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Survey sampling has wide range of applications in social and scientific investigation to draw 
inference about the unknown parameter of interest. In complex surveys, the sample information 
about the study variable cannot be expressed by a precise number under uncertain environment 
due fuzziness and indeterminacy. Therefore, this information is expressed by neutrosophic 
numbers rather than the classical numbers. The neutrosophic statistics, which is generalization 
of classical statistics, deals with the neutrosophic data that has some degree of indeterminacy 
and fuzziness. In this study, we investigate the compromise optimum allocation problem for 
estimating the population means of the neutrosophic study variables in a multi-character stratified 
random sampling under uncertain per unit measurement cost. We proposed the intuitionistic 
fuzzy cost function, modeling the fuzzy uncertainty in stratum per unit measurement cost. 
The compromise optimum allocation problem is formulated as a multi-objective intuitionistic 
fuzzy optimization problem. The solution methodology is suggested using neutrosophic fuzzy 
programming and intuitionistic fuzzy programming approaches. A numerical study includes the 
means estimation of atmospheric variables is presented to explore the real-life application, explain 
the mathematical formulation, and efficiency comparison with some existing methods. The results 
show that the suggested methods produce more precise estimates with less utilization of survey 
resources as compared to some existing methods. The Python is used for statistical analysis, 
graphical designing and numerical optimization problems are solved using GAMS.

1. Introduction

A stratified sampling design is commonly used to conduct sample surveys related to agriculture, health, markets, demographics, 
meteorological research, etc. and produce the most efficient results for the heterogeneous statistical population under study. But 
the sample allocation problem needs to be addressed properly before the implementation of this sampling design because it has a 
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significant impact on the utilization of resources and the efficiency of the estimates. In stratified sampling design, the population is 
divided into homogeneous subgroups, called strata, and then the sample is selected from each stratum such that it maximizes the 
precision of the estimate under a cost/resource constraint or minimizes the utilization of the cost/resource of the survey to achieve 
predefined precision of the estimates. First, Neyman [22] proposed the solution to this problem by introducing the “optimum allo-

cation” in which he minimized the objective function, the mean square error of the population mean, under the linear cost function 
using the Lagrange multiplier optimization technique. Sethi [27] developed an optimum stratification procedure for estimating pop-

ulation mean under optimum allocation. Clark and Steel [8] proposed optimum allocation for a two-stage stratified sampling design, 
introducing an additional constraint that may produce equal and proportional allocation as special cases of optimum allocation. The 
rounding rule is used to obtain an integer value of stratum sample size that violates the optimality criteria and sometimes produces 
an infeasible allocation that does not satisfy the cost constraint. Bretthauer et al. [6] presented two branch and bound procedures 
modeling the allocation problem as a mathematical programming problem with a convex objective function and solving it using 
dynamic programming techniques. When multi-variables are under study, an allocation that may be optimal for one characteristic 
will not be optimal for others until the characteristics are highly correlated and have the same variability. Sukhatme [29] suggested 
a compromise optimum allocation in multi-character sample surveys by minimizing the trace of mean square errors. Chatterjee [7]

extended the optimum allocation procedure to propose the compromise allocation, which minimized the total relative loss in preci-

sion due to non-optimum allocation. Kokan and Khan [20] suggested the analytical procedure for compromise sample allocation in a 
multi-character survey. Cochran [9] suggested that the average of individual characteristics optimum allocation should be used as a 
compromise sample allocation in this case. Khan et al. [18] proposed weighted multi-objective optimization methods for compromise 
allocation under a linear cost constraint. Formulating the allocation problem as an integer multi-objective programming problem and 
matrix optimization problem, Dıaz-Garcıa and Cortez [10] and Díaz-García and Cortez [11] suggested the sample allocation using 
the value function method, lexicographic method, and distance methods, considering the available preference of each characteristic. 
Under probabilistic nonlinear cost function, Ghufran et al. [12] proposed the compromise allocation for estimating population mean 
by minimizing the sum of variance function of estimator for all characteristics under study. Ali et al. [3] used Chebyshev approxima-

tion, 𝐷1 distance method, and goal programming method modeling the problem as an integer multi-objective optimization problem. 
Ullah et al. [32] proposed the compromise allocation by minimizing the mean square errors of ratio estimators under non-linear cost 
function using goal programming and weighted method.

Although classical optimization methods and procedures have been applied for years, as cited above, to find optimum or compro-

mise allocation with well-defined coefficients of decision variables in objective functions and resource constraints. These deterministic 
techniques produce crisp values of precision of estimates or total cost, which is difficult and hard objective to achieve by sample 
surveys in an uncertain environment. Moreover, in most socio-economic, health, agricultural, and demographic surveys, the true 
values of stratum variance cannot be estimated precisely by sample data because of imprecision and ambiguity of data due to mea-

surement error, incomplete information, subjective judgment, and fuzzy uncertainty in the response. This fuzzy uncertainty is usually 
described by the membership function, which reflects expert knowledge and preferences in decision-making about the precision of 
estimates. Fuzzy mathematical programming is used to model the sample allocation problems, incorporating the expert satisfaction 
degree related to precision by using the membership function. In recent years, some authors have used fuzzy optimization approaches 
to solve sample allocation problems in stratified sampling, taking into account subjectivity and considering the precision of estimates 
as a fuzzy number. Ullah et al. [34] used fuzzy geometric programming to find optimum allocation under the quadratic classical 
cost function for estimating the finite population mean in the presence of non-response. Considering the stratum variability, per unit 
measurement cost, travel cost, and survey budget as parabolic fuzzy numbers, Gupta and Bari [13] modeled the sample allocation 
problem as a multi-objective fuzzy optimization problem and found a compromise solution using fuzzy programming for a specified 
value of membership degree. The results showed that fuzzy programming produced efficient results as compared to a deterministic 
approach. Tariq et al. [31] used fuzzy geometric programming to solve the optimal allocation problem in two-phase multivariate 
stratified sampling under the classical linear cost function. Haq et al. [15], Ahmadini et al. [2], Khanam et al. [19] and Jalil et al. [16]

applied fuzzy optimization methods to find integer compromise allocation for estimating population mean under classical linear and 
non linear cost functions, considering measurement unit cost, labor cost, and traveling cost in multivariate stratified sampling. Gupta 
et al. [14] and Raghav et al. [24] proposed intuitionistic fuzzy programming methods to solve the multi-objective integer optimum 
allocation problem, estimating the population mean of multiple variables under the study.

