC19A2, and HIPK2. The corresponding regression coefficients constitute vector B: 

B= [ − 0.0853, − 0.1597, − 0.1437, − 0.1158, 0.2534, 0.2117, − 0.2748, − 0.2025] (2)  

In univariate Cox regression analysis, the factors with Hazard Ratio (HR) greater than 1 are the disease risk factors, and the people 
exposed to these factors are more likely to have positive events (recurrence, death). On the contrary, the factors with HR values of less 
than 1 are the protective factors of the disease, and the people exposed to these factors are less likely to have positive events. In 
multivariate Cox regression analysis, the higher the PRS value, the greater the risk to the patient, so the high expression of genes with 
positive regression coefficients in PRS is usually associated with poor prognosis, while the low expression of genes with negative 
regression coefficients in PRS is usually associated with poor prognosis. We found that the risk factors in univariate risk regression have 
positive regression coefficients in multivariate Cox regression. For example, the regression coefficients of RYR2 (HR = 1.16) and 
WWOX (HR = 1.23) with HR values greater than 1 in PRS are 0.2117 and 0.2534, respectively. The protective factors in univariate Cox 
regression analysis have negative regression coefficients in multivariate Cox regression. For example, the regression coefficients of 
S100B (HR = 0.889), PIGR (HR = 0.881), ZNF385B (HR = 0.877), SLC19A2 (HR = 0.818), LEF1 (HR = 0.799), and HIPK2 (HR =
0.784) with HR values less than 1 in PRS are − 0.1597, − 0.0853, − 0.1158, − 0.2748, − 0.1437, and − 0.2025, respectively. These 
results indicate that the eight genes involved in PRS exhibited consistency in univariate and multivariate regression analyses. 

The eight genes in PRS, PIGR, and S100B were identified in bulk expression profiles and were significantly down-regulated in breast 
cancer samples. LEF1, ZNF385B, WWOX, RYR2, SLC19A2, and HIPK2 were obtained from single-cell expression profiles, and they were 
significantly up-regulated in highly malignant cell clusters. The results indicate that both the bulk expression profiles and single-cell 
expression profiles provide information for the construction of the PRS model, and the analysis and processing of these two types of 
data mentioned in the Materials and methods section are essential components of the model. 

We used the validation set from TCGA to verify the prognosis model and calculated that the median PRS was 0.93, the p-value of the 
survival curve was 4.94 × 10− 3 (Fig. 4A), and the AUC value of tROC at five years was 0.734 (Fig. 4B). Using another validation dataset 
GSE202203, we calculated the survival curve and tROC curve based on overall survival (OS) and relapse-free interval (RFI), 
respectively (Fig. 4C–F). These results further demonstrate the effectiveness of the prognosis model. 

Next, we investigated at the molecular level whether these genes are involved in the malignant transformation of breast cancer. 
PIGR means polymeric immunoglobulin receptor and its high expression is associated with an increased five-year breast cancer sur-
vival rate. Sun et al. used the breast cancer cell line MCF7 to conduct a transwell migration assay to study the association between PIGR 
and cancer cell migration. The assay showed that inhibiting the expression of PIGR will significantly enhance the migration of MCF7 
breast cancer cells, so it is inferred that PIGR plays an anti-tumor role by inhibiting the migration of MCF7 breast cancer cells. In 

