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Contrast-enhanced cardiac magnetic resonance imaging (MRI) is routinely used to

determine myocardial scar burden and make therapeutic decisions for coronary

revascularization. Currently, there are no optimized deep-learning algorithms for the

automated classification of scarred vs. normal myocardium. We report a modified

Generative Adversarial Network (GAN) augmentation method to improve the binary

classification of myocardial scar using both pre-clinical and clinical approaches. For

the initial training of the MobileNetV2 platform, we used the images generated from

a high-field (9.4T) cardiac MRI of a mouse model of acute myocardial infarction (MI).

Once the system showed 100% accuracy for the classification of acute MI in mice, we

tested the translational significance of this approach in 91 patients with an ischemic

myocardial scar, and 31 control subjects without evidence of myocardial scarring. To

obtain a comparable augmentation dataset, we rotated scar images 8-times and control

images 72-times, generating a total of 6,684 scar images and 7,451 control images. In

humans, the use of Progressive Growing GAN (PGGAN)-based augmentation showed

93% classification accuracy, which is far superior to conventional automated modules.

The use of other attention modules in our CNN further improved the classification

accuracy by up to 5%. These data are of high translational significance and warrant

larger multicenter studies in the future to validate the clinical implications.

Keywords: cardiac MRI, generative adversarial networks, data augmentation, myocardial scarring, deep learning

INTRODUCTION

Acute myocardial infarction (MI), commonly known as a heart attack, is an unpredictable
complication of coronary artery disease (CAD). The location, size, density and heterogeneity of
myocardial scarring provides both diagnostic and prognostic information for patient management.
Such information is critical to manage patients at risk for heart failure (HF) and lethal cardiac
arrhythmias (1, 2). HF and cardiac arrhythmias usually result from diseased myocardium and
electrically unstable scars (3–5). Therefore, myocardial scar classification using emerging data
augmentation methods is of great clinical significance.
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Deep learning and artificial intelligence are rapidly gaining
importance in the field of medical imaging. The development of
newer generation cardiac MRI scanners with a higher signal-to-
noise ratio and better edge definition has enabled us to better
characterize myocardial scar tissue. However, we still lack smart
decision-making tools to accurately classify the “scar tissue” in
an objective and reproducible manner. Fortunately, there are
major enhancements in the Graphics Processing Unit (GPU)
development that enable us to train a large dataset in a relatively
short time span.

A promising approach to improve the accuracy and
consistency of myocardial scar detection lies in artificial
intelligence – the use of a machine to perform deep cognitive
analysis based on data input. The availability of such platforms
has the potential to improve clinical workflow, enhance
diagnostic accuracy, and offer options for early interventions.
Furthermore, integrating preclinical and clinical analytical
algorithms will allow us to directly examine the clinical
implication of scar tissue after acuteMI in humans, which has the
potential to have an immediate impact on patient management.

Since its inception in 2012, the ImageNet classification
platform with convolutional neural networks (CNNs) has been
developed as the most efficient data analytical platform (6). Well-
designed CNNmodels, such as VGG, Inception v3, and Resnet 50
have shown exceptional performance for image classification, and
now deep learning applications are frequently used in medical
image analysis (7–9). To enhance accuracy, multiple applications
including feature detection, segmentation, classification, and
image reconstruction are being integrated into various data
platforms (10, 11).

In this translational study, we generated the first proof-of-
concept data in a pre-clinical model of acute MI induced by
ligating the left anterior descending coronary artery. The mice
then underwent contrast-induced cardiac MRI and confirmatory
histology analysis of the infarct and remote regions. After
preclinical testing, we studied over 7,000 augmented images
generated from patients with a history of CAD and known
myocardial scar development.

METHODS

Mouse Model of Acute MI
All preclinical procedures and protocols conformed to
institutional guidelines for the care and use of animals in
research and were reviewed and approved by the University
at Buffalo Institutional Animal Care and Use Committee
(IACUC). Acute MI was induced in mice (age 14–15 weeks,
C57B1/6 background) by using our study protocol described
previously (12–14). Mice underwent permanent ligation of the
left anterior descending (LAD) coronary artery producing an
infarct in the anterior/anteroseptal walls of the LV. Concisely,
mice were anesthetized with ketamine (1 mg/kg intramuscular)
and xylazine (5 mg/kg subcutaneous) and were intubated to
undergo a ligation procedure (9-0 nylon) of the LAD. Our
laboratory performs AMI experiments on a routine basis with
70–80% post-MI survival. We studied 12 survivor mice (6 MI
and 6 controls) for 2 weeks. On day 14, mice underwent cardiac

MRI with gadolinium contrast infusion. To minimize pain and
distress, all studies were performed on anesthetized (1.5% of
isoflurane) animals. Upon completion of cardiac MRI, mice were
sacrificed using the CO2 euthanasia protocol approved by the
IACUC. The euthanasia procedure conformed to the guidelines
from the Panel on Euthanasia of the American Veterinary
Medical Association.

