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A B S T R A C T   

The promoter is a key DNA sequence whose primary function is to control the initiation time and 
the degree of expression of gene transcription. Accurate identification of promoters is essential for 
understanding gene expression studies. Traditional sequencing techniques for identifying pro
moters are costly and time-consuming. Therefore, the development of computational methods to 
identify promoters has become critical. Since deep learning methods show great potential in 
identifying promoters, this study proposes a new promoter prediction model, called iPro2L-DG. 
The iPro2L-DG predictor, based on an improved Densely Connected Convolutional Network 
(DenseNet) and a Global Attention Mechanism (GAM), is constructed to achieve the prediction of 
promoters. The promoter sequences are combined feature encoding using C2 encoding and 
nucleotide chemical property (NCP) encoding. An improved DenseNet extracts advanced feature 
information from the combined feature encoding. GAM evaluates the importance of advanced 
feature information in terms of channel and spatial dimensions, and finally uses a Full Connect 
Neural Network (FNN) to derive prediction probabilities. The experimental results showed that 
the accuracy of iPro2L-DG in the first layer (promoter identification) was 94.10% with Matthews 
correlation coefficient value of 0.8833. In the second layer (promoter strength prediction), the 
accuracy was 89.42% with Matthews correlation coefficient value of 0.7915. The iPro2L-DG 
predictor significantly outperforms other existing predictors in promoter identification and pro
moter strength prediction. Therefore, our proposed model iPro2L-DG is the most advanced pro
moter prediction tool. The source code of the iPro2L-DG model can be found in https://github. 
com/leirufeng/iPro2L-DG.   

1. Introduction 

Genes [1] are the genetic code of life, which direct the synthesis of various proteins [2] through transcription [3] and translation 
[4] processes to maintain the normal activities of life. The promoter is a key DNA fragment for gene transcription, located in the 
upstream region of the gene usually [5]. The promoter is responsible for the initiation of gene transcription and under what conditions 
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it begins [6]. The promoter sequence recognizes and amplifies RNA sequences by directing RNA polymerase [7] but does not transcribe 
the gene by itself. The promoter can also interact with other regulatory elements (e.g., enhancers) to regulate the rate of gene 
expression. Considering the level of transcription, promoters can be classified as strong promoters and weak promoters. A strong 
promoter enhances gene expression, while a weak promoter attenuates gene expression. An increasing number of medical studies have 
shown that mutations in promoter sequences may lead to dysregulation of gene expression, resulting in various malignant diseases 
[8–10]. Therefore, accurate identification of promoters is essential for understanding gene expression studies. 

Previously, biologists may use traditional sequencing techniques to identify promoters, which were costly and time consuming. 
Therefore, it became critical for develop computational methods to identify promoters, which provided biologists with more tools and 
resources to help them better understand the role of promoters in gene expression. In recent years, an increasing number of 
computational methods have been developed to identify promoters. In 2005, Florquin et al. [11] proposed an approach to identify 
promoters based on the structural features of promoter sequences, which achieved good results. Subsequently, more and more pre
dictors based on machine learning methods and complex feature engineering [12–14] have been widely used to identify promoters. For 
example, Liu et al. [15] developed a predictor called Ipro54-PSEKNC based on the support vector machine (SVM) algorithm and the 
sequence pseudo-K element nucleotide composition (PseKNC) method [16] to identify promoter sequences. Meanwhile, more 
excellent predictors based on SVM algorithms [17–19] were applied to identify promoters. These predictors can effectively identify 
promoters and non-promoters, however, have some limitations in predicting the class of promoters. In 2018, Liu et al. [20] developed a 
two-layer promoter predictor named iPromoter-2L. The first layer of this predictor is used to identify promoters, and the second layer is 
used to predict six classes of promoter. In the same year, Xiao et al. [21] developed a predictor named iPSW(2L)-pseKNC. They used 
multiple complex feature encoding methods to encode promoter sequences. The predictor achieved 83.13% and 71.20% accuracy in 
predicting promoters and their strengths, respectively. Meanwhile, some excellent and more sophisticated predictors [22–26] have 
been developed, allowing a deeper and more comprehensive study of promoter identification and function. However, the performance 
of machine learning models is very dependent on complex feature encodings, and too many complex combinations of feature 
encodings can lead to dimensionality disasters. Therefore, it is crucial to develop a series of predictors that require only simple feature 
information. 

