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Abstract

Summary: The growing availability of genomewide polymorphism data has fueled interest in detecting diverse se-
lective processes affecting population diversity. However, no model-based approaches exist to jointly detect and dis-
tinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMix B-statistic
framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMixþ,
which implements five B statistic extensions based on mixture models to robustly identify both types of selection.
BalLeRMixþ is implemented in Python and computes the composite likelihood ratios and associated model parame-
ters for each genomic test position.

Availability and implementation: BalLeRMixþ is freely available at https://github.com/bioXiaoheng/BallerMixPlus.

Contact: xhcheng@uchicago.edu or mdegiorg@fau.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Footprints of natural selection provide valuable insights into the evolu-
tionary history of populations. As a result, they have been key features
that evolutionary biologists probe for within sequenced genomes.
Positive selection increases the prevalence of beneficial genetic vari-
ation and can reduce genetic diversity in regions nearby the selected
loci, and is one of the most examined modes of natural selection
(Booker et al., 2017, offers a good review). Meanwhile, balancing se-
lection maintains polymorphisms at selected loci and sharply increases
genetic diversity in regions adjacent to the selected loci. The deluge of
polymorphism data available from contemporary sequencing technol-
ogies has fueled interest in both method development (e.g. Bitarello
et al., 2018; Cheng and DeGiorgio, 2019, 2020; DeGiorgio et al.,
2014; Isildak et al., 2021; Sheehan and Song, 2016; Siewert and
Voight, 2017, 2020) and empirical data analysis (e.g. Croze et al.,
2017; Leffler et al., 2013; Teixeira et al., 2015) on balancing selection.

However, despite these methodological advancements, few
model-based methods exist to jointly detect and distinguish positive
and balancing selection from genomic data. Most approaches suited
to this task, such as the summary statistics Tajima’s D (Tajima,
1989) and the HKA test (Hudson et al., 1987), as well as the anom-
aly detection approach of Tsel (Hunter-Zinck and Clark, 2015),
identify genomic regions displaying patterns of variation unexpected

under neutrality. Though Tsel showcases improved power and ro-
bustness compared with previous summary statistics, it cannot indi-
cate the nature of selection, and none of these statistics provide
direct details about selected footprint features at outlier regions,
such as balanced polymorphism frequency, width of the footprint
and magnitude of distortion of the distribution of allele frequencies
in support of either positive or balancing selection. Instead, alterna-
tive contemporary machine learning strategies for distinguishing
between balancing selection and positive selection have been devel-
oped and proven to be powerful (Isildak et al., 2021; Sheehan and
Song, 2016), yet these methods often rely on accurate estimates of
key population parameters such as demographic histories, extensive
training datasets and substantial computational resources to deploy.
Hence, it is desirable to have a computationally efficient model-
based approach that makes minimal assumptions and that has power
to discriminate both positive and balancing selection from neutral-
ity, as well as the ability to classify the mode of selection at genomic
regions strongly deviating from neutrality.

Initially aiming at accommodating the variability of footprint
sizes of long-term balancing selection, Cheng and DeGiorgio (2020)
described a flexible mixture model framework, collectively termed B
statistics, that we extend here to consider positive selection as well.
The B statistics assume the number of balanced alleles follows a bi-
nomial distribution with n trials (sample size) and success rate x
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(equilibrium frequency). Given n and x, the mean and variance of
observed allele counts are fixed. However, many factors not
accounted for by the binomial model can inflate the variance, such
as accumulation of mutations and uncertainty or oscillation in equi-
librium frequency (e.g. Bergland et al., 2014). We extend these B sta-
tistics to adopt a beta-binomial distribution instead to approximate
the allele count probability distribution.

By incorporating the overdispersion parameter a 2 ð0;1Þ of the
beta-binomial into the models, the B statistics not only fit the
observed data under long-term balancing selection (where a> 1, sug-
gesting an enrichment of sites with intermediate frequencies; ex-
ample in Fig. 1A), but can also fit data generated by selective
sweeps (when a< 1, suggesting a depletion of sites with intermediate
frequencies; example in Fig. 1B). Therefore, extending the mixture
models in this way broadens the applicability of the Cheng and
DeGiorgio (2020) B statistics to jointly detect and distinguish (de-
pending on value of a) balancing and positive selection using a unify-
ing model based on the same set of assumptions.

