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Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, 
responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell 
infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, 
circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs 
of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 posi-
tive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. 
CircRNA–miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and 
STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA 
miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and 
its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 
0.84867, Spearman’s correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all 
three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both 
is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive 
samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student’s t test, respectively) and their expression 
positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman’s correlation test, respectively). We propose 
that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and 
that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation 
of KCNMB4 and PRKCE mRNAs.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) is an enveloped virus classified as a new member of 
the Coronaviridae family, Betacoronavirus genus, whose 
genome consists of a single stranded positive ( +) RNA 
molecule about 30 kilobases long [1, 2]. SARS-CoV-2 is 
etiologically involved in the life-threatening coronavirus dis-
ease 2019 (COVID-19) and is responsible for a pandemic 
outbreak in March, 2020 [3]. From December 2019 to Sep-
tember 2021, 3,508 SARS-CoV-2 genomes were sampled 
and 20 clades were identified around the world, according 
to the GISAID database (https:// nexts train. org/ ncov/ gisaid/ 
global). Emergence of new SARS-CoV-2 genotypes alerts 
the scientific community to the possibility that some variants 
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of concern may bypass the immune barrier given by the vac-
cines currently used and highlights the importance of the 
identification of therapeutic targets helpful for the manage-
ment of this clinically very relevant disease [4].

Circular RNAs (circRNAs) are a recently discovered class 
of RNAs, mainly synthesized through backsplicing and char-
acterized by the covalent bond between their 5’ and 3’ termini 
[5, 6]. CircRNAs follow tissue- and developmental-specific 
expression patterns and are mainly localized in the cell cyto-
plasm [7, 8]. The best characterized functions of circRNAs 
consist in sponging microRNAs (miRNAs) and RNA-bind-
ing proteins (RBPs) [5, 9]: in the first case, circRNAs may be 
typically involved in competitive endogenous RNA (ceRNA) 
networks [10–13]; in the second case, circRNAs may regulate 
biological processes within eukaryotic cells, such as assembly 
of preinitiation complex (PIC) at the beginning of transcription 
or also splicing [14, 15]. Moreover, circRNAs may function 
either as a template for the synthesis of generally short pep-
tides, thanks to the presence of Internal Ribosomes Entry Sites 
(IRESs) within their sequences, or as a scaffold for the regula-
tion of host gene transcription [16–18]. CircRNAs have been 
found aberrantly expressed in many cancers and degenerative 
diseases [19, 20] and are associated with several biological 
processes, both in physiological and pathological conditions 
[21–24]. Due to their intrinsic resistance to the activity of 
exoribonucleases and their presence in several human body 
fluids as well as within extracellular vesicles, circRNAs have 
been suggested as good candidate diagnostic and prognostic 
biomarkers for several diseases [25–28].

Recent evidence has shown the etiological involvement 
of circRNAs in viral infections. Most specifically, cross-talk 
between host cell circRNA biogenesis and RBPs linked to 
immune response (e.g.: immune factors NF90/NF110) has been 
described [29]. Influenza virus-infected A549 cells showed the 
induction of a circRNA that acts as a sponge for miRNAs regu-
lating the expression of interferon beta (IFN-β) enhanceosome 
[30]. At the same time, circRNAs have been demonstrated to be 
synthesized from the genome of several DNA viruses (e.g.: Her-
pesviruses), contributing to the infection’s pathogenesis [31–33].

Recently, thanks to RNA-seq data analysis from cells 
infected with Middle East Respiratory Syndrome Corona-
virus (MERS-CoV), Severe Acute Respiratory Syndrome 
Coronavirus (SARS-CoV) and SARS-CoV-2 RNA (+) beta-
coronaviruses, several circRNAs of viral origin have been 
identified and characterized [34, 35]. At the same time, anal-
ysis of human circRNAome revealed several differentially 
expressed (DE) circRNAs in lung epithelial cells as well as 
in the peripheral blood of individuals infected with SARS-
CoV-2 [36, 37]. Based on gene expression datasets, pertur-
bation of ceRNA networks (circRNAs-miRNAs-mRNAs) 
in host cells following SARS-CoV-2 infection has also been 
predicted [38]. To improve our knowledge of the molecu-
lar dynamics of SARS-CoV-2 infection and prospectively 

identify new candidate therapeutic targets, in this study we 
focused on circRNAs synthesized from the viral genome, 
suggesting their involvement in COVID-19 pathogenesis.