Myocardial Histology
Myocardial histology was performed to provide a gold-standard
(tissue) validation of myocardial infarction. Since Human
subjects are not required to undergo cardiac biopsy for tissue
validation of myocardial scar, pre-clinical studies were performed
for the conclusive evidence of myocardial infarction, along with
cross-validation with cardiac MRI in mice.

To visualize the extent of MI in mice, an Evans
Blue/tetrazolium chloride (TTC) method was employed.
For the TTC assays, 0.5mL of a 2% Evans blue solution (Sigma)
devoid of bubbles was slowly perfused, turning the heart blue
except for the risk regions. The heart was then removed, rinsed
with KCl and PBS, and chilled at -20◦C for 5min prior to
sectioning the LV into 7–8 transverse rings of 1mm thickness
using a heart slicer matrix (Zivic Instruments). Sections were
subsequently incubated in a 1% TTC solution (Sigma) in a 37◦C
incubator for 15min until a red stain developed to assess infarct
size. The sections were placed between two clamped pieces of
plexiglass with a 2mm spacer and digital images were taken of
both sides of each slice as described previously by our group
(15). The total area and left ventricular (LV) area were calculated
using Fiji. Using a color thresholding technique, we classified
the blue regions of the heart as viable and the bright red as the
risk regions.

Hematoxylin and eosin (H&E)-stained myocardial tissue
sections were used to examine the infarct zone using the
whole heart tissue, covering both ventricles and interventricular
septum. Whole heart images were obtained from Leica Aperio
VERSA whole slide imaging System at 63× magnifications
(Multispectral Imaging suite, University at Buffalo). The extent
of total myocardial fibrosis was visualized by trichrome
staining (Thermo ScientificTM Richard-Allan ScientificTM Masson
Trichrome Kit/22110648). The total myocardial area and the
area of positive staining for fibrosis were quantified using color
deconvolution algorithms as described previously (16).

Preclinical Cardiac MRI
Based on our study protocol explained previously (14), we used a
20 cm diameter horizontal-bore 9.4 Tesla magnet (Biospec 94/20
USR, Bruker Biospin) equipped with a gradient coil supporting
440 mT/m gradient strength and 3,440 T/m/s maximum linear
slew rate (BGA-12S HP; Bruker Biospin). A series of three
orthogonal gradient echo (GRE) scout images of the heart
were acquired. For the tagged images, we acquired ECG and
respiration-gated axial views of the heart in cine mode with 2D
SPAMM tagging (0.1mm thickness; 0.5mm grid distance) using
a single-slice fast low-angle shot (FLASH) sequence with the
following parameters: 2ms Gaussian pulse for slice selection; 30
flip angle; TE/TR = 2.2/15ms; 50 kHz readout bandwidth; fat
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suppression; 1mm slice thickness; 30 × 30 mm2 field of view;
256 × 256 matrix; 8 averages; 8 cardiac movie frames. The scan
time was between 10 and 15min, depending on respiration and
heart rate.

For late gadolinium enhancement (LGE), we discharged the
syringe and acquired late contrast enhancement data at 20min
after the injection using an ECG and respiration-gated inversion-
recovery T1-weighted FLASH sequence with the following
parameters: 60◦ flip angle; TE/TR= 2.1/1200ms; 65 kHz readout
bandwidth; TI= 200ms; 8 axial slices with 0.8mm thickness and
0.2mm gap; 25 × 25 mm2 field of view; 256 × 256 matrix; no
averages. The scan time was between 3 and 5min, depending
on respiration and heart rate. Cardiac MRI images were taken
both before and after the MI induction procedure (median time
= 2 weeks), which were denoted as pre-MI and post-MI images,
respectively, as described previously by our group (14). We
selected 272 images from the MI group and 383 images from the
normal control mice. After an initial quality review, 392 images
were chosen as the training dataset.