Some recent research work on compromise optimum allocation problem is summarized in Table 1 according to estimated param-

eters, cost functions, and fuzzy optimization methods suggested by different authors

1.1. Research gap

In previous research, the optimum allocation problem in multivariate stratified sampling was formulated as a multi-objective 
optimization problem. Different fuzzy optimization methods, considering the fuzzy uncertainty in the estimated classical parameter 
of interest, are used to find compromise allocation, as summarized in Table 1. The classical parameter summarizes the characteristic 
of the variable whose information is presented by a classical number measured on bivalent or classical propositional logic; that is, 
there is no uncertainty in the collected information from sample surveys. But in many real-life decision-making problems, the set 
of information about study variables, like market share prices, daily air temperature, humidity, wind speed, 24-hour blood pressure 
of a person, etc., is presented in interval form rather than a single determinate value, with some degree of uncertainty due to 
fussiness, imprecision, and indeterminacy. The neutrosophic statistics are used to summarize the characteristics of such variables by 
2

neutrosophic parameters. The significant research gaps are identified as follows:
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Table 1

Research review summary.

Reference Estimated Mean(s) CF Compromise Allocation Remarks

Classical Neutrosophic CL F IF

Ullah et al. [34] ✓ ✓ Fuzzy geometric programming Nonresponse, Nonlinear CF

Gupta and Bari [13] ✓ ✓ Fuzzy programming Complete response, Nonlinear CF

Tariq et al. [31] ✓ ✓ Fuzzy geometric programming Double Sampling, Nonresponse, 
Nonlinear CF

Haq et al. [15] ✓ ✓ Fuzzy goal programming Complete response, Nonlinear CF

Ahmadini et al. [2] ✓ ✓ Fuzzy goal programming, Lagrange 
multiplier method

Complete response, Probabilistic 
nonlinear CF

Khanam et al. [19] ✓ ✓ Fuzzy programming Complete response, Linear CF

Gupta et al. [14] ✓ Intuitionistic fuzzy programming Complete response, Optimize 
MSE under fixed sample size

Raghav et al. [24] ✓ ✓ Intuitionistic fuzzy programming Complete response, Nonresponse, 
Nonlinear CF

Jalil et al. [16] ✓ ✓ Hierarchical multi-level fuzzy programming Nonresponse, Nonlinear CF

Proposed ✓ ✓ Intuitionistic fuzzy programming, 
Neutrosophic fuzzy programming

Complete response, Triangular IF 
cost function

CF=cost function; CL= classical linear; F= Fuzzy; IF= intuitionistic fuzzy.

1. The compromise allocation for estimating neutrosophic population means in multi-character stratified random sampling needs 
to be addressed due to the emerging development and application of neutrosophic inferential statistics in different research 
domains.

2. Only a few authors like Gupta and Bari [13] considered the stratum per unit measurement cost as a fuzzy number and mod-

eled it as a fuzzy cost function. The fuzzy cost function does not take into account expert’s dissatisfaction degree, which can 
play an important role in the fuzzy decision-making approach for determining the per unit measurement cost in an uncertain 
environment.

3. The existing research methodologies for optimum allocation under fuzzy cost constraints are based on 𝛼−𝑐𝑢𝑡 methods to produce 
solutions with crisp value. The accuracy function or rank function approach is unexplored in understanding and application to 
compromise allocation problems in applied surveys sampling.

4. Recent research has employed fuzzy programming or intuitionistic fuzzy programming models to find compromise allocations. 
The existence of an indeterminacy degree encounters some practical aspects of decision-making problems. There is a notable 
lack of research utilizing the neutrosophic fuzzy programming approach for optimum compromise allocation.

1.2. Aims and scope of the study

Neutrosophic parameter estimation is an important area of inferential statistics in which we estimate indeterminate or impre-

cise parameters of interest using neutrosophic data collected through sample surveys. The accuracy and precision of neutrosophic 
estimates are directly proportional to sample size and inversely proportional to the per-unit measurement cost in a sample survey. 
Therefore, flexible and correct modeling of the cost of a survey utilizing expert knowledge is important in terms of sample size 
determination. The best sample allocation procedure is economical, efficient, and increases the precision of estimates by utilizing the 
available resources at the optimum level. For estimation of the neutrosophic population mean, we have formulated the compromise 
allocation problem in a multivariate stratified sampling design as a multi-objective optimization problem under the intuitionistic 
fuzzy cost constraint in this article. Our proposed model has 2K objective functions for the K neutrosophic study variable in a 
multi-character sample survey, while existing models deals with K classical variables. The major features of this study are listed as 
follows:

1. The objective of compromise allocation is to minimize the variance of the neutrosophic sample estimator of the mean in multi-

variate stratified sampling.

2. The fuzzy uncertainty in stratum per unit measurement cost decision-making is modeled as an intuitionistic fuzzy cost function. 
The ranking function is proposed to achieve an equivalent classical cost function.

3. The neutrosophic fuzzy programming and intuitionistic fuzzy programming-based solution methodologies are also discussed for 
integer values of sample size.

4. A numerical study is presented to explore the real-life application and feasibility of the proposed model for solving sample 
allocation problems in practical multi-character sample surveys for estimating imprecise parameter of interest.

5. The relative efficiency comparisons of the proposed models to existing techniques are given.

The fuzzy parameter estimation methods and sample size determination procedure in survey sampling have advantages over classi-
3

cal techniques due to modeling fuzzy uncertainty, imprecision, and the utilization of expert knowledge. Pandey et al. [23] applied 
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Table 2

Nomenclature.

Notations Description

h Index for strata; ∀ℎ = 1,2,3, ...𝐻 .

𝑀ℎ Index for ℎ𝑡ℎ stratum size

k Index for characteristics; ∀𝑘 = 1,2,3, ...𝐾 .

m Index for estimates; ∀𝑚 =𝐿,𝑈 .

L Index for lower.

U Index for upper.