2 Implementation

BalLeRMixþ is written in Python and employs basic packages as
well as numpy and scipy.special (Harris et al., 2020), and is
currently compatible with Python3.6 and above. Its primary input is
a plain text file listing the physical and genetic positions, allele
counts and sample sizes of each informative site along a

chromosome. For convenience, we include an auxiliary script in the
software repository to help parse common standard formatted files,
i.e. VCF, AXT and recombination maps, into formats fit for
BalLeRMixþ. In addition to the input file, users are expected to
provide a helper file that is either the site frequency spectrum (B2

and B2;MAF statistics) or the genomewide polymorphism to substitu-
tion ratios among all informative sites (B1 statistic). Both helper files
can be generated by BalLeRMixþ from the concatenated genome-
wide allele count input files across chromosomes. Users will specify
which B statistics (B1, B2 or B2;MAF) to perform a scan with using –
nofreq or –MAF arguments. We do not recommend users to apply
the B0 or B0;MAF statistics to detect positive selection based on their
performance on simulated data (see Supplementary Notes). We ran
BalLeRMixþ on a single core Intel i5-6300U CPU (2.4 GHz) with
8 GB of RAM to compute the B2 statistic across a simulated 100
kilobase sequence with 757 informative sites, and the software ran
in �17 min.

During a genomic scan, BalLeRMixþ computes the composite
likelihood ratio of selection versus neutrality for each informative
site across the parameter space and outputs the maximum composite
likelihood ratio, optimal equilibrium frequency x̂, optimal disper-
sion parameter â, optimal linkage parameter Â (related to width of
selection signal), as well as the number of informative sites included
in the computation. The sign of log ðâÞ can be indicative of the mode
of selection, as exemplified in Figure 1A and B.

3 Performance evaluation

To evaluate the performance of BalLeRMixþ compared to
BalLeRMix to detect balancing selection, we simulated sequences
under both neutrality and long-term balancing selection using
SLiM3.3 (Haller and Messer, 2019) following the protocol of Cheng
and DeGiorgio (2020). Both the original and extended B statistics
show comparable power (Fig. 1C), confirming that BalLeRMixþ
can powerfully detect long-term balancing selection. For positive se-
lection, we simulated sequences evolving along the inferred demo-
graphic history of Europeans (see Supplementary Note), and
introduced a de novo mutation with per-generation selective advan-
tage of s¼0.01 at 104 or 2500 generations before sampling. Unlike
the original B statistics that show little to no power, the extended
B1, B2 and B2;MAF statistics of BalLeRMixþ exhibit high power to
identify the selective sweep (Fig. 1D). Moreover, Figure 1A and B
displays peaks of high-magnitude B2 statistic at the centers of the
simulated sequences, showing that the signal of both balancing and
positive selection can be localized. We also simulated scenarios of
partial selective sweeps, sweeps on standing variation, adaptive
introgression and recent balancing selection (see Supplementary
Note), and our results confirm that BalLeRMixþ can powerfully
and robustly identify and distinguish diverse modes of selection.
Given the overall power and robustness of BalLeRMixþ, we believe
that it represents a comprehensive suite of statistics and will be a
welcome addition to the evolutionary biologists’ toolbox.
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Fig. 1. (A, B) Extended B2 score along the simulated sequences undergoing (A) long-

term balancing selection and (B) recent positive selection at center of sequence. Line

color reflects sign and magnitude of the estimated dispersion parameter log10ðâÞ,
and the log10ðâÞ color bar is common to both panels A and B. Positive values of

log10ðâÞ suggest more support for balancing selection, whereas negative values sug-

gest greater support for positive selection. The line colors plotted in panels A (bal-

ancing selection) and B (positive selection) are consistent with expectations based on

the sign of log10ðâÞ. (C, D) Receiver operating characteristic curves of the original

(dashed lines) and extended (solid lines) B statistics for identifying sequences under

(C) balancing selection or (D) positive selection
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