Fig. 4. Validation of PRS in breast cancer. (A) Survival curve of TCGA dataset. (B) tROC curve of TCGA dataset. (C) Survival curve of OS of 
GSE202203 dataset. (D) tROC curve of OS of GSE202203 dataset. (E) Survival curve of RFI of GSE202203 dataset. (F) tROC curve of RFI of 
GSE202203 dataset. 
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addition, the GO Term annotations and KEGG pathways of the co-expressed genes of PIGR mainly involve immune responses. In breast 
cancer, various immune-related molecules are positively correlated with the level of PIGR. These results indicate that PIGR may also 
enhance tumor immunity in breast cancer to fight tumors and improve the prognosis of breast cancer patients [23]. S100B is a 
calmodulin that can be highly expressed in certain tumors, such as gliomas and malignant melanoma. Yen et al. used the Transwell 
migration assay to study the effect of S100B on the migration rate of breast cancer cells [24]. This experiment used recombinant S100B 
protein to treat breast cancer cell lines MDA-MB-231 and Hs578T. The results showed that the migration rate of these two types of 
breast cancer cell lines was significantly reduced. Therefore, S100B may exert anti-tumor effects by inhibiting tumor cell migration. 
ZNF385B is considered a potential transcription inhibitor. Studies have shown that ZNF385B can activate Caspase-8 and Caspase-3 by 
upregulating PERP and FAS/CD95, affecting tumor suppressor p53 and mediating cell apoptosis. So, ZNF385B may reduce tumor cell 
formation and metastasis through transcriptional inhibition [25]. Intermediate filament protein vimentin is overexpressed in a variety 
of epithelial cancers, including breast cancer, and is associated with tumor growth and metastasis. Researchers transfected HIPK2 into 
MDA-MB-231 breast cancer cells and proved that overexpression of HIPK2 can down-regulate vimentin expression and inhibit breast 
cancer cell invasion [26]. Matrix metalloproteinase-7 (MMP-7) is a small proteolytic enzyme associated with the invasion and 
metastasis of various cancers. Cyclin D1 is a cell cycle regulatory protein family member, and its abnormal expression can change the 
cell cycle, stimulating normal cells to transform into cancer cells. Lymph enhancer binding factor-1 (LEF-1) is associated with cyclin D1 
and MMP-7 gene regulation. Bucan et al. used siRNA to reduce LEF-1 expression, leading to the downregulation of cyclin D1 and 
MMP-7 expression, respectively. The results indicate that LEF-1 mediates the transcription of cyclin D1 and MMP-7, thereby regulating 
the proliferation of cancer cells [27]. Among the eight inferred critical genes, there is limited conclusive evidence linking specific genes 
to breast cancer, such as SLC19A2, member 2 of solid carrier family 19, and a thiamine transporter. Further research is needed to 
determine whether they may become potential drug targets or markers of malignant transformation. 

3.5. Prognosis model construction and polygenic risk score for lung cancer 

The prognosis of different cancers is significantly different. Breast cancer is usually regarded as one of the cancers with a relatively 
good prognosis because it can be diagnosed at an early stage, and there are many treatment methods, such as surgery, radiotherapy, 
chemotherapy, and endocrine therapy. Therefore, we contrived to explore whether the workflow in this study can be applied to cancer 
with a poor prognosis. Suppose this workflow can be generalized to more bulk and single-cell cancer datasets. In that case, it can fully 
mine these data to identify molecular markers, signaling pathways, and cell types related to disease progression and prognosis. Lung 
cancer is usually diagnosed later, and its treatment methods are relatively limited, resulting in a generally poor prognosis. Therefore, 
we chose lung cancer for a comparative study. 

Single-cell data from six lung cancer samples were obtained from the GEO database, including GSM4453581, GSM4453589, 
GSM4453593, GSM4453594, GSM4453615, and GSM4453616 [28]. We used R package harmony (v0.1.1) [29] to remove batch 
effects and annotated cells according to marker genes as epithelial cells (CAPS, SNTN), endothelial cells (CLDN5, VWF, PECAM1), T 
cells (CD2, CD3D, CD3E, CD3G), B cells (CD79A, CD79B), neutrophils (CSF3R, S100A8, S100A9), myeloid cells (CD14, LYZ), fibroblasts 
(COL1A1, COL1A2, DCN), mast cells (GATA2, TPSAB1, TPSB2). Cancer cells were negative for regular epithelial cell markers but 
positive for EPCAM (Fig. 5A–B). Using the “FindMarkers” function to analyze the DEGs between epithelial cells and cancer cells, we 
obtained 1475 genes from single-cell datasets. 

Bulk expression data were obtained from two databases, the GEO and UCSC Xena. We downloaded datasets GSE30219, GSE81089, 
and GSE151103 from GEO database [30], which contain 205 normal tissue samples and 680 lung cancer tissue samples. The data from 
UCSC Xena were GDC TCGA Lung Adenocarcinoma (LUAD) and GDC TCGA Lung Squamous Cell Carcinoma (LUSC). Merge the two 
datasets to form a new one, TCGA-LUNG, which includes 108 normal tissues and 1027 tumor tissues. Difference analysis was per-
formed on normal and lung cancer tissues in the above four datasets to obtain significantly up-regulated and down-regulated genes in 
each dataset. 