N Index for neutrosophic.

i Index for 𝑖𝑡ℎ unit information.

the fuzzy inference system for estimating potato crop parameters like plant height, area of leaf, etc. Rajabi and Ataie-Ashtiani [25]

applied the fuzzy Bayesian inference algorithm for estimating the groundwater flow using expert knowledge. Aslam [5] used neutro-

sophic statistical techniques for analyzing radar data in the presence of fuzzy uncertainty. Tahir et al. [30] suggested the neutrosophic 
estimator of mean in simple random sampling and applied it to estimate the mean air temperature of Lahore city, Pakistan. Vish-

wakarma and Singh [35] investigated the neutrosophic estimator of a finite population mean in rank set sampling. Ullah et al. [33]

developed the ratio-type estimator for estimating the imprecise population mean and suggested the sample size estimation proce-

dure in simple random sampling under fuzzy uncertainty. The stratified sampling design produces more efficient results than simple 
random sampling for heterogeneous study population and is widely used in agricultural, marketing, spatial, biomedical, and meteo-

rological studies. According to the authors best knowledge, this sampling design is not implemented to estimate imprecise parameters 
of neutrosophic study variables due to a lack of optimum allocation procedures for solving sample allocation problems and estima-

tion methods. The current study will cover this gap. Additionally, expert knowledge is incorporated in modeling the cost of a survey 
and estimating its parameters. In Section 2, we discussed the neutrosophic estimator of mean, formulation of cost function under 
fuzzy uncertainty, mathematical modeling of the optimum allocation problem as an intuitionistic fuzzy multi-objective optimization 
problem and transformed it into an equivalent classical cost constraint multi-objective optimization problem. The solution method-

ology based on neutrosophic fuzzy programming, intuitionistic fuzzy programming and classical approach is explained in Section 3. 
Section 4 explains the computational procedure and application to estimate the average (mean) daily air temperature, daily humid-

ity level, daily visibility, and daily wind speed. The comparative analysis of the proposed procedures with existing techniques is 
performed in Section 5. This study is concluded in Section 6.

2. Problem formulation

Let a multi-character sample survey be planned to collect information about variables of interest like temperature, humidity, wind 
speed, blood pressure, hemoglobin, cholesterol level, share prices, etc., linked with linguistic variables like low, normal/average, 
high, etc. The response to such variables is presented by a neutrosophic number because there is fuzzy uncertainty due to imprecision 
and indeterminacy in linguistic variables. As a result, the estimated parameter of the study variable will be a neutrosophic number 
presented in interval form. Smandrache introduced the neutrosophical sample statistic, which is used as an estimator to estimate 
indeterminate parameters of interest in survey sampling. To select a representative sample of size n from a heterogeneous population 
consisting of M units, we divide the population into non-overlapping homogeneous groups, called strata. The pre-determined sample 
size n is distributed among H strata to obtain maximum precision of estimates or minimize the mean square error of the neutrosophic 
estimator by utilizing resources under the given budget of the survey. We can model and solve this problem using multi-objective 
mathematical programming. The objective is to achieve maximum precision for each estimate of an indeterminate parameter under 
the cost constraint. The indices given in Table 2 are used in the mathematical formulation of the sample allocation problem in 
multivariate stratified sampling. Let 𝑌𝑘𝑁 (𝑘 = 1, 2, 3, ..𝐾) be the neutrosophic study variables observed from a population consists on 
M elements. The population is divided into H strata such that 

∑𝐻

ℎ=1𝑀ℎ = 1. Let 𝑦𝑘ℎ𝑁𝑖
∈ [𝑦𝑘ℎ𝐿𝑖 , 𝑦𝑘ℎ𝑈𝑖

] be the value of 𝑌𝑘𝑁 observed 
from 𝑖𝑡ℎ units in ℎ𝑡ℎ stratum. Let �̄�𝑘ℎ𝑁 ∈ [�̄�𝑘ℎ𝐿 , �̄�𝑘ℎ𝑈 ] denote the sample mean of 𝑘𝑡ℎ neutrosophic characteristic in ℎ𝑡ℎ stratum which 
is an estimate of 𝑌𝑘ℎ𝑁 ∈ [𝑌𝑘ℎ𝐿 , 𝑌𝑘ℎ𝑈 ], the ℎ𝑡ℎ stratum population mean of 𝑘𝑡ℎ characteristic. Let 𝑆2

𝑌𝑘ℎ𝑁
∈ [𝑆2

𝑌𝑘ℎ𝐿
, 𝑆2

𝑌𝑘ℎ𝑁
] be the ℎ𝑡ℎ

stratum population variance of 𝑘𝑡ℎ characteristic.

2.1. Objective function

The objective of the planning and execution of a multi-character sample survey under stratified sampling design is to estimate the 
unknown parameters of interest: population mean, variance, proportion, etc. The sample allocation to various strata and estimation 
methods significantly affect the accuracy and precision of sample estimates. Smarandache [28] suggested that the neutrosophic 
sample statistic that can be used as an estimator to estimate the neutrosophic population mean of the 𝑘𝑡ℎ characteristic in the ℎ𝑡ℎ

stratum is defined as:

𝑀ℎ∑

4

�̄�𝑘ℎ𝑁
=

𝑖=1
𝑦𝑘ℎ𝑁𝑖

, �̄�𝑘ℎ𝑁
∈ [�̄�𝑘ℎ𝐿 , �̄�𝑘ℎ𝑈 ] (1)
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Now, the stratified sample neutrosophic �̄�𝑘𝑠𝑡𝑁 estimator of the population mean of 𝑘𝑡ℎ neutrosophic characteristics is defined as:

�̄�𝑘𝑠𝑡𝑁
=

𝐻∑
ℎ=1

𝑊ℎ�̄�𝑘ℎ𝑁
,

where 𝑊ℎ =
𝑀ℎ

𝑀
and �̄�𝑘𝑠𝑡𝑁 ∈

[
�̄�𝑘𝑠𝑡𝐿

, �̄�𝑘𝑠𝑡𝑈

]
.