In recent years, deep learning has been widely used in the field of bioinformatics [27] and has achieved remarkable results. Deep 
learning can automatically extract meaningful feature information from promoter sequences without the need for complex feature 
engineering [28]. For example, in 2020, Habibi et al. [29] developed a predictor called iPSW (PseDNC-DL), which uses One-hot feature 
encoding way to encode promoter sequences and then uses a Convolutional Neural Network (CNN) [30] to extract local feature in
formation. Combining the local features extracted by CNN with the features encoded by PseKNC and finally using a FNN for classi
fication prediction, the predictor achieved an accuracy of 85.10% and 72.35% in predicting promoters and their strengths, 
respectively. In 2019, Nguyen et al. [31] used FastText N-gram model to represent DNA sequences as text vectors and this feature 
encoding method is more efficient. Therefore, the accuracy is slightly higher than iPSW (PseDNC-DL) predictor. Although the pre
dictors developed by Habibi et al. and Nguyen et al. have high accuracy, they still use complex feature encoding to accomplish the 
prediction task. In 2022, Zhang et al. [32] developed a predictor called iPromoter-CLA, which uses only a One-hot encoding to encode 
promoter sequences and uses CNN and deep Capsule Networks [33] to learn local features. In addition, the predictor uses a 
Bi-directional Long Short-Term Memory (BiLSTM) [34] neural network and a Self-Attention mechanism to extract global features. The 
predictor achieves an accuracy of 86% and 73.46% in predicting promoters and their strengths, respectively. The models developed by 
Habibi et al. and Nguyen et al. only consider the local feature extraction. However, the iPromoter-CLA model developed by Zhang et al. 
considers a combination of local and global features and is superior in performance. 

In 2022, Nguyen et al. [35] created four datasets of human and mouse TATA promoters. They proposed a computational model 
called iPromoter-Seqvec, the model used word embedding technique to encode promoter sequences and Bi-LSTM network for pre
diction with remarkable results. Meanwhile, Zhang et al. [36] developed a promoter predictor called iPro-WAEL using random forest 
and convolutional neural networks. This predictor combined word embedding techniques and multiple sophisticated artificial feature 
coding methods to express promoter sequences and achieved remarkable experimental results in promoter datasets of multiple species. 
It is worth pointing out that they are using relatively simple deep learning methods, which means that there is still much space for 
exploration of deep learning methods. Therefore, using a better deep learning network model can significantly improve the accuracy of 
promoter prediction. 

In deep learning, using CNN to extract local features from original data is a common approach. In fact, increasing the number of 
Convolutional layers can extract more advanced local features, but may lead to problems such as gradient disappearance and network 
degradation, which affect the training efficiency and accuracy of the model. To solve these problems, the Residual Neural Network 
(ResNet) [37] overcomes this problem by using Residual blocks. ResNet replaces the Convolutional layer with a Residual layer, which 
allows the network to learn the residuals of the previous layer of data by short-circuiting the connections, thus avoiding the gradient 
disappearance problem. The DenseNet [38] is an improvement on ResNet. DenseNet uses a densely connected mechanism, which 
combines the outputs of all previous layers by channel dimension and feeds them into the next convolutional layer. This approach can 
extract higher-level feature information and the model performance and robustness are better than ResNet results. The use of Attention 
mechanism is also increasing. The Attention mechanism can be applied to different types of neural networks, such as Convolutional 
Neural Network and Recurrent Neural Network (RNN) [39]. It is a special neural network layer that improves the performance of a 
neural network by weighting the output feature maps. For example, the Convolutional Block Attention Module (CBAM) [40] can 
perform adaptive weighting of feature maps from both channel and spatial dimensions. In addition, the Self-Attention mechanism [41] 
can help neural network model to better capture the contextual information in the input feature maps, thus improving the performance 
and robustness of the model. 
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The current promoter predictors do have some drawbacks, such as poor performance and complex features. For this purpose, we 
developed a predictive model called iPro2L-DG. The structure of the iPro2L-DG prediction model is shown in Fig. 1(B). The iPro2L-DG 
model is based on DenseNet to extract high-level local feature information. Immediately after, a novel Convolutional Block Attention 
Module, called Global Attention Mechanism [42], is used to evaluate the high-level local feature information. Experimentally, 
iPro2L-DG predictor proved to be far superior to previous predictors in the two-layer promoter prediction results. In addition, 
iPro2L-DG predictor outperforms other predictors on the E. coli [43] promoter dataset. Therefore, iPro2L-DG predictor is currently the 
most representative choice for predicting promoters and their strengths. 