Materials and methods

Sample preparation and diagnosis

Three ml of universal transport medium (UTM™) (COPAN 
Italia SpA, Brescia, Italy) from nasopharyngeal swabs of indi-
viduals suspected to be infected by SARS-CoV-2 were used 
for diagnostic purposes. A residual 1 ml of UTM™ was cen-
trifuged at 350×g for 5 min at 4 °C to pellet cell debris. Super-
natants were discarded and cell pellets stored at − 80 °C until 
further processing. Nucleic acids were isolated directly from 
UTM™ through a ThermoFisher Flex apparatus by the Mag-
MAXTM Viral Pathogen Kit (ThermoFisher Scientific, Monza, 
Italy) for diagnostic purposes. Diagnosis was performed by a 
multiplex real-time PCR, Allplex™ SARS-CoV-2 Master assay 
(Seegene Inc., Arrow Diagnostics, Genoa, Italy), following the 
instructions of the manufacturer. The method amplifies SARS-
CoV-2 E, N, RdRp, and S genes, according to World Health 
Organization (WHO)’s guidelines. Amplification cycles were 
performed on a Bio-Rad CFX96 real-time PCR instrument 
(Bio-Rad, Segrate–Milan, Italy). Only samples showing cycle 
threshold (Ct) values ≤ 35 for all the transcripts assayed were 
considered positive. A total of 15 positive and 6 and negative 
samples were assayed in this retrospective study. Data on bio-
logical specimens anonymously collected in this study were 
processed in accordance with the ethical principles reported in 
the Declaration of Helsinki.

RNA extraction, PCR amplification and Sanger 
sequencing

RNA was extracted from cells previously collected by naso-
pharyngeal swab using  TRIzol® (ThermoFisher Scientific, 
ThermoFisher Scientific, Waltham, MA, USA), according to 
the manufacturer’s instruction [39]. RNA was quantified by 
a GenQuant pro spectrophotometer (Biochrom, Cambridge, 
UK). CircRNAs and mRNAs were amplified using a Power 
 SYBR® Green RNA-to-CT™ 1-Step Kit (ThermoFisher 
Scientific). MiRNAs were reverse transcribed into cDNA 
by TaqMan™ MicroRNA Reverse Transcription Kit (Ther-
moFisher Scientific) and amplified through TaqMan™ Uni-
versal Master Mix II (ThermoFisher Scientific). PCRs were 
run on a 7900HT real-time PCR instrument (ThermoFisher 
Scientific). PCR products of the amplified circ_3205 were 
then sent to BMR Genomics, Padua, Italy (www. bmr- genom 
ics. it) for purification through ExoSap (Applied Biosystems™, 
ThermoFischer Scientific). Sanger sequencing was performed 
with BigDyeTM Terminator v3.1 Cycle Sequencing Kit 

http://www.bmr-genomics.it
http://www.bmr-genomics.it
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(ThermoFisher Scientific) on a ABI 3730xl DNA Analyzer 
(Applied Biosystems™, ThermoFisher Scientific). Sequences 
and IDs of specific primer pairs and TaqMan probes used in 
this manuscript are listed in Supplemental Table 1.

Candidate circRNAs selection

SARS-CoV-2 candidate circRNA sequences were retrieved 
from VirusCircBase (v. 1.1) [40], based on RNA-Seq experi-
ments performed on Calu3 cells infected with the virus for 
12 h and 24 h (GSE148729). Candidate circRNAs were fil-
tered through the following criteria: (i) backsplice junction 
reads counted by at least two circRNA predictive algorithms 
among CIRI2; circRNA_finder; find_circ [6, 41, 42], for 
the same circRNA; (ii) abundancy of circRNA (at least two 
backsplice junction reads for each predictive algorithm).

Prediction of circRNA/miRNA interactions

Interactions between candidate circRNA and miRNAs were 
predicted by TarpMiR [43], Analysis of Common Targets 
for circular RNAs (ACT) [44], and STarMir [45]. FASTA 
sequences of human miRNAs (from miRBase 22 release 
[46]) and candidate circRNA were given as input to each 
of the three predictive algorithms. TarpMiR was set choos-
ing human model and a probability cutoff of 0.5. Human 
V-CLIP data were used to train STarMir predictions [47]. 
Only miRNAs predicted to interact with SARS-CoV-2 can-
didate circRNA by all the three tools were considered as 
potentially implied in the ceRNA network.