The �̄�𝑘𝑠𝑡𝑁 is an unbiased estimator of 𝑌𝑘𝑠𝑡𝑁 with variance 𝑉𝑘

(
�̄�𝑠𝑡𝑁

)
, defined as:

𝑉𝑘

(
�̄�𝑠𝑡𝑁

)
=

𝐻∑
ℎ=1

𝑊 2
ℎ
𝑆2
𝑌𝑘ℎ𝑁

𝑛ℎ
−

𝐻∑
ℎ=1

𝑊 2
ℎ
𝑆2
𝑌𝑘ℎ𝑁

𝑁ℎ

, (2)

𝑉𝑘

(
�̄�𝑠𝑡𝑁

)
∈
[
𝑉𝑘

(
�̄�𝑠𝑡𝐿

)
, 𝑉𝑘

(
�̄�𝑠𝑡𝑈

)]
.

Ignoring the term independent form decision variable 𝑛ℎ in Eq. (2), 𝑉𝑘

(
�̄�𝑠𝑡𝑁

)
can be written as follows:

𝑉𝑘,𝑁

(
�̄�𝑠𝑡

)
=

𝐻∑
ℎ=1

𝑊 2
ℎ
𝑆2
𝑌𝑘ℎ𝑁

𝑛ℎ
, (3)

𝑉𝑘,𝑁

(
�̄�𝑠𝑡

)
∈
[
𝑉𝑘,𝐿

(
�̄�𝑠𝑡

)
, 𝑉𝑘,𝑈

(
�̄�𝑠𝑡

)]
.

From Eq. (3), it is clear that the variability of the stratified sample estimates of neutrosophic population means is inversely pro-

portional to the value of stratum sample size 𝑛ℎ. The best sample allocation methodology in multi-character surveys produces an 
optimum value of 𝑛ℎ that maximizes the precision of each neutrosophic estimate by minimizing the 𝑉𝑘,𝑁

(
�̄�𝑠𝑡

)
(𝑘 = 1, 2, 3, ..., 𝐾) satis-

fying the survey budget and other restrictions. Each 𝑘𝑡ℎ objective contains two sub-objectives: 𝑉𝑘,𝐿

(
�̄�𝑠𝑡

)
and 𝑉𝑘,𝑈

(
�̄�𝑠𝑡

)
. So, the total 

number of objectives functions that are to be minimized are 2𝐾 to estimate the neutrosophic population mean of K characteristics 
under the study.

2.2. Constraints

Two types of constraints are considered in this study. First, the utilization of the survey budget available for per-unit measurement 
cost. Second, the restrictions on stratum sample size.

Cost constraint

Considering the per-unit stratum measurement cost 𝑐ℎ, the fixed cost 𝑐0, and the budget available for sample survey B, the 
classical cost function in stratified random sampling is defined as:

𝑐0 +
𝐻∑
ℎ=1

𝑐ℎ𝑛ℎ =𝐵. (4)

The value of the parameter 𝑐ℎ is decided based on the information available in past surveys, pilot studies, estimated values, etc. 
Mathematically, the value of 𝑐ℎ is selected from the set 𝐸ℎ that is defined on all possible values of 𝑐ℎ. 𝐸ℎ is defined as:

𝐸ℎ =
{
𝑎ℎ1, 𝑎ℎ2, ..., 𝑎ℎ𝑖, ..., 𝑎ℎ𝑜)

}
.

The value of 𝑐ℎ ∈ 𝐸ℎ decided by using the indicator function 𝜙𝐸ℎ(𝑐ℎ) is used in the classical cost function. The indicator function is 
defined as:

𝜙𝐸ℎ(𝑐ℎ) =

{
1 if 𝑐ℎ = 𝑎ℎ

0 otherwise,

where 𝑎ℎ ∈ 𝐸ℎ, and it can be an average value or any particular value from the set 𝐸ℎ. In the classical approach, the average value 
is used as an estimate of parameter 𝑐ℎ in an uncertain environment. The selected value of 𝑐ℎ by this indicator function may be 
either true or false, i.e., 𝜙𝐸(𝑐ℎ) = {0,1}. The classical approach to deciding the value of 𝑐ℎ is not more practical in a non-random 
uncertain environment because the expert’s knowledge and the degree of true value are more important than the existence of true 
value. The fuzzy decision-making approach used to select the value of the per-unit measurement cost is more flexible and is a 
generalization of the classical approach. Under this approach, the per element ℎ𝑡ℎ stratum measurement cost is determined by the 
true membership function 𝜇𝑖

𝑐
(𝑎ℎ): 𝐸ℎ → [0,1], instead of the indicator function. Although the fuzzy approach utilizes the expert’s 

knowledge with a satisfaction degree, it ignores the dissatisfaction or false membership degree, which is equally important in survey 
sampling. Therefore, intuitionistic fuzzy logic is used to decide the value of 𝑐ℎ. In this approach, the 𝑐ℎ is an intuitionistic fuzzy 
5

number denoted by 𝑐𝐼𝐹
ℎ

, defined as follows:
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𝑐𝐼𝐹
ℎ

=
{(

𝑎ℎ,𝜇
𝑖
𝑐
(𝑎ℎ), 𝜈𝑖𝑐 (𝑎ℎ)

)
∶ 𝑎ℎ ∈𝐸ℎ

}
,

where 𝜇𝑖
𝑐
(𝑎ℎ) is the true membership degree, and 𝜈𝑖

𝑐
(𝑎ℎ) is the false membership degree such that 𝜇𝑖

𝑐
(𝑎ℎ) + 𝜈𝑖

𝑐
(𝑎ℎ) = 1.

The intuitionistic fuzzy cost function in stratified random sampling is defined as follows:

𝑐0 +
𝐻∑
ℎ=1

𝑐𝐼𝐹
ℎ

𝑛ℎ =𝐵. (5)

This cost function is linear subject to the decision variable 𝑛ℎ.

Bounded decision variable

The decision variable 𝑛ℎ is bounded by a minimum value and a maximum limit. The stratum size 𝑀ℎ is the maximum limit to 
avoid the possibility of over-sampling. A minimum of two units from each stratum must be selected for estimating stratum variability 
and comparative analysis among strata. Mathematically, 2 ≤ 𝑛ℎ ≤𝑀ℎ.