Contrast-Enhanced Cardiac MRI Protocol
in Patients
Human experimental protocols were approved by an institutional
review board (IRB) committee from University at Buffalo and
all methods involving human/human data were performed
in accordance with the relevant guidelines and regulations.
Since the MRI database was accessed retrospectively and no
direct patient contact was involved, the informed consent was
waived by the IRB committee. Patient identifiers were securely
processed using our existing Health Insurance Portability and
Accountability Act (HIPAA) guidelines. A GE 1.5-T scanner
with technical parameters recommended by the manufacturer
was used. LGE sequence was obtained after intravenous (IV)
gadolinium injection with an inversion recovery prepared T1
gradient echo and manually adapted inversion time. Typically,
the images taken after 7–10min after gadolinium injection were
used for the current data analysis algorithms. Further details on
cardiac MRI protocols were reported previously (17).

Clinical MRI Dataset
We first obtained 1,447 images from 91 patients with a
history of coronary artery disease. Most of these patients were
referred for contrast-enhanced cardiac MRI after visualization
of coronary artery disease on the invasive coronary angiogram
(44% had a prior history of stent placement and 13%
had previously undergone surgical revascularization). Patients
underwent a comprehensive MRI protocol including gadolinium
contrast injection. The presence of abnormal LGE signal
after optimal inversion recovery in the contrast-enhanced
MRI was considered as the presence of myocardial scar.
Additionally, 313 MR images from 31 control subjects were
used for comparison. The controls included age-matched
subjects with identical myocardial function, but no evidence
of myocardial scar. Only 660 images with abnormal LGE,
and 207 control images passed the initial image quality
review. The DCM image format was then transformed
into JPG format using MicroDicom viewer before further
processing of the datasets. Representative examples are shown

in Supplementary Figure 1. The model was first tested with 206
images (103 randomly split from each category) to precisely
evaluate the model classification accuracy. Next, 557 images
from patients with ischemic scars and 104 control images
were used for training. Since there were discrepancies between
the number of MI and control images, we augmented the
control data size to match the myocardial scar data size.
To ensure a balanced comparative dataset, we adjusted the
training sample size from both classes as demonstrated in data
Supplementary Figure 2.

MobileNetV2
MobileNet/MobileNetV1 was first proposed by a Google
researcher team in 2017 (18). In this modified CNN model,
a convolutional layer is replaced by a depthwise-separable
convolution layer to reduce the parameters and speed-up the
training process. The main refinement of MobileNetV2 is to
improve the precision by the introduction of inverted residual
blocks. The basic idea of residual blocks is derived from Resnet
(9, 19). The inverted residual in MobileNetV2 reverses the
residual block sequence in Resnet. Considering the accuracy
and training speed, we used MobileNetV2 as the fundamental
model in our experiment. To improve this model performance,
Finetune (initialization by a pre-trained classification network,
and then training for a different task) was used. Since pretrained
parameters provide an excellent initiation point, Finetuning
is widely employed in medical image analysis for a faster
convergence of the model (10, 20, 21). The comparison of
random initialization and pretrained parameter initialization is
shown in Supplementary Figure 3.

Attentional Units
To further enhance the MobileNetV2 classification accuracy,
squeeze-and-excitation block (22) is considered as a channel
attention (CA) unit to embed into MobileNetV2. The first layer
in the squeeze-and-excitation block is a convolutional step. The
remaining structure is similar to the residual block. First, a global
average pooling is used to obtain individual channel information
U. The key formulation is defined as S = σ (g(z,W)) =

σ (W2δ(W1z)), where σ is a sigmoid activation and δ refers
to a ReLU activation. These two activation layers learn non-
linear interactions between the channels and generate a mask
(S) of multiple channels to emphasize features. The output
is the channel-wise multiplication from mask S and feature
map U. Spatial attention (SA) is derived from convolution
block attention module (23). The difference is that we only
use the average pooling layer followed by a convolutional layer
and a sigmoid layer, and mix attention (MA) adds these two
attentions together to shift the parameters. Because of the highest
performance of CA, in a later experiment, we only focused on the
performance of MobileNetV2 with or without CA.

Traditional Data Augmentation
A single flip shift scale is used for the images in the training set.
To ensure comparable dataset size, we rotated scar images 8 times
and control images 72 times. Finally, 6,684 MI augmentation
images and 7,451 control augmentation images were generated.
These augmented images formed an image pool, which was
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sampled randomly in different TA scales. In these experiments,
we used 4x augmentation.We first sampled 453 control images to
match the MI image size of 557. Upon sampling randomly from
the image pool, we generated 2,228 MI and 2,228 control images
as the training dataset.