2. Materials and methods 

2.1. Benchmark dataset 

When developing a predictor, it is crucial to establish a reliable benchmark dataset. In this study, we used the benchmark dataset 
created by Xiao et al. [21]. They extracted the promoter fragment from RegulonDB [44] and experimentally verified that a reasonable 
promoter sequence length is 81 bp. In addition, they used CD-HIT [45] to remove promoter sequences with more than 85% similarity. 
A higher CD-HIT threshold ensures the uniqueness of each sample and better tests the performance of the model. The benchmark 
dataset consists of 3382 promoter samples (including 1591 strong promoter samples and 1791 weak promoter samples) and 3382 
non-promoter samples. The promoter sequences of different classes are independent of each other, ensuring the uniqueness of each 

Fig. 1. An overview of iPro2L-DG model. (A) Feature encoding. We used two feature encoding methods, namely C2 and NCP. (B) iPro2L-DG model 
framework. The model framework consists of three modules. They are the improved DenseNet, the GAM attention mechanism and the FNN. (C) 
Two-layer classification framework. 
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sequence. In order to further validate the performance of our model, we performed ten cycles of five-fold cross-validation on the 
benchmark dataset. In this way, we were able to evaluate and validate the performance of the model more comprehensively. The 
benchmark dataset is shown in Table 1. 

2.2. Feature coding schemes 

2.2.1. C2 encoding 
One-hot encoding [46] is the most frequently used encoding method in bioinformatics and is favored by researchers for its 

simplicity and efficiency. One-hot encoding is the most primitive method of encoding gene sequences and protein sequences, which 
ensures that the alphabets of each gene and protein are coded independently. One-hot encoding encodes the nucleotides of a DNA 
sequence in "ACGT" order as a four-dimensional binary vector, where the nucleotides are encoded as 1 at their positions and 0 at other 
positions. For example, A is represented as (1, 0, 0, 0), C is represented as (0, 1, 0, 0), G is represented as (0, 0, 1, 0), and T is rep
resented as (0, 0, 0, 1). However, One-hot encoding suffers from a sparsity drawback, which makes the model computation lack some 
robustness. In contrast, C2 encoding [47] is another commonly used binary vector encoding that retains the advantages of simplicity 
and efficiency of one-hot encoding. C2 encoding generates a two-dimensional vector and has less sparsity, so storage and computation 
are also better than One-hot encoding. C2 encoding represents each nucleotide in a DNA sequence as a two-dimensional vector, where 
the vector of A bases is (0,0), the vector of C bases is (1,1), the vector of G bases is (1,0), and the vector of T bases is (0,1). The C2 
encoding is shown in Fig. 1(A). 

2.2.2. NCP encoding 
NCP encoding [48] is a feature encoding approach based on the chemical nature of nucleotides, which uses the chemical molecular 

structure between the four nucleotides for rational encoding. For example, in terms of ring structure, C and T each contain one ring, 
while A and G each contain two rings. In terms of hydrogen bond strength, A and T have two hydrogen bonds, while C and G have three 
hydrogen bonds. In terms of chemical structure, G and T belong to ketone groups, while A and C belong to amino groups. The specific 
chemical properties between the nucleotides are shown in Table 2. 

Based on the chemical properties in Table 2, each nucleotide of the DNA sequence encoded by NCP can be represented as: A (1, 1, 
1), C (0, 1, 0), G (1, 0, 0), and T (0, 0, 1). The NCP encoding is shown in Fig. 1(A). 