2.3. Mathematical model

The compromise allocation for estimating the neutrosophic population mean in a multivariate stratified random sampling scheme 
can be formulated as a multi-objective optimization problem with an intuitionistic fuzzy cost constraint as follows:

Minimize 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
Subject to

𝑐0 +
𝐻∑
ℎ=1

𝑐𝐼𝐹
ℎ

𝑛ℎ =𝐵

2 ≤ 𝑛ℎ ≤𝑀ℎ

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers

𝑘 = 1,2,3, ..,𝐾 and 𝑚 =𝐿,𝑈.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(6)

Let 𝑐𝐼𝐹
ℎ

= (𝑎1, 𝑎2, 𝑎3) be the linear triangular intuitionistic fuzzy per-unit measurement cost and, is defined by 𝜇
𝑐𝐼𝐹
ℎ
(𝑐ℎ) ∶ℝ+ → [0.5, 1]

and 𝜈𝑐𝐼𝐹
ℎ
(𝑐ℎ) ∶ℝ+ → [0.5, 1], given as follows:

𝜇
𝑐𝐼𝐹
ℎ
(𝑐ℎ) =

⎧⎪⎪⎨⎪⎪⎩

𝜇𝑙 =
𝑐ℎ−𝑎1
𝑎2−𝑎1

, 𝑎1 ≤ 𝑐ℎ < 𝑎2

1, 𝑐ℎ = 𝑎2
𝜇𝑢 =

𝑎3−𝑐ℎ
𝑎3−𝑎2

, 𝑎2 < 𝑐ℎ ≤ 𝑎3

0, otherwise.

𝜈
𝑐𝐼𝐹
ℎ
(𝑐ℎ) =

⎧⎪⎪⎨⎪⎪⎩

𝜈𝑙 =
𝑎2−𝑐ℎ
𝑎2−𝑎1

, 𝑎1 ≤ 𝑐ℎ < 𝑎2

0, 𝑐ℎ = 𝑎2
𝜈𝑢 =

𝑐ℎ−𝑎2
𝑎3−𝑎2

, 𝑎2 < 𝑐ℎ ≤ 𝑎3

0, otherwise.

Where 𝜇𝑙 ∶ ℝ+ → [0.5, 1], 𝜇𝑢 ∶ ℝ+ → [0.5, 1], 𝜈𝑙 ∶ ℝ+ → [0.5, 1] and 𝜈𝑢 ∶ ℝ+ → [0.5, 1]. Let 𝜇−1
𝑐𝐼𝐹
ℎ

(𝑧) and 𝜈−1
𝑐𝐼𝐹
ℎ

(𝑧) be the inverse of 

𝜇
𝑐𝐼𝐹
ℎ
(𝑐) and 𝜈

𝑐𝐼𝐹
ℎ
(𝑐), respectively; defined as:

𝜇−1
𝑐𝐼𝐹
ℎ

(𝑧ℎ) =

{
𝜇−1
𝑙

= 𝑎1 + 𝑧ℎ(𝑎2 − 𝑎1), 0.5 ≤ 𝑧ℎ ≤ 1
𝜇−1
𝑢

= 𝑎3 + 𝑧ℎ(𝑎2 − 𝑎3), 0.5 ≤ 𝑧ℎ ≤ 1

𝜈−1
𝑐𝐼𝐹
ℎ

(𝑧ℎ) =

{
𝜈−1
𝑙

= 𝑎2 + 𝑧ℎ(𝑎1 − 𝑎2), 0.5 ≤ 𝑧ℎ ≤ 1
𝜈−1
𝑢

= 𝑎2 + 𝑧ℎ(𝑎3 − 𝑎2), 0.5 ≤ 𝑧ℎ ≤ 1

Now, the centroid point (𝐴(𝑐𝐼𝐹
ℎ

), 𝑍(𝑐𝐼𝐹
ℎ

)) of triangular intuitionistic fuzzy per-unit measurement cost 𝑐𝐼𝐹
ℎ

is calculated as follows:

𝐴𝜇(𝑐𝐼𝐹ℎ ) =
∫ 𝑎2
𝑎1

𝑐ℎ𝜇𝑙𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝑐ℎ𝜇𝑢𝑑𝑐ℎ

∫ 𝑎2
𝑎1

𝜇𝑙𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝜇𝑢𝑑𝑐
,

𝐴 (𝑐𝐼𝐹 ) =
∫ 𝑎2
𝑎1

𝑐2
ℎ
−𝑎1𝑐ℎ

𝑎2−𝑎1
𝑑𝑐ℎ + ∫ 𝑎3

𝑎2

𝑎3𝑐ℎ−𝑐2ℎ
𝑎3−𝑎2

𝑑𝑐ℎ
,

6

𝜇 ℎ ∫ 𝑎2
𝑎1

𝑐ℎ−𝑎1
𝑎2−𝑎1

𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝑎3−𝑐ℎ
𝑎3−𝑎2

𝑑𝑐ℎ



Heliyon 10 (2024) e28327A. Ullah, J. Shabbir, A.M. Alomair et al.

𝐴𝜇(𝑐𝐼𝐹ℎ ) =
𝑎1 + 𝑎2 + 𝑎3

3
. (7)

𝐴𝜈(𝑐𝐼𝐹ℎ ) =
∫ 𝑎2
𝑎1

𝑐ℎ𝜈𝑙𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝑐ℎ𝜈𝑢𝑑𝑐ℎ

∫ 𝑎2
𝑎1

𝜈𝑙𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝜈𝑢𝑑𝑐ℎ

,

𝐴𝜈(𝑐𝐼𝐹ℎ ) =
∫ 𝑎2
𝑎1

𝑎2𝑐ℎ−𝑐2ℎ
𝑎2−𝑎1

𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝑐2
ℎ
−𝑎2𝑐ℎ

𝑎3−𝑎2
𝑑𝑐ℎ

∫ 𝑎2
𝑎1

𝑎2−𝑐ℎ
𝑎2−𝑎1

𝑑𝑐ℎ + ∫ 𝑎3
𝑎2

𝑐ℎ−𝑎2
𝑎3−𝑎2

𝑑𝑐ℎ

,

𝐴𝜈(𝑐𝐼𝐹ℎ ) =
2𝑎1 − 𝑎2 + 2𝑎3

3
. (8)