Gene Ontology (GO) analysis and miRNA target 
selection

MiRNAs predicted to interact with candidate circRNA were 
given as input to DIANA miRPath v3.0 [48] and Biologi-
cal Process (BP) GO’s subcategory was analyzed. MicroT-
CDS (MicroT and False Discovery Rate (FDR)-corrected p 
value thresholds = 0.8 and 0.05, respectively) was selected as 
the algorithm for the prediction of miRNA-mRNA interac-
tions. BP GO analysis filtered miRNA targets based on: (i) 
their potential involvement in blood clotting and immune 
response pathways, known to be related to COVID-19; (ii) 
dysregulated expression in lung or nasopharyngeal cells 
from SARS-CoV-2 infected individuals.

Protein–protein interaction (PPI) network analysis

First and second neighbor interactants of the candidate miRNA 
targets were retrieved from the HUman Reference protein Ta
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Interactome (HuRI) database [49]. The list of interactions was 
given as input to Cytoscape (version 3.8.2) [50] and the network 
generated was analyzed through g:GOSt, within the g:Profiler 
web interface [51], and the Cytoscape plugin cytoHubba [52] 
to study gene functional enrichment and topological features, 

respectively. Topological analysis focused on the centrality 
parameters: betweenness; bottleneck; closeness; eccentricity; 
radiality and stress; for each of them, a corresponding subnet-
work has been generated and analyzed for GO BP enrichment.

Fig. 1  A Real-time PCR amplification plot of circ_3205 for a rep-
resentative positive (blue curve) and negative (green curve) sample. 
B Agarose gel (2%) electrophoresis of the real-time PCR products 
in (A). Ladder = 100  bp DNA ladder (ThermoFisher Scientific); P 
and N = representative positive and negative sample, respectively. 
C Graphical representation of the divergent primers used to amplify 

SARS-CoV-2 circ_3205 and Sanger sequencing of the resulting PCR 
amplicon (from a representative positive sample). Dotted line repre-
sents the PCR amplicon obtained through the use of divergent prim-
ers; the red triangle above the electropherogram highlights the 3ʹ–5ʹ 
junction of circ_3205



Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells  

1 3

Page 5 of 14 75

Statistical analysis

Real-time PCR data were analyzed through the  2−DDCt method 
[53] and two-sided Student’s t test was applied to identify DE 
transcripts. Spearman’s correlation test was used to identify 
positive or negative correlations among transcripts. Modified 
Fisher’s exact test followed by false discovery rate methodology 
was used to calculate p values for GO analysis. p values ≤ 0.05 
were considered statistically significant.

Results

circRNA_3205 is a candidate viral circRNA expressed 
in Calu3 infected with SARS‑CoV‑2

Based on VirusCircBase, a total of 3473 circRNAs were 
detected by at least one tool among CIRI2; circRNA_finder; 
find_circ (Supplemental Table 2). SARS-CoV-2 circRNAs 363, 
368, 2667, 2670, 2685, 2795, 3058, 3205 were the top eight 
most expressed circRNAs in Calu-3 infected with SARS-CoV-2 

at least in one time point, according at least to two out of three 
algorithms among CIRI2; circRNA_finder; find_circ (Table 1).

Circ_3205 is expressed only in positive 
samples and its amount positively correlates 
with that of viral Spike (S) mRNA

The expression of SARS-CoV-2 circRNAs 363, 368, 2667, 
2670, 2685, 2795, 3058, and 3205 was assayed in a discovery 
cohort made of a pool of three positive samples and three 
UCs. Based on real-time PCR and gel electrophoresis data, we 
focused on circ_3205, a 286 nt-long circRNA whose sequence 
is embedded within the open reading frame (ORF) coding 
for the nucleocapside (N) protein of SARS-CoV-2 (nucleo-
tide position 28,609–28,898, Wuhan-Hu-1 reference genome, 
NCBI Reference Sequence: NC_045512.2), clearly present 
and highly expressed only in positive samples (Fig. 1A and 
1B). Sanger sequencing of the PCR amplification product 
of circ_3205 confirmed the presence of the 3’-5’ junction, 
specific of this circRNA (Fig. 1C). Gene expression assay in 
the validation cohort confirmed that circ_3205 was expressed 
only in positive samples and its amount positively correlated 
with that of Spike (S) mRNA and SARS-CoV-2 viral load (r 
values = 0.80952 and 0.84867, p values (two sided) = 0.015 
and 0.016, respectively, Spearman’s correlation test) (Fig. 2). 
The expression of S mRNA positively correlated with SARS-
CoV-2 viral load, too (r value = 0.92582, p values (two 
sided) = 0.003) (Fig. 2).