2.3. Model construction 

In this study, we constructed a deep learning network framework to automatically extract meaningful feature representations from 
promoter sequences, called iPro2L-DG. iPro2L-DG’s framework is divided into two parts: (A) Feature encoding. We used two simple 
and efficient encoding methods, namely C2 and nucleotide chemical property. For each promoter sequence, we use these two encoding 
methods to generate a 2 × 81 feature encoding matrix and a 3 × 81 feature encoding matrix, respectively. These two feature encoding 
matrices are then combined to form a 5 × 81 feature encoding matrix. In this study, we treat the feature encoding matrix as a grayscale 
image and input it directly into the network framework of iPro2L-DG model. (B) iPro2L-DG model framework. The model framework 
consists of three modules, which are the improved DenseNet, GAM attention mechanism, and FNN. First, a 5 × 81 feature encoding 
matrix is directly input to the improved DenseNet (including five Dense blocks, Batch Normalization layer and Transition layer), and 
the improved DenseNet can extract high-level features. We used five layers of Dense blocks to enhance the feature extraction capa
bility. Then, we use the GAM attention mechanism to evaluate the high-level feature information in terms of channel and spatial 
dimensions. Finally, we input the evaluated high-level feature maps into a FNN and obtain the predicted probabilities using the 
SoftMax activation function. (C) Two-layer classification framework. In this study, we divided promoters into two prediction tasks. The 
first task is to identify promoters and non-promoters, while the second task is to predict the strength of promoters. These two tasks are 
independent, and the results of the first task are not used as input for the second task. Nevertheless, However, during training, we use 
the same network model structure and hyperparameters for both prediction tasks. Detailed information of iPro2L-DG model is shown 
in Fig. 1. 

2.3.1. DenseNet 
Compared to the traditional convolutional neural network structure, DenseNet utilizes a densely connected design. This innovative 

design allows DenseNet to generate more efficient feature representations and achieve higher performance with fewer parameters. As a 
result, DenseNet has become a very useful network structure in the field of deep learning. The network structure of DenseNet consists 
of one Convolutional layer, one or more Dense block layers, and one or more Transition layers. The feature encoding first passes 
through a Convolutional layer, then into a Dense block layer, and finally into a Transition layer. We improved the network structure of 

Table 1 
The specifies of the benchmark dataset.  

Layers Original dataset Promoters Non-promoters 

First layer Training dataset 3382 3382  
Original dataset Strong enhancers Weak enhancers 

Second layer Training dataset 1591 1791  
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DenseNet by removing the first Convolutional layer and feeding the feature encoding directly to the Dense block layer. In addition, we 
added a Batch Normalization layer between the Dense block layer and the Transition layer. This improved DenseNet can extract 
higher-level feature information and enhance the robustness of the model. 

2.3.1.1. Dense block. The Dense block [49] uses a dense connection mechanism to concatenate the outputs of all the previous Con
volutional layers as inputs to the next layer, thus enabling reuse of features. The Dense block structure improves the efficiency of the 
model and enhances the expressiveness of the model. The structure of Dense block is shown in Fig. 2. 

In a Dense block, the input of the Xl layer is related to the output of all previous layers, and Xl is represented as follows: 

Xl = Hl ([X0,X1,X2,…,Xl− 1]) (1)  

where [] denotes the "concat" operation; Hl( · ) stands for a series of nonlinear transformation functions with a combination of Batch 
Normalization, ReLU activation function and Convolution (3 × 3). 

2.3.1.2. Transition layer. The Transition layer [50] is the key layer connecting two adjacent Dense blocks in the DenseNet network, 
and its main role is to reduce the size of the Dense block output feature map. The Transition layer uses a 1 × 1 Convolution to reduce 
the number of channels in the final feature map, and a 2 × 2 Averaging Pooling layer to compress the size of the receptive field. This 
reduces the model complexity and improves the generalization ability of the network. 