𝑍𝜇(𝑐𝐼𝐹ℎ ) =
∫ 1
0.5 𝑧ℎ𝜇

−1
𝑢

𝑑𝑧ℎ − ∫ 1
0.5 𝑧ℎ𝜇

−1
𝑙

𝑑𝑧ℎ

∫ 1
0.5 𝜇

−1
𝑢

𝑑𝑧ℎ − ∫ 1
0.5 𝜇

−1
𝑙

𝑑𝑧ℎ

,

𝑍𝜇(𝑐𝐼𝐹ℎ ) =
∫ 1
0.5(𝑎3𝑧ℎ + (𝑎2 − 𝑎3)𝑧2ℎ)𝑑𝑧ℎ − ∫ 1

0.5(𝑎1𝑧ℎ + (𝑎2 − 𝑎1)𝑧2ℎ)𝑑𝑧ℎ
∫ 1
0.5(𝑎3 + (𝑎2 − 𝑎3)𝑧ℎ)𝑑𝑧ℎ − ∫ 1

0.5(𝑎1 + (𝑎2 − 𝑎1)𝑧ℎ)𝑑𝑧ℎ
,

𝑍𝜇(𝑐𝐼𝐹ℎ ) = 2
3
. (9)

𝑍𝜈(𝑐𝐼𝐹ℎ ) =
∫ 1
0.5 𝑧ℎ𝜈

−1
𝑢

𝑑𝑧ℎ − ∫ 1
0.5 𝑧ℎ𝜈

−1
𝑙

𝑑𝑧ℎ

∫ 1
0.5 𝜈

−1
𝑢

𝑑𝑧ℎ − ∫ 1
0.5 𝜈

−1
𝑙

𝑑𝑧ℎ

,

𝑍𝜈(𝑐𝐼𝐹ℎ ) =
∫ 1
0.5(𝑎2𝑧ℎ + (𝑎3 − 𝑎2)𝑧2ℎ)𝑑𝑧ℎ − ∫ 1

0.5(𝑎2𝑧𝑣+ (𝑎1 − 𝑎2)𝑧2ℎ)𝑑𝑧ℎ
∫ 1
0.5(𝑎2 + (𝑎3 − 𝑎2)𝑧ℎ)𝑑𝑧ℎ − ∫ 1

0.5(𝑎2 + (𝑎1 − 𝑎2)𝑧ℎ)𝑑𝑧ℎ
,

𝑍𝜈(𝑐𝐼𝐹ℎ ) = 7
9
. (10)

The rank function 𝑑(𝑐𝐼𝐹
ℎ

) for crisp value of triangular intuitionistic fuzzy per-unit measurement cost 𝑐𝐼𝐹
ℎ

is defined as:

𝑑(𝑐𝐼𝐹
ℎ

) =
√

1
2

[(
𝐴𝜇(𝑐𝐼𝐹ℎ ) −𝑍𝜇(𝑐𝐼𝐹ℎ )

)2 + (
𝐴𝜈(𝑐𝐼𝐹ℎ ) −𝑍𝜈(𝑐𝐼𝐹ℎ )

)2]
.

Using the results given in Eqs. (7)-(10), we get

𝑑(𝑐𝐼𝐹
ℎ

) =

√√√√1
2

[(
𝑎1 + 𝑎2 + 𝑎3

3
− 2

3

)2
+
(
2𝑎1 − 𝑎2 + 2𝑎3

3
− 7

9

)2
]
. (11)

Using the ranking function given in Eq. (11), the intuitionistic fuzzy cost constrain multi-objective optimization problem defined 
in Eq. (6) can be transformed into a classical multi-objective optimization problem as follows:

Minimize
([
𝑉1,𝐿

(
�̄�𝑠𝑡

)
, 𝑉1,𝑈

(
�̄�𝑠𝑡

)]
,… ,

[
𝑉𝑘,𝐿

(
�̄�𝑠𝑡

)
, 𝑉𝑘,𝑈

(
�̄�𝑠𝑡

)]
,… ,

[
𝑉𝐾,𝐿

(
�̄�𝑠𝑡

)
, 𝑉𝐾,𝑈

(
�̄�𝑠𝑡

)])
,

subject to

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤ 𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(12)

3. Solution methodology

The fuzzy approach-based methods are proposed to solve the compromise optimum allocation problem formulated in Eq. (12). 
The classical methods are also presented to solve the formulated compromise allocation problem for the efficiency comparison of 
fuzzy approaches.

3.1. Neutrosophic fuzzy programming method

Multi-objective decision-making models are the most commonly applicable mathematical models to achieve specified goals that 
have a conflicting nature. The compromise solution that optimizes all conflicting objective functions simultaneously in the model 
is to achieve this in such situations. The selection of multi-objective optimization methods for a compromise solution depends on 
the availability of information about preferences and the nature of the targeted goals. The neutrosophic optimization techniques 
7

are applied to find a compromise solution for many real-life multi-objective decision-making problems when the targeted goals are 
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Table 3

Payoff matrix.

Objectives 𝑉1,𝐿
(
�̄�𝑠𝑡

)
𝑉1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉𝐾,𝑈

(
�̄�𝑠𝑡

)
𝑛ℎ (1,𝐿) 𝑉

1,𝐿
1,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝐿
1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

1,𝐿
𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝐿
𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

1,𝐿
𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝐿
𝐾,𝑈

(
�̄�𝑠𝑡

)
𝑛ℎ (1,𝑈 ) 𝑉

1,𝑈
1,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝑈
1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

1,𝑈
𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝑈
𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