GAN Augmentation
PGGAN, a generative adversarial network (GAN) variant, has
greater power in generating 1,024× 1,024 high-resolution image
platform from a randomnoise (24). Different from the traditional
GAN training process, PGGAN trains with progressive growth
resolution. The training starts with a low spatial resolution
of 4 × 4 pixels. As the training advances, the generator
and discriminator layers increase to match the spatial image
resolutions, and hyperparameter α continues to update for a
smooth transition to a higher resolution. In our experiments, we
generated 256 × 256 scar and control MR images. The overview
of PGGAN architecture is shown in Supplementary Figure 4.
To quantitatively analyze the shift effect to PGGAN, ImageNet
pretrained MobileNetV2 is used again to calculate Frechet
inception distance (FID) in equation 1:

FID = ‖ µr − µg ‖
2 + Tr(

∑

r

+
∑

g

−2(
∑

r

∗
∑

g

)
1
2 ) (1)

where µr , µg are feature mean of real images and generated
images, and

∑
r,

∑
g, are feature covariance matrix of real images

and generated images. Low FID means a low distance from real
image distribution to generated image distribution.

Different from PGGAN, CycleGAN generates a fake image
from the real image. In CycleGAN, two-cycle consistency
losses are introduced to enforce the generated image (G) and
reconstructed image (F) from G to be consistent with each other
(25). Since CycleGAN uses actual images as an input, we expect
the stable generated images to have better classification accuracy
with CycleGAN. Because GAN needs a large dataset for training,
TA image pool is used to train a GAN. For better GAN training
results, we generate images from each category separately.

Filtration of the Unusual-Looking Images
Principal component analysis (PCA) is a typical technique to
reduce data dimensions and visualize data structure. K-means is
a classical unsupervised algorithm to cluster data by calculating
individual sample distance. We used MobileNetV2 pretraining
by ImageNet to extract 1000-dimension features of each image.
Next, we used PCA to map the 1000-dimension embedding
features into one-dimensional latent space. We assumed that
nearly 30% of the values, one standard deviation σ away from the
mean, could be considered as unusual images (outliers), which
were filtered out from the algorithm.

Gradient-Weighted Class Activation
Mapping
Because the last convolutional layers contain detailed spatial
information, Grad-CAM uses the gradient information flowing
into the last convolutional layer of the CNN to look for semantic
class-specific information in the images (26).We generated a heat

map of all the test images by this method to visualize the region
of interest for CNN and implement the quantitative analysis.

Results
Cardiac MRI Showed Anterior Wall Thinning and

Scarring in Mice With Coronary Artery Ligation
Acute MI led to regional changes in myocardial morphology as
demonstrated by histology and cardiac MRI. Evans Blue/TTC
method was employed to assess infarct size as shown in
Figure 1A. The severity of myocardial injury following LAD
ligation was calculated as the ratio of the area at risk (AAR)
to left ventricular area (LV) (AAR/LV: 32.18% ± 13.32, n
= 6), assessed across the heart at 1mm intervals from
base to apex. Representative images illustrating the TTC-
based histological confirmation of myocardial infarction, and
an abnormal gadolinium enhancement on contrast-enhanced
cardiac MRI are shown in Figure 1. Most of the anterior wall
contained the myocardial scar. The remaining regions that had
no scar were considered viable remote regions.

The Principal Component Analysis Showed
a Gaussian Distribution of the Data
Dimensions
We used the PCA method to reduce the dimensionality of
large data sets by transforming data variables into a smaller
one, but preserving most of the information of the larger set.
The PCA analysis of feature distribution is shown in Figure 2.
Figures 2A,B show the normal distribution of the features
generated from PGGAN. Therefore, we used k-means of one
to calculate the Euclidean metric between each data point with
a mean. Figures 2C,D demonstrate that the data features are
subjected to binary-variate Gaussian distribution. This algorithm
enabled us easier data exploration, and thus making data analysis
much easier and faster for k-means without extraneous variables
to process.