Human (hsa) miRNAs 298, 3940‑5p, 4640‑5p, 6081, 
and 6133 are predicted to interact with circ_3205 
and their targets are potentially involved in cell 
response to viral infection

Hsa miRNAs 298, 3940-5p, 4640-5p, 6081 and 6133 were 
predicted to interact with circ_3205 by all the three pre-
dictive algorithms queried (TarpMiR, ACT and STarMir) 
(Fig. 3A). BP GO analysis highlighted a potential involve-
ment of the mRNA targets regulated by hsa miRNAs 298, 
3940-5p, 4640-5p, 6081 and 6133 in SARS-CoV-2 infec-
tion-related processes (blood coagulation and immune 
response) (Fig. 3B).

Hsa‑miR‑298 is predicted to target mRNAs coding 
for proteins involved in blood coagulation 
and immune response

Based on (i) literature data, (ii) our GO analysis, and 
(iii) the high probability of interaction with SARS-
CoV-2_circ_3205, we focused on hsa-mir-298 (Fig. 4A). 
Has-miR-298 was predicted to target 18 and 30 mRNAs 

Fig. 2  Correlogram showing correlations among the expression 
of circ_3205, S mRNA and the viral load. Expression of circ_3205 
and S mRNA is reported as DCt (Ct of the transcript of interest 
– Ct  of GAPDH, used as endogenous control). Viral load was esti-
mated on the basis of the mean of the Cts of SARS-CoV-2 E, N, 
RdRp, and S genes. The color of the circle is related to the correla-
tion coefficient (r value), estimated through the Spearman correlation 
test: the deeper is the blue, the more positive is the correlation, the 
deeper is the red, the more negative is the correlation, as reported in 
the legend of the figure. The size of the circle is proportional to the 
significance of the correlation: the higher is the size of the circle, the 
lower is the p value
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involved in blood coagulation and immune response, 
respectively, based on DIANA miRPath analysis (Sup-
plemental Table 3). Ten predicted mRNA targets (CPB2; 
DCTN1; FN1; KCNMB4; MERTK; MYO1C; PDE1A; 
PIK3C3; PRKCE; SERPINB2) were selected as candi-
dates because of their known upregulation in biological 
specimens from SARS-CoV-2-infected individuals, as 
compared with UCs (Supplemental Table 4).

Potassium calcium‑activated channel subfamily 
M regulatory beta subunit 4 (KCNMB4) 
and protein kinase C epsilon (PRKCE) mRNAs are 
upregulated in positive samples as compared 
to UCs and their expression positively correlates 
with that of circ_3205

Quantitative real-time PCR detected the expression of seven 
(DCTN1; KCNMB4; MERTK; MYO1C; PIK3C3; PRKCE; 
SERPINB2) out of the ten predicted hsa-miR-298 targets in 
the analyzed samples. Among them, KCNMB4 and PRKCE 
were 6 and 8.1-fold more expressed in positive samples as 
compared to UCs (p values = 0.049 and 0.02, Student’s t 
test, respectively) and their expression positively correlated 
with that of circ_3205 (r values = 0.6 and 0.25, Spearman’s 
correlation test, respectively) (Fig. 4B).

PPI network of KCNMB4 and PRKCE is enriched 
in biological processes related to immune response 
and blood coagulation

PPI network generated by HuRI consisted of 482 nodes 
and 1452 edges. GO analysis of the whole network 
revealed an over-representation of biological functions 
linked to blood coagulation, immune response, and 
inflammation (Supplemental Fig.1). The analysis of cen-
tralities of the network revealed a total of 27 most cen-
tral proteins: among them, EGFR, HSP90AB1, YWHAZ 
occurred in five out of six subnetworks made of the 
most central nodes (Fig. 5). The generated subnetworks 
revealed an enrichment in BPs related to SARS-CoV-2 
infection program (Fig. 6).