In the Transition layer, we insert a Batch Normalization layer in front of the 1x1 Convolution layer. The Batch Normalization layer 
can normalize the input data, which can effectively reduce the gradient disappearance and gradient explosion as well as avoid 
overfitting. 

2.3.2. Global attention mechanism 
Global Attention Mechanism(GAM) [42] is a new Convolutional Block Attention Module designed to evaluate the channel and 

spatial information of feature maps. As shown in Fig. 3, the GAM uses the same tandem structure of Channel Attention and Spatial 
Attention mechanisms as CBAM, but it redesigns the structure of Channel Attention and Spatial Attention mechanisms. A drawback of 
CBAM is the use of Pooling layers to compress dimensions and represent weight values with limited feature information, which leads to 
reduced information and ignores the interaction of channel with spatial. For example, the Pooling layer of CBAM picks out the largest 
or average pixel values in the image in the channel and spatial dimensions, which are trained by the network as weight values. 

Table 2 
Nucleotide chemical property.  

Chemical property Category Nucleotide 

Ring structure Purine A, G 
Pyrimidine C, T 

Functional group Amino A, C 
Keto G, T 

Hydrogen bonding Strong C, G  
Weak A, T  

Fig. 2. Structure of the Dense block.  
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However, this approach ignores the true weights of other pixel values. To solve these problems, GAM abandons the Pooling layer and 
adopts a special computational structure that can directly calculate all the weight values of the three dimensions of the feature map. As 
a result, GAM is able to focus more comprehensively on useful feature information in the feature map and suppress useless feature 
information in the feature map. 

The Channel Attention module changes the position of the three dimensions (channel, spatial width, and spatial height) of the 
original feature map and compresses the spatial feature information for each channel into vectors. Next, all spatial feature information 
in each channel is trained using two layers of FNN to amplify the channel and spatial dimensional dependencies. By training of the 
FNN, the weight values of all the spatial feature information in each channel were successfully obtained. These weight values are 
compressed by the Sigmoid activation function and reshaped into a feature map with the same size of the original feature map. Finally, 
the original feature map and these weights are multiplied to generate the Channel Attention weighted feature map. The Channel 
Attention module is shown in Fig. 4(a). 

In the spatial attention module, firstly, the original feature map with channel number C is compressed to C/r by using C/r 7 × 7 
convolution kernel to convolve the feature map, which can make the spatial information more concentrated. Then, the output features 
are reshaped into the shape of the original feature map using a 7 × 7 convolution kernel, and these weights are compressed into weight 
values using the Sigmoid activation function. The convolution kernel can automatically compress the spatial location information of all 
channels for the purpose of focusing spatial information. All channel feature information at each spatial location of the feature map can 
be automatically trained using a two-layer convolution kernel. Finally, the original feature map and these weights are multiplied to 
generate the Spatial Attention weighted feature map. The Spatial Attention module is shown in Fig. 4(b). 

2.4. Performance evaluation 

Assessing the performance of a model requires the use of scientific evaluation criteria. These evaluation criteria include sensitivity 
(Sn), specificity (Sp), accuracy (Acc), and Matthew correlation coefficient (MCC) [51]. These metrics allow a comprehensive assess
ment of model performance and can guide model optimization and improvement. The calculation formula of the evaluation index is 
shown as. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sp =
TN

TN + FP

Sn =
TP

TP + FN

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√

(2) 

The confusion matrix is one of the important metrics to assess the performance of the model, which includes four metrics: true 
positive (TP), true negative (TN), false positive (FP) and false negative (FN) [52]. These metrics represent the accuracy and recall of the 
model for sample classification, respectively. To describe the model performance more accurately, we also used AUC metrics [53] for 
evaluation. These evaluation metrics have higher values indicating better model performance. 