The validation datasets of the model were served by TCGA-LUNG from UCSC Xena and GSE72094 from GEO because they have 
clinical information. Similar to the analysis of breast cancer, we used the RobustRankAggreg software package (v1.2.1) to extract 100 
up-regulated genes and 100 down-regulated genes (Table S4) from the lung cancer bulk datasets, screened 98 genes related to ma-
lignancy from the single-cell datasets (Table S5), merged these genes and removed the genes that did not exist in the datasets TCGA- 
LUNG and GSE72094, and finally obtained 277 genes. 

Then, univariate Cox regression analysis was performed, and the genes were filtered out if their p-values were equal or more than 
0.02 in univariate Cox regression analysis. Subsequently, multivariate Cox and stepwise regression analyses were performed to 
construct a PRS containing six genes: FAM83A, TFAP2A, KLK6, NEIL3, TRHDE, and CAPS. The regression coefficients are the value of 
the corresponding elements in vector B’: 

B′ = [0.0648, 0.0702, 0.0360, 0.1065, 0.1340, − 0.0931] (3)  

Among the six genes, FAM83A, TFAP2A, KLK6, NEIL3, and TRHDE were identified in bulk expression profiles, and CAPS was 
identified in single-cell expression profile, which indicates that similar to breast cancer analysis, bulk expression profile data and 

Fig. 5. Prognosis model and survival curves of lung cancer. (A) A dot plot of marker genes. (B) UMAP of lung cancer cells. (C) Survival curve of 
TCGA dataset. (D) tROC curve of TCGA dataset. (E) Survival curve of GSE72094 dataset. (F) tROC curve of GSE72094 dataset. 
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single-cell expression profile data both contribute to the construction of prognosis model. Previous studies have shown that high 
expression of FAM83A is related to poor prognosis of lung adenocarcinoma patients [31], lung cancer patients with high expression of 
TFAP2A have poor prognosis [32], high expression of KLK6 is related to low survival rate [33], and high expression of NEIL3 is related 
to poor prognosis [34,35]. In brief, most of the genes in our study are supported by existing studies. 

The constructed PRS was validated using TCGA-LUNG and GSE72094. In the validation dataset of TCGA-LUNG, the p-value of the 
survival curve is 2.11 × 10− 4 (Fig. 5C). The AUC value at three years is 0.681 (Fig. 5D). In the dataset GSE72094, the p-value of the 
survival curve is 1.79 × 10− 4 (Fig. 5E). The AUC value at five years is 0.681 (Fig. 5F). In summary, the workflow shows good 
generalization ability on both breast and lung cancers datasets, and thus has the potential to mine other cancer data more extensively. 

There have been many experimental studies on the mechanisms by which these six essential genes we identified play a role in lung 
cancer. Zheng et al. overexpressed FAM83A and used cell proliferation, colony formation, and invasion assays to detect the prolif-
eration and invasion of lung cancer cells. The results indicate that overexpression of FAM83A increases the activity of β-catenin, target 
genes of Wnt signaling pathways, and Epithelial-Mesenchymal Transition (EMT). In contrast, the Hippo pathway’s activity is 
downregulated, indicating that FAM83A promotes cancer cell proliferation and invasion by regulating the Wnt and Hippo signaling 
pathways and EMT processes [36]. LncRNA SLC2A1-AS1 is significantly overexpressed in lung adenocarcinoma (LUAD) and is closely 
associated with overall patient survival. Cui et al. confirmed through ChIP-PCR and RT-qPCR experiments that TFAP2A can directly 
bind to the promoter region of the SLC2A1-AS1 coding gene. Knockout of TFAP2A significantly inhibited the transcription of 
SLC2A1-AS1 in LUAD cells. The author further demonstrated through a colony formation assay that downregulation of SLC2A1-AS1 
substantially inhibits cancer cell proliferation. These results indicate that the upregulation of SLC2A1-AS1 mediated by TFAP2A 
promotes cancer cell proliferation in lung squamous cell carcinoma (LUSC) [37]. Experiments have shown that the mechanism of 
action of the KLK6 gene is that it promotes the proliferation of Non-Small Cell Lung Cancer (NSCLC) cells and restricts their apoptosis 
via an activation cascade initiated by Protease-Activated Receptor 2 (PAR2) and involving the ligand-dependent transactivation of 
Epidermal Growth Factor Receptor (EGFR) [38]. Colony formation and CCK8 assays showed that knocking NEIL3 inhibited NSCLC cell 
proliferation. Transwell and wound healing assays indicated that knocking down NEIL3 inhibits the invasion and migration ability of 
NSCLC cells. In lung cancer, the PI3K/AKT/mTOR signaling pathway is a critical regulatory pathway leading to malignant phenotype 
and drug resistance. Gene Set Enrichment Analysis shows abnormal activation of the PI3K/AKT/mTOR pathway, G2/M checkpoint, 
and E2F target in NEIL3 patients. In contrast, Western blot shows that NEIL3 can partially activate the PI3K/AKT/mTOR signaling 
pathway, which may be why NEIL3 promotes cancer [39]. 