Discussion

The capability of viruses to synthesize circRNAs upon 
infection has been ascertained, especially in DNA viruses 
[54–60]. As an example, Epstein Barr virus (EBV), a 
double stranded DNA virus belonging to the Herpes-
viridae family, is known to produce about 30 circR-
NAs during different phases of its infection [61] and 
some of them (e.g.: circBART2.2) contribute to virus-
induced carcinogenesis through the immune escape of 

Fig. 3  A Venn diagrams showing the number of miRNAs predicted 
to interact with circ_3205 by TarpMir, ACT and STarMiR predictive 
tools. The total number of miRNAs predicted by each tool is reported 
in brackets, while the number of miRNAs, either specifically pre-
dicted by only one or by more than one predictive tool, is reported 
(without brackets) within the Venn diagrams. The name of the five 
candidate miRNAs predicted to interact with circ_3205 by all the 
three predictive tools is reported in extenso. B Horizontal bar chart 
representing the enrichment of biological processes carried out by the 
predicted targets of hsa miRNAs 298, 3940-5p, 4640-5p, 6081, and 
6133. Biological processes are reported in y-axis; statistical signifi-
cance is reported as -LOG (p value) (x-axis)

◂

Fig. 4  A Graphical representation of the interaction predicted by 
STarMiR between hsa-miR-298 and circ_3205. MiRNA seed region 
is showed in red. The numbers below vertical bars indicate the nucle-
otide position of circ_3205. B Heatmap showing the expression of 
seven predicted hsa-miR-298 targets whose expression was revealed 
in positive (P) and negative (N) samples by real-time PCR. Expres-
sion is reported as DCt: the lower is this value, the higher is the 
expression of the target and viceversa. * = statistically significant DE 
transcript (p value < 0.05, Student’s t test)
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nasopharyngeal carcinoma cells [62]. Kaposi’s sarcoma-
associated herpesvirus (KSHV) generates circRNAs 
found to be inserted into virions and implied in several 
steps of the infection [63].

In this study, we first assayed the expression of eight 
circRNAs predicted to be synthesized by SARS-CoV-2 
upon host cell infection. Based on our experimental 
results, we then focused on circRNA 3205. Based on 
data stored in VirusCircBase, circ_3205 was predicted to 
be synthesized from the negative RNA strand of SARS-
CoV-2, specifically from a sequence embedded in the 
ORF coding for the N protein of the virus. Although 
the mechanism of circRNA biogenesis from RNA (+) 
viruses is under investigation, some hypotheses may be 
proposed: in a recent study, it was found that SARS-
CoV-2 genome may be in part reverse transcribed and 
integrated as DNA into the host genome through a 
LINE1-mediated mechanism, leading to the production 
of chimeric viral-host cellular transcripts [64, 65]. Based 
on this study, it is conceivable that viral circRNAs could 
be generated through backsplicing from these chimeric 
viral-host transcripts. Nevertheless, the hypothesis of an 
integration of SARS-CoV-2 genome (or a part) into the 
host genome is debated [66]. An alternative path of cir-
cRNA biogenesis from RNA (+) viral genomes may con-
sist in splicing-independent mechanisms occurring in the 
cytoplasm of host cells: this mechanism was previously 
described for IRE1alpha-mediated XBP1 mRNA splic-
ing in mammalian cells, for IL1b transcripts in platelets 
and for the recently suggested miR-7-mediated circulari-
zation of the CDR1AS transcript [67–69]. Expression of 
viral circRNAs may perturb the ceRNA networks origi-
nally present within host cells or may create new ones 
[70]. Specifically, our data suggest that once synthesized 
within the host cell, circ_3205 may function as sponge 
for hsa-miR-298, allowing for the upregulation of tar-
gets involved in the progression through the infection 
(Fig. 7). MiR-298, together with miR-296, belongs to a 
genomic locus that is imprinted both in mice and humans 
[71, 72]. Interestingly, hsa-miR-298 has been predicted 
to bind the 5’-UTR of the SARS-CoV-2 genome, poten-
tially altering its secondary structure and negatively 
impacting on its capability to be translated after infec-
tion of the host cell [73]. Chopra N. et al. identified hsa-
miR-298 as a potential therapeutic agent for Alzheimer’s 
disease, because of its capability to negatively regulate 
the expression of human amyloid-β precursor protein 