3. Results and discussion 

3.1. Results of model 

In this study, we divided the promoters into two prediction tasks. The two-layer classification framework is shown in Fig. 1(C). To 
further validate the performance and stability of the iPro2L-DG predictor, we executed 10 five-fold cross-validations and listed the 

Fig. 3. The overview of a GAM.  
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experimental results in Fig. 5. Finally, we take the average of the evaluation metrics from 10 5-fold cross-validations to ensure the 
reliability of the model. In the first layer task, the average results of the 10 experiments for Sn, Sp, Acc, and MCC are 93.89%, 94.71%, 
94.29% and 88.65%, respectively. In the second layer task, the average results of the 10 experiments for Sn, Sp, Acc and MCC are 
87.11%, 92.11%, 89.67% and 79.47%, respectively. In addition, the experimental results of AUC metrics for the first layer task 
(promoter identification) and the second layer task (promoter strength prediction) were 97.74% and 93.53%, respectively. The results 
show that our proposed iPro2L-DG predictor has good robustness. 

3.2. Compare different combinations of dense blocks and convolutional layers 

In this study, DenseNet is the main high-level feature extraction network. The iPro2L-DG model performance depends on the depth 
of the DenseNet network. However, overly complex DenseNet networks are prone to overfitting, while overly simple networks are 
prone to underfitting. The complexity of the DenseNet network is mainly in the number of Dense blocks and the number of Con
volutional layers in the Dense blocks. To explore different combinations of Dense blocks and Convolutional layers, we tried various 
combinations in the two layers tasks. We use accuracy (Acc) as the evaluation metric because it is more reflective of the model’s 
performance on a balanced sample. According to Fig. 6, the accuracy of the first and second layers is highest when the number of Dense 
blocks is five and the number of Convolutional layers is three. Therefore, we decided to use DenseNet, where the number of Dense 
blocks is 5 and the number of Convolutional layers for each Dense block is 3. 

3.3. Comparison of different coding methods 

In this research, we have been working on developing predictors that require only simple feature encoding, since deep learning can 
automatically extract meaningful feature information from simple feature encoding. The simpler the feature encoding used, which is 
more indicative of the superiority of the model. We used six simple combinations of features: One-hot encoding, C2 encoding, NCP 
encoding, Word2Vec encoding [34], One-hot + NCP encoding, C2 + NCP + ND encoding, and C2 + NCP encoding. We put these seven 

Fig. 4. Submodule structure of the GAM attention mechanism (a) Structure of the channel attention submodule of the GAM. (b) Structure of the 
spatial attention submodule of the GAM. 

Fig. 5. Degree of volatility of the evaluation metrics for 10 cycles of 5-fold cross-validation.  
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encoding combinations into the two layers network models, respectively. According to Figs. 7 and 8, In the experimental results of the 
first layer task, C2 and one-hot encoding are comparable, but in the second layer C2 encoding is slightly better. From a computational 
point of view, compared to the one-hot coding method, the feature encoding size of the C2 coding method is reduced by half, so the 
corresponding number of parameters is also reduced by half. This shows that C2 encoding not only has the advantages of simplicity and 
efficiency of one-hot encoding, but also outperforms one-hot encoding in terms of storage and computation. Word2Vec encoding is a 
word vector coding method obtained through network training, which is based on contextual context information. Compared to other 
encoding methods, complex Word2Vec encoding is the least effective. This shows that the model is able to automatically learn abstract 
and complex feature representations from simple sequence coding without relying on complex sequence coding methods. The hybrid 
encoding has better classification performance than the single encoding approach, indicating that better performance is achieved 
through the combined encoding approach. In the two layers prediction tasks, C2+NCP coding outperforms other coding combinations. 
Therefore, we identified C2+NCP encoding as the preferred scheme for feature engineering. 

3.4. Comparison of different model frameworks 

In this study, we investigated eight network framework strategies and tested these network frameworks in the layer 1 and layer 2 
prediction tasks, respectively. According to the experimental results shown in Figs. 9 and 10, all evaluation metrics of the DenseNet 
network is significantly higher than those of ResNet, indicating that the DenseNet network has better prediction performance. In 
addition, we found in our experimental results that excellent results can be achieved using a combination of DenseNet networks and 
arbitrary Attention mechanisms. Meanwhile, we find that the evaluation metrics of CBAM and GAM are better than single Attention 
mechanism, indicating a significant performance improvement with simultaneous use of Channel Attention and Spatial Attention. 
Comparing the experimental results of Pri DenseNet + GAM and DenseNet + GAM, we can see that the improved DenseNet network 
better results than the primitive DenseNet network, and thus the improved DenseNet network extracts more advanced feature in
formation. From the experimental results, we can see that the performance of GAM attention mechanism is better than CBAM attention 

Fig. 6. Comparative results for different combinations of dense blocks and convolutional layers. (a) Acc values (%) for promoter identification. (b) 
Acc values (%) for promoter strength prediction. 