1,𝑈
𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝑈
𝐾,𝑈

(
�̄�𝑠𝑡

)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑛ℎ (𝑘,𝐿) 𝑉

𝑞,𝐿

1,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝑞,𝐿

1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝑞,𝐿

𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝑞,𝐿

𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝑞,𝐿

𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝑞,𝐿

𝐾,𝑈

(
�̄�𝑠𝑡

)
𝑛ℎ (𝑘,𝑈 ) 𝑉

𝑞,𝑈

1,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝑞,𝑈

1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝑞,𝑈

𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝑞,𝑈

𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝑞,𝑈

𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝑈
𝐾,𝑈

(
�̄�𝑠𝑡

)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑛ℎ (𝐾,𝐿) 𝑉

𝐾,𝐿

1,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝐾,𝐿

1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝐾,𝐿

𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝐾,𝐿

𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝐾,𝐿

𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝐾,𝐿

𝐾,𝑈

(
�̄�𝑠𝑡

)
𝑛ℎ (𝐾,𝑈 ) 𝑉

𝐾,𝑈

1,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝐾,𝑈

1,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝐾,𝑈

𝑘,𝐿

(
�̄�𝑠𝑡

)
𝑉

𝐾,𝑈

𝑘,𝑈

(
�̄�𝑠𝑡

)
… 𝑉

𝐾,𝑈

𝐾,𝐿

(
�̄�𝑠𝑡

)
𝑉

1,𝑈
𝐾,𝑈

(
�̄�𝑠𝑡

)

specified as neutrosophic numbers. The existence of an indeterminacy degree encounters some practical aspects of decision-making 
problems in applied survey sampling and other areas of research. Rani and Mishra [26] proposed a neutrosophic programming model 
for the compromise selection of a recycling partner for electronics equipment sustainable waste. Khan et al. [17] solved the industrial 
production problem to maximize the net profit under resource and system constraints using a neutrosophic programming approach. 
Ahmad [1] suggested a neutrosophic optimization method for a compromise solution to intuitionistic multi-objective pricing and 
managerial problems.

In multi-objective compromise sample allocation problem formulated in Eq. (12), we have to achieve a minimum level of 
𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
, 𝑘 = 1, 2, ..., 𝐾 and 𝑚 = 𝐿, 𝑈 under the set of constraints. The optimum level of each targeted gaol is impossible to obtain 

in a set of multiple conflicting objectives satisfying the recourse constraint in sample surveys. The objective function 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
can 

assume value under compromise allocation within an interval obtained by optimum allocation. For determining the lower and upper 
bounds of each objective, we solved each objective function individually to find the optimum allocation, ignoring the other objec-

tives. Let 𝑛ℎ(𝑘,𝑚) be the optimum allocation that minimizes the objective 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
. The trade-off among 2K objectives is given in 

Table 3.

The domains of the objective functions are determined by individual optimum allocation. Using Table 3, the lower bound (𝐿𝑘,𝑚)
and upper bound (𝑈𝑘,𝑚) for the 𝑘𝑡ℎ objective are defined as:

𝐿𝑘,𝑚 = Minimize 𝑉
𝑞,𝑟

𝑘,𝑚

(
�̄�𝑠𝑡

)
, 𝑘 = 1,2,3, ...,𝐾, 𝑚 =𝐿,𝑈, 𝑞 = 1,2,3, ...,𝐾 and 𝑟 =𝐿,𝑈.

𝑈𝑘,𝑚 = Max 𝑉
𝑞,𝑟

𝑘,𝑚

(
�̄�𝑠𝑡

)
, 𝑘 = 1,2,3, ...,𝐾, 𝑚 =𝐿,𝑈, 𝑞 = 1,2,3, ...,𝐾 and 𝑟 =𝐿,𝑈.

Let A be a feasible solution set, the neutrosophic decision set �̃�𝑘,𝑚 ∈ 𝐴 is characterized by truth membership function 𝛼�̃�𝑘,𝑚
∶ℝ+ →

[0, 1], falsity membership function 𝛽�̃�𝑘,𝑚
∶ℝ+ → [0, 1] and indeterminacy membership function 𝜃�̃�𝑘,𝑚

∶ℝ+ → [0, 1], written as:

�̃�𝑘,𝑚(𝑥) =
(
𝑥,𝛼�̃�𝑘,𝑚

(𝑥), 𝜃�̃�𝑘,𝑚
(𝑥), 𝛽�̃�𝑘,𝑚

(𝑥)
)
.

The domains of these three membership functions of 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
using 𝐿𝑘,𝑚 and 𝑈𝑘,𝑚 are defined as:

• For truth membership function: 𝐿𝑇
𝑘,𝑚

=𝐿𝑘,𝑚, 𝑈
𝑇
𝑘,𝑚

=𝑈𝑘,𝑚.

• For indeterminate membership function: 𝐿𝐼
𝑘,𝑚

=𝐿𝑘,𝑚, 𝑈
𝐼
𝑘,𝑚

=𝐿𝑘,𝑚 + 𝑠𝑘,𝑚(𝑈𝑘,𝑚 −𝐿𝑘,𝑚).
• For false membership function: 𝐿𝐹

𝑘,𝑚
=𝐿𝑘,𝑚 + 𝑡𝑘,𝑚(𝑈𝑘,𝑚 −𝐿𝑘,𝑚), 𝑈𝐹

𝑘,𝑚
=𝑈𝑘,𝑚,

where 𝑠𝑘,𝑚 ∈ [0, 1] and 𝑡𝑘,𝑚 ∈ [0, 1] are tolerance variables whose values are chosen by decision makers according to their preferences. 
The membership functions used in the neutrosophic compromise allocation model are defined as follows:

𝛼�̃�𝑘,𝑚
=

⎧⎪⎪⎨⎪⎪⎩
1, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡𝑘

)
<𝐿𝑇

𝑘,𝑚

𝑈𝑇
𝑘,𝑚

−𝑉𝑘,𝑚
(
�̄�𝑠𝑡

)
𝑈𝑇
𝑘,𝑚

−𝐿𝑇
𝑘,𝑚

, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
∈
[
𝐿𝑇
𝑘,𝑚

,𝑈𝑇
𝑘,𝑚

]
0, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
>𝑈𝑇

𝑘,𝑚
.