MobileNetV2 With Heatmap Generation
Had 100% Accuracy to Classify Acute MI in
Mice
After multiple epochs in the training dataset with a stabilized
training model, we generated the learning curves to determine
the suitability fit to the training dataset. The MobileNetV2
classification accuracy curve demonstrated 100% accuracy in
mice as illustrated in Figure 3. Because the accuracy was so
high, further data augmentation algorithm was not applied. The
heatmap of MobileNetV2 was focused on the whole thoracic
cavity, which also includes the ventricles with acute MI.

Compared to the Spatial or Mixed
Attention Modules, the Channel Attention
Module Had the Highest Accuracy
Different attention modules were tested based on 4x traditional
augmentation. Compared to spatial or mixed attention training
modules, CA showed the highest accuracy with the most
stable system, as illustrated in Figure 4. The combined module
might have been less efficient than the original CA, since the
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FIGURE 1 | Representative images from the mouse model of acute myocardial infarction (MI). (A) TTC stained mouse heart sections at 1mm after myocardial

infraction. The viable myocardium appeared in blue and the area at risk (AAR) in bright red. (B) Histological demonstration of a thinned myocardium (shown by an

arrow) in a mouse that underwent left anterior descending artery ligation. (C) Comparative histology from a normal control mouse. (D) Contrast-enhanced cardiac MRI

showing anterior wall scar and wall thinning in a mouse model. (E) Cardiac MRI showing normal left ventricular morphology.

summation of the attentionmodules in different axes could partly
counterbalance the original features.

PGGAN Shifted by K-Means Removed the
Data Outliers, CycleGAN Improved the
Data Outline
Compared to the original images (Figures 5A,F), Many PGGAN
generated images are of unusual shape as demonstrated in
Figures 5B,G. Since the original training dataset is relatively
small, a small raw dataset does not provide sufficiently high
variance information for stable image generation. Table 1 shows
that k-means selection reduces FID, and therefore should be
an effective method to remove unusually shaped images. Some
typical PGGAN generated images with k-means are shown in
Figures 5C,H. Although some images are still of unusual shape,
k-means filters the outliers and reduces the number of unusually
shaped images.

Figures 5D–J show CycleGAN generated images. CycleGAN
translates images from the real images in different source
domains. Unlike the images generated by PGGAN, all
CycleGAN-generated images represent a clearer tissue outline.
The main problem associated with CycleGAN is that scar
tissue images are imperfectly translated from the normal image
domain. In our study, this resulted in the overestimation of
the scar size (green circle, Figures 5D,E) with a hollow (black)
core. This semantic difference would be hard to be shifted by
k-means. The classification results also showed that k-means is
more effective for PGGAN generation shift than for CycleGAN
generation shift.

Combination of GAN Augmentation and
Kmeans Selection Was a Reliable Method
to Improve CNN Performance
All classification results of different augmentation methods
are presented in Table 2. The performance accuracy (high-
to-low) is determined to be PGGAN augmentation, TA
and CycleGAN. In particular, 4x PGGAN-k-means based
augmentation shows the best accuracy (92.7%). We infer that
perhaps the inferior performance of CycleGAN was due to
unthorough translation from source image domain. The GAN
augmentation classification results without k-means are shown
in Table 3. Taken together, k-means selection enhances PGGAN
augmentation accuracy removing the unusually-shaped images.
Images generated by CycleGAN have a better edge definition.
Additionally, the ROC (receiver operating characteristic) curves
are shown in Supplementary Figure 5.

Higher Accuracy Was Correlated With a
Smaller Region of Interest
As shown in Figures 6D,G, the myocardial scar was correctly
localized through Grad-CAM. The ROI (marked red) represents
the scar-bearing myocardial segment. However, Grad-CAM was
not sensitive enough to locate the myocardial scar at the
border zones. One possible explanation for this caveat could
be that without pixel-level labeling of myocardial scar, the self-
localization of CNN from a small Grad-CAM training set is
limited. Further augmentation results with smaller ROI and
higher accuracy as shown in Figures 6A–F and Table 2.

Higher accuracy is likely derived from a precise location of
the ROI. A similar heatmap generated from TA (Figure 6D)
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FIGURE 2 | PCA plots of GAN-generated images from each category. (A) Visualization of ischemic scar image set generated from PGGAN. (B) Visualization of control

image set generated from PGGAN. (C) Visualization of ischemic scar image set generated from CycleGAN. (D) Visualization of control image set generated from

CycleGAN.

and from PGGAN augmentation (Figure 6E) reveals that ROI
generated from PGGAN+k-means is the same as in TA, and the
classification accuracies from PGGAN+k-means augmentation
(92.7) and TA (92.2) are similar. This also suggests that attention
shift could be the reason for inferior training results from
CycleGAN (91.7). Since CycleGAN (Figure 6F) provides higher
emphasis to the subdominant features around the ventricles, this
can lead to attention shift.