Fig. 7. Comparison results of different encoding schemes in the first layer (promoter recognition).  

R. Lei et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e27364

9

mechanism. We have tried to change the serial sequential approach in the GAM attention mechanism to the parallel approach [54], but 
the results are not satisfactory. By comparing the experimental results of Transformer, InceptionResNet + GAM and EfficientNet +
GAM, we can observe that these complex advanced neural network models do not perform well in the experiments. This may be due to 
the small amount of data, which does not allow the performance of these large models to be fully utilized. Comprehensively taking the 
experimental results into consideration, we finally chose the network framework of DenseNet + GAM. 

3.5. Comparison of iPro2L-DG with existing predictors 

In recent years, an increasing number of computational methods have been applied to the field of promoter research. To evaluate 
the performance of the iPro2L-DG predictor, we compared it with four other excellent predictors. The comparison results obtained 
using the five-fold cross-validation method on the same dataset is shown in Table 3. The iPro2L-DG predictor far outperforms other 
predictors in four evaluation metrics (Sn, Sp, Acc and MCC), which indicates that the iPro2L-DG predictor has good generalization 
ability. Analyzing and comparing the other predictors, iPSW(2L)-PseKNC is a predictor based on machine learning methods, however, 
it has relatively low predictive performance. iPSW(PseDNC-DL) and FastText N-grams are predictors based on CNN networks. 
Traditional CNNs may have problems of insufficient feature extraction, which may be the reason for the low performance of the 
models. In addition, iPro2L-CLA is a predictor based on capsule networks. Although capsule networks can improve some of the 
drawbacks of CNN networks, there are some limitations to their performance improvement.DenseNet networks can extract more 
advanced local feature information by iteratively utilizing previous features, which is the key reason for the excellent performance of 

Fig. 8. Comparison results of different encoding schemes in the second layer (promoter strength prediction).  

Fig. 9. Comparison of accuracy (Acc) values for different network frameworks. The results for layer 1 (promoter identification) are shown in green 
and the results for layer 2 (promoter strength prediction) are shown in red. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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our model. 
In the first layer of the task (promoter identification), the iPro2L-DG predictor had a Sn improvement of 6.94%–12.44%, Sp 

improvement of 6.37%–9.53%, Acc and MCC improvement of 8.10%–10.97% and 16.22%–22.03%, respectively. In the second layer 
task (promoter strength prediction), the iPro2L-DG predictor has a Sn improvement of 6.94%–12.44%, Sp improvement of 6.37%– 
9.53%, and Acc and MCC improvement of 8.10%–10.97% and 16.22%–22.03%, respectively. The improvement of the iPro2L-DG 
predictor in the promoter two-layer prediction task is tremendous. In particular, the prediction accuracy of the iPro2L-DG predic
tor remains high in the second layer task when the amount of data on promoter strength is small. This indicates that the iPro2L-DG 
predictor performs more consistently and superiorly when processing small amounts of data. Unfortunately, the predictive perfor
mance of the iPro2L-DG predictor would have been better if the promoter dataset was larger. Thus, the iPro2L-DG predictor becomes a 

Fig. 10. Comparison of MCC values for different network frameworks. The results for layer 1 (promoter identification) are shown in green and the 
results for layer 2 (promoter strength prediction) are shown in red. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 3 
Comparison with existing predictors on the same benchmark dataset.  