4. Discussion 

Our study integrated single-cell and bulk expression profiles to identify and analyze cancer prognosis-related genes, constructed a 
cancer prognosis model, and confirmed the method’s effectivenessin two types of cancer. In previous studies, breast cancer prognosis 
models often used factors such as lymph node status, patient age, tumor size, cancer grade, and estrogen receptor status as prognosis 
indicators. However, these pieces of clinical information are not in a unified numerical form, so some arbitrary factors will inevitably 
be introduced, which poses obstacles to quantitative calculations. Our model alleviates some of the limitations of traditional methods 
and, combined with routine clinical pathological evaluations, can more objectively predict patients’ survival time and quality of life. 
Our study has a specific biological basis for identifying prognosis-related genes and calculating PRS from gene expression profiles. 
There are highly complex gene regulatory networks within organisms. Both endogenous and exogenous stimuli and changes can affect 
the expression of different genes in various cells within an organism. During the process of canceration, the expression patterns of 
genes may change, with some genes up-regulated and some genes down-regulated. These changes in gene expression patterns contain 
rich information and reflect the state of patients. Therefore, the essential genes related to carcinogenesis can be used to construct a 
model to predict the prognosis by measuring the expression values of different genes in patients. Our prognosis model comprehensively 
utilizes the advantages of bulk and single-cell expression profiles. To avoid the inaccuracy of prognosis models in some populations, we 
use DEGs with significant changes in multiple datasets as input factors for model construction. At the same time, because the bulk 
expression profiles can only reflect the overall expression level of the sequenced tissue, ignoring cell heterogeneity, some crucial DEGs 
may be masked. We also identified two clusters of cells with high and low malignancy based on copy number variation from the single- 
cell dataset. We extracted the DEGs between the two clusters, supplementing the gene set to construct the prognosis model. In the 
breast cancer prognosis model, six genes are from the single-cell dataset, proving that combining bulk and single-cell expression 
profiles for analysis is reasonable. 

Using our cancer prognosis model, doctors can infer the prognosis of breast cancer patients and adjust the nursing and prognosis 
strategies for patients according to the risk assessment of patients to improve the treatment effect and improve the survival time and 
life quality of patients. At the same time, the eight genes used to construct PRS can be used as candidate biomarkers in breast cancer 
research, guiding the design of anti-cancer drugs, predicting treatment responses, and providing a basis for survival prediction and 
personalized treatment. The workflow and code of this study can be easily extended to other cancers, providing convenience for re-
searchers unfamiliar with programming. 

The following research work can be carried out from two aspects. Firstly, categorize the different subtypes of cancer, such as small 
cell lung cancer (SCLC), ductal papillary carcinoma (DCIS), and invasive ductal carcinoma (IDC), and construct prognostic models 
using expression data from different subtypes of cancer to aid in more targeted diagnosis and treatment. Secondly, integrating 
multimodal data, such as spatial omics data and single-cell chromatin accessibility data, complements information from different 
modalities to enhance the predictive performance of prognostic models. 
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