DISCUSSION

Despite recent advances in the field of deep learning to
predict cardiovascular outcomes (27, 28), there are limited data

examining the accuracy of myocardial scar classification. This is
the first multidisciplinary study that combines the preclinical and
clinical approaches to develop a tissue-validated classification
and augmentation algorithms in subjects with an ischemic
myocardial scar. Our CNN model introduces an attentional
block-based data processing approach to improve MobileNetV2
classification of myocardial scar. We also report that GAN is an
effective method to mitigate the data imbalance and present a
comparative data analysis algorithm to show which GAN-type is
must suitable to augment myocardial scar imaging. Finally, we
combine k-means and PCA to identify abnormal images with the
goal of improving the augmentation effects in advance.

Quantitative interpretation of myocardial scar
has remained a challenging task despite the use of
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FIGURE 3 | Mouse MRI heatmaps and training curves generated by MobileNetV2. (A) Classification accuracy curve. The test accuracy was at 100% after several

epochs that stabilized the model. (B,C) Heatmaps generated by Gcam from acute myocardial infarction (MI) and control mice, respectively.

FIGURE 4 | Different attention unit MobileNetV2 training results of 4x traditional augmentation. (A) Spatial attention (SA) accuracy curve (89.8% testset accuracy). (B)

Channel attention (CA) accuracy curve (92.2% testset accuracy). (C) Accuracy curve without any attention (89.8% testset accuracy). (D), Mix attention (MA) accuracy

curve (89.3% testset accuracy). The accuracy curve fluctuate more violently without any attention module and the final accuracy is the lowest.
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FIGURE 5 | Images generated by PGGAN and CycleGAN. (A) MI image from original data. (B) MI image generated form PGGAN. (C) MI image shifted by kmeans

after PGGAN generation. (D) MI image generated from CycleGAN. (E) MI image shifted by kmeans after CycleGAN generation. (F) Control image from original data.

(G) Control image generated form PGGAN. (H) Control image image shifted by kmeans after PGGAN generation. (I) Control image generated from CycleGAN. (J)

Control image shifted by kmeans after CycleGAN generation. Green circle in (D,E) is manually added so as to mark the abnormal morphology of the generated image.

TABLE 1 | Generation of FID score from PGGAN.

FID

PGGAN (MI) 289.208

PGGAN + kmeans (MI) 285.746

PGGAN (control) 323.129

PGGAN + kmeans (control) 322.873

PGGAN, the FID score of PGGAN; PGGAN+kmeans, FID of kmeans sift of original PGGAN

generation; MI, myocardial infarction; Control, normal images from the control group.

automated edge-detection techniques (29, 30). The manual
segmentation is time-consuming and subjective, which
can lead to high intra- and inter-observer variations.
To date, there were no studies that attempted the gold
standard approaches of myocardial scar classification
using a histological validation in an acute MI model,
and clinical validation in patients with chronic ischemic
myocardial remodeling.

Our initial data classification algorithm tested in a mouse
model of acute MI demonstrated 100% accuracy for the
classification of acute MI. Although this approach was highly
promising and did not require additional data filtration or
augmentation algorithms, there can be limitations of fully
extrapolating the mouse data into the clinical scenario. First,
the mouse model of acute MI was developed by irreversible
occlusion of the left anterior descending coronary artery, which
is not entirely representative of our patient population with
chronic CAD. Second, the mouse model of acute MI was studied
within the first two weeks of MI induction. Nevertheless, mice
MRI data showed smaller variance and higher interpretation

TABLE 2 | Comparative analysis of various classification approaches.