Layer Predictors Sn Sp Acc MCC AUC F1-score 

First layer iPSW(2L)-PseKNC 0.8137 0.8489 0.8313 0.6630 – – 
iPSW(PseDNC-DL) 0.8334 0.8683 0.8510 0.7024 – – 
FastText N-grams 0.8276 0.8805 0.8541 0.7090 – – 
iPro2L-CLA 0.8687 0.8513 0.8600 0.7211 – – 
iPro2L-DG 0.9389 

± 
0.0106 

0.9471 ± 0.0117 0.9429 ± 0.0038 0.8865 ± 0.0076 0.9774 
± 
0.0017 

0.9432 
± 
0.0040 

Second layer iPSW(2L)-PseKNC 0.6223 0.7917 0.7120 0.4213 – – 
iPSW(PseDNC-DL) 0.6581 0.7816 0.7235 0.4440 – – 
FastText N-grams 0.6940 0.7640 0.7310 0.4600 – – 
iPro2L-CLA 0.7763 0.6878 0.7346 0.4700 – – 
iPro2L-DG 0.8711 

± 
0.0168 

0.9211 ± 0.0088 0.8967 ± 0.0086 0.7947 ± 0.0165 0.9353 
± 
0.0042 

0.8880 
± 
0.0117  

Table 4 
Comparison with existing predictors on the benchmark dataset of Liu et al.  

Method SN SP Acc MCC 

PCSF [13] 0.7890 0.7070 0.7480 0.4980 
vw Z-curve [14] 0.7776 0.8280 0.8028 0.6100 
Stability [12] 0.7660 0.7950 0.7800 0.5620 
iPro54 [15] 0.7776 0.8315 0.8045 0.6100 
iPromoter-2L [20] 0.7920 0.8416 0.8168 0.6343 
iPSW(2L)-PseKNC [21] 0.8378 0.8434 0.8406 0.6811 
iPro2L-CLA [32] 0.8627 0.8480 0.8553 0.7114 
iPro2L- DG 0.9286 0.9490 0.9386 0.8779  
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most advanced prediction tool for promoters and their strengths. 

3.6. Performance of iPro2L-DG on other datasets 

In addition, we tested the iPro2L-DG predictor again on the E. coli promoter dataset proposed by Liu et al. [20], since the promoter 
dataset proposed by Xiao et al. [21] did not have an independent test set. As shown in Table 4, our predictor also outperforms the other 
seven predictors on the E. coli promoter dataset. The improvement range of Sn was 6.59%–16.26%, that of Sp was 10.10%–24.20%, 
and that of ACC and MCC was 8.33%–19.06% and 32.15%–37.02%, respectively. This indicates that the iPro2L-DG predictor has good 
robustness and generalization in predicting other promoter tasks and is the most representative predictor for predicting promoter 
tasks. 

4. Conclusions 

This study proposes a new promoter prediction model called iPro2L-DG. The model is based on an improved DenseNet and GAM 
attention mechanism implementation. The experimental results showed that the iPro2L-DG model achieved a significant MCC value of 
0.8833 for promoter identification and an MCC value of 0.7915 for promoter strength prediction in the five-fold cross-validation. 
Compared with other existing predictors, the iPro2L-DG predictor performs well on all evaluation metrics (Sn, Sp, Acc, and MCC). 
Meanwhile, the iPro2L-DG predictor outperformed the other seven predictors in all metrics on the E. coli promoter dataset. This in
dicates that the iPro2L-DG predictor has excellent generalization ability and expressive power. We are committed to exploring and 
innovating deep learning methods in combination with the promoter investigation to advance the research in this field. In the future, 
the iPro2L-DG predictor will be applied to prediction tasks not only in the promoter field but also in other bioinformatics fields, which 
will be able to provide researchers with more convenient tools. 

Of course, our proposed iPro2L-DG model, although excellent in some respects, still has some shortcomings. Due to the small size of 
the promoter dataset, the performance of the model had a lot of space for improvement. In addition, we did not employ a data 
enhancement strategy to increase the sample data. The predictive power of the iPro2L-DG model is limited when dealing with 
imbalanced data. These are problems will be considered and addressed in our future study. However, as promoter research continues, 
we believe that these problems will be gradually resolved. Meanwhile, we expect that the iPro2L-DG model will continue to be 
optimized and improved to provide better prediction tools for promoter studies. Moreover, we expect that more advanced deep 
learning methods will emerge in the future to bring more possibilities for promoter and their strength prediction. 
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