(APP), β-site APP-converting enzyme 1 (BACE1) and 
specific tau protein isoforms [74]. Hsa-miR-298 has also 
been defined as oncomiRNA in several cancers, thanks 
to its ability to downregulate proapoptotic proteins such 
as BAX and PTEN [75, 76]. These literature data sup-
port our hypothesis that the circ_3205 sponge effect 
against hsa-miR-298 may contribute to the progression 
of the infection, by stabilizing the SARS-CoV-2 genome 
and triggering biological processes such as inflamma-
tion and apoptosis. Our data also shed light on two pre-
dicted targets of hsa-miR-298 (KCNMB4 and PRKCE), 
which we found to be upregulated in positive samples 
and whose expression positively correlated with that of 
circ_3205. KCNMB4 encodes a β4 subunit of a voltage-
dependent  K+ channel, belonging to the  Ca2+-activated 
Slo subfamily (BK) [77, 78]. Upregulation of KCNMB4 
correlates with the increased intracellular concentration 
of  Ca2+ observed during SARS-CoV-2 infection [79]. 
Even though the function exerted by BK channels during 
the SARS-CoV-2 infection needs further investigation, 
the role of  K+ concentration and  K+ channels in facili-
tating the entry of some viruses into the host cells has 
been convincingly ascertained [80, 81]. Furthermore, 
abnormalities in electrolyte serum concentrations (espe-
cially sodium, potassium, calcium and chloride) have 
been found to be related with the prognosis of COVID-
19 patients and with the possibility to develop blood 
clots [82–84]. PRKCE encodes a  Ca2+-independent pro-
tein kinase, belonging to the subfamily of nonconven-
tional protein kinase C (PKCs); it has been described 
as involved in SARS-CoV infection, through the cal-
cium-independent PI3K/PKCε/JNK/CREB pathway; 
this, in turn, induces COX-2 expression upon the inter-
action between viral S protein and cellular receptors 
[85]. COX-2 has been found upregulated in several cell 
types also after SARS-CoV-2 infection [86]. PRKCE 
expression is further induced by Interferon-α (IFN-α), 
one of the first cytokines synthesized in infected cells 
on innate immune response [87]. Due to an abnormal 
recruitment of proinflammatory cells, IFN-α signaling 
over a prolonged period of time is known to cause an 
uncontrolled inflammatory response and potential organ 
failure in tissues infected by SARS-CoV-2 as well as 
other respiratory viruses [88, 89]. The study of the PPI 
network, generated starting from KCNMB4 and PRKCE, 
revealed Heat Shock Protein 90, Alpha family, class 
B member 1 (HSP90AB1) as one of the most central 
nodes, according to five out of six parameters of net-
work centrality. HSP90AB1 is a first neighbor interact-
ant of PRKCE and belongs to the Heat Shock Protein 90 
(HSP90) family. Some members of HSP90 family have 
been recently suggested to foster MERS-CoV, SARS-
CoV and SARS-CoV-2 replication and proinflammatory 

Fig. 5  Analysis of centralities of KCNMB4 and PRKCE’s PPI net-
work. Subnetworks show the top ten most central nodes calculated by 
A betweenness, B bottleneck, C closeness, D eccentricity, E radial-
ity, F stress methods. For each subnetwork the scalebar reporting the 
scores of centrality is shown

◂
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cytokine expression [90, 91]. Subnetworks generated by 
the study of centralities further revealed an enrichment 
in BPs strictly related to the local and systemic effects 
of SARS-CoV-2 infection, such as remodeling of pro-
tein trafficking within infected host cell [92], mucus 
hypersecretion [93], ErbB protein family and growth 
factor receptor signaling [94, 95], and unfolded protein 
response [96]. Collectively, these findings corroborate 
our hypothesis of a functional involvement of KCNMB4 
and PRKCE in SARS-CoV-2 infection.

Conclusions

Based on the integration of our experimental data and 
predictive analysis, we propose SARS-Cov-2_circ_3205/
hsa-miR-298/KCNMB4 and SARS-Cov-2_circ_3205/
hsa-miR-298/PRKCE molecular axes as involved in the 
progression of SARS-Cov-2 infection and, more in detail, 
in the related processes of blood clotting and immune 
response, respectively (Fig. 7).

Fig. 6  Functional enrichment of the subnetworks generated by A 
betweenness, B bottleneck, C closeness, D eccentricity, E radiality, 
F stress methods. Statistical significance of the functional enrichment 

within each subnetwork is reported as -LOG (p value) and BPs are 
arranged in y-axis from the higher to the lower -LOG (p value)

Fig. 7  Schematic diagram of the ceRNA network mediated by SARS-CoV-2 circ_3205 in human infected cells
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