Acc (%)

MobilenetV2 (raw) 55.8

MobilenetV2 (raw) (CA) 50.5

TA base MobilenetV2 83.5

TA base MobilenetV2 (CA) 88.8

4x TA MobilenetV2 90.3

4x TA MobilenetV2 (CA) 92.2

PGGAN+kmeans base MobilenetV2 84.5

PGGAN+kmeans base MobilenetV2 (CA) 88.3

4x PGGAN+kmeans MobilenetV2 89.8

4x PGGAN+kmeans MobilenetV2 (CA) 92.7

CycleGAN+kmeans base MobilenetV2 83.5

CycleGAN+kmeans base MobilenetV2 (CA) 88.3

4x CycleGAN+kmeans MobilenetV2 87.4

4x CycleGAN+kmeans MobilenetV2 (CA) 91.7

Acc (accuracy), kmeans (k = 1, removes PGGAN generative images. K = 2, removes

CycleGAN generative images), base (augmentation applied to increase normal set size

same as acute set size so as to mitigate the imbalance). TA, traditional augmentation; CA,

channel attention. Bold means highest accuracy.

accuracy compared to the human data. This preclinical training
model provided additional intimations to advance classification
performance and improve accuracy.

Generally, our results show the classification accuracy
obtained from combined PGGAN and k-means is comparable to
traditional data augmentation. The inferior data augmentation
from CycleGAN is likely due to unsupervised image-to-image
translation generated without prior restriction. For image-to-
image augmentation, training from more powerful translation
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GAN like UGATIT platforms may enhance performance and
improve accuracy (31). As for noise-to-image augmentation,
newer approaches with layer normalization instead of
pixel norm in PGGAN could be attempted to improve the
semantic understanding.

Although channel attention has shown the highest model
stability in our experiments, other attention modules could also
be utilized to fulfill additional tasks. Powerful spatial attention
modules such as the non-local layer or graph reasoning layer
could be optimized and then applied to our system for the
accurate classification of myocardial scar in different coronary
artery territories (32, 33). Since the image-shifting is a commonly
encountered challenge, newer outlier detection algorithms could
be utilized to shift the generated images more effectively. The
unusual-looking images pose a semantic difference with well-
looking images. In particular, for CycleGAN generated images,
an unthorough translation of the myocardial scar leads to a
high-level of semantic difference.

In contrast with CycleGAN-based image generation, k-
means outlier selection is based on the Gaussian distribution
rule. Although the feature extraction step from the pretrained
MobileNetV2 involves image semantic information, this has a

TABLE 3 | GAN augmentation classification results without kmeans.

Acc (%)

4x PGGAN MobilenetV2 81.1

4x PGGAN MobilenetV2 (CA) 87.9

4x CycleGAN MobilenetV2 82.5

4x CycleGAN MobilenetV2 (CA) 90.7

limited utility for our imaging processing. This advantage of
PGGAN over the CycleGAN could be the reason for the higher
accuracy of PGGAN data augmentation after k-means selection.
Our data suggest that the use of an algorithm with an integrated
medical image semantic extraction module can extract outliers,
and enhance classification performance.

LIMITATIONS

Our study has a few limitations which can be overcome with
future research. This study has a small image dataset size as
described above. However, we have, at least in part, addressed
this issue by rotating the scar images 8 times and control
images 72 times, followed by scaling, shifting and flipping images
one time, so that ∼7,000 images with balanced augmentation
were obtained. In addition, this study was not designed to
study the in-depth mechanisms of ischemic remodeling in mice.
Since the image classification was our main goal, the clinical
data were not tailored to study the long-term cardiovascular
outcomes. Nevertheless, this is the first step toward the training a
validation of the myocardial scar classification algorithm using a
multidisciplinary approach.

CONCLUSIONS AND FUTURE
IMPLICATIONS

We have shown that the channel attention is the most effective
attention unit to improve CNN performance. We conclude that
the data performance can be improved by utilizing a min-max
contrast between the discriminator and generator models of
GAN. K-means has a strong ability to remove unusually-shaped

FIGURE 6 | (A) Original ischemic scar image. (B) Heatmap of base model. (C) Heatmap of CA embedded to base model. (D) Heatmap of CA embedded to base

model with 4x traditional augmentation. (E) Heatmap of CA embedded to base model with 4x PGGAN augmentation. (F) Heatmap of CA embedded to base model

with 4x CycleGAN augmentation. (G) Heatmap of CA embedded to base model with 4x traditional augmentation of image in the control group.
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generated images and thus amplifying the accuracy training from
PGGAN augmentation (17).

In the future, besides image interpretation, this model could
be applied in several medical applications, including a GAN-
based data augmentation anonymization tool for large-scale
data sharing, and a clinical training tool to educate medical
practitioners. One promising approach is to use this method to
augment the size and variability of myocardial scar, which can
predict clinical outcomes, including heart failure and sudden
arrhythmic events.
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