𝜃�̃�𝑘,𝑚
=

⎧⎪⎪⎨⎪
0, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
< 𝐿𝐼

𝑘,𝑚

𝑈𝐼
𝑘,𝑚

−𝑉𝑘,𝑚
(
�̄�𝑠𝑡

)
𝑈𝐼
𝑘,𝑚

−𝐿𝐼
𝑘,𝑚

, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
∈
[
𝐿𝐼
𝑘,𝑚

,𝑈𝐼
𝑘,𝑚

]
( )
8

⎪⎩0, 𝑉𝑘,𝑚 �̄�𝑠𝑡 > 𝑈𝐼
𝑘,𝑚

.
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𝛽�̃�𝑘,𝑚
=

⎧⎪⎪⎨⎪⎪⎩
0, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
<𝐿𝐹

𝑘,𝑚

𝑉𝑘,𝑚
(
�̄�𝑠𝑡

)
−𝐿𝐹

𝑘,𝑚

𝑈𝐹
𝑘,𝑚

−𝐿𝐹
𝑘,𝑚

, 𝑉𝑘,𝑚

[
�̄�𝑠𝑡

]
∈
[
𝐿𝐹
𝑘,𝑚

,𝑈𝐹
𝑘,𝑚

]
1, 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
>𝑈𝐹

𝑘,𝑚
.

For the compromise solution of the problem formulated in Eq. (12), the neutrosophic multi-objective mathematical programming 
model is formulated as:

Maximize 𝛼�̃�𝑘,𝑚
, Maximize 𝜃�̃�𝑘,𝑚

, Minimize 𝛽�̃�𝑘,𝑚
,

subject to

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝛼�̃�𝑘,𝑚
≥ 𝜃�̃�𝑘,𝑚

and 𝛼�̃�𝑘,𝑚
≥ 𝛽�̃�𝑘,𝑚

,

𝛼�̃�𝑘,𝑚
+ 𝜃�̃�𝑘,𝑚

+ 𝛽�̃�𝑘,𝑚
≤ 3,

𝛼�̃�𝑘,𝑚
, 𝜃�̃�𝑘,𝑚

and 𝛽�̃�𝑘,𝑚
∈ [0,1],∀𝑚 =𝐿,𝑈 and 𝑘 = 1,2, ...𝐾,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Using the auxiliary variates 𝛼𝑘,𝑚, 𝜃𝑘,𝑚, and 𝛽𝑘,𝑚, the single objective neutrosophic fuzzy optimization model equivalent to model 
formulated in Eq. (13) is defined as:

Maximize

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

(
𝛼𝑘,𝑚 + 𝜃𝑘,𝑚 − 𝛽𝑘,𝑚

)
,

subject to

𝑈𝑇
𝑘,𝑚

−
(
𝑈𝑇
𝑘,𝑚

−𝐿𝑇
𝑘,𝑚

)
𝛼𝑘,𝑚 ≥ 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

𝑈𝐼
𝑘,𝑚

−
(
𝑈𝐼
𝑘,𝑚

−𝐿𝐼
𝑘,𝑚

)
𝜃𝑘,𝑚 ≥ 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

𝐿𝐹
𝑘,𝑚

+
(
𝑈𝐹
𝑘,𝑚

−𝐿𝐹
𝑘,𝑚

)
𝛽𝑘,𝑚 ≥ 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝛼𝑘,𝑚 ≤ 𝛼�̃�𝑘,𝑚
, 𝜃𝑘,𝑚 ≤ 𝜃�̃�𝑘,𝑚

and 𝛽𝑘,𝑚 ≥ 𝛽�̃�𝑘,𝑚
,

𝛼𝑘,𝑚 ≥ 𝜃𝑘,𝑚, 𝛼𝑘,𝑚 ≥ 𝛽𝑘,𝑚 and 𝛼𝑘,𝑚 + 𝜃𝑘,𝑚 + 𝛽𝑘,𝑚 ≤ 3,

𝛼𝑘,𝑚, 𝜃𝑘,𝑚 and 𝛽𝑘,𝑚 ∈ [0,1],∀𝑚 =𝐿,𝑈 and 𝑘 = 1,2, ...𝐾,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

3.2. Intuitionistic fuzzy programming method

Angelov [4] extended the traditional fuzzy optimization method to an intuitionistic fuzzy (IF) decision-making approach by 
incorporating the degree of dissatisfaction (non-membership) of the objectives and the constraints together with the degree of 
stratification (membership). Wan and Li [36] applied the IF programming method to solve the selection problem of green suppliers 
under a set of constraints. Mahajan and Gupta [21] proposed IF optimistic, pessimistic, and mixed approaches for finding compromise 
solutions and applied them to transportation and production problems. Gupta et al. [14] and Raghav et al. [24] suggested compromise 
sample allocation procedures using the IF programming approach for estimating multivariate population means in stratified random 
sampling under a deterministic cost function.

The problem formulated in Eq. (12) is transformed as a IF multi-objective optimization problem for compromise allocation in 
9

multivariate neutrosophic stratified random sampling, given as follows:
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Maximize 𝛼�̃�𝑘,𝑚
,Minimize 𝛽�̃�𝑘,𝑚

,

subject to

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝛼�̃�𝑘,𝑚
≥ 𝛽�̃�𝑘,𝑚

,

𝛼�̃�𝑘,𝑚
+ 𝛽�̃�𝑘,𝑚

≤ 1,

𝛼�̃�𝑘,𝑚
and 𝛽�̃�𝑘,𝑚

∈ [0,1],𝑚 =𝐿,𝑈 and 𝑘 = 1,2, ...𝐾,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Using the auxiliary variates 𝛼𝑘,𝑚 and 𝛽𝑘,𝑚, the single objective intuitionistic fuzzy programming model, equivalent to the model 
formulated in Eq. (15), is defined as:

Maximize

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

(
𝛼𝑘,𝑚 − 𝛽𝑘,𝑚

)
,

subject to

𝑈𝑇
𝑘,𝑚

−
(
𝑈𝑇
𝑘,𝑚

−𝐿𝑇
𝑘,𝑚

)
𝛼𝑘,𝑚 ≥ 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

𝐿𝐹
𝑘,𝑚

+
(
𝑈𝐹
𝑘,𝑚

−𝐿𝐹
𝑘,𝑚

)
𝛽𝑘,𝑚 ≥ 𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝛼𝑘,𝑚 ≤ 𝛼�̃�𝑘,𝑚
and 𝛽𝑘,𝑚 ≥ 𝛽�̃�𝑘,𝑚

,

𝛼𝑘,𝑚 ≥ 𝛽𝑘,𝑚 and 𝛼𝑘,𝑚 + 𝛽𝑘,𝑚 ≤ 1,

𝛼𝑘,𝑚 and 𝛽𝑘,𝑚 ∈ [0,1],𝑚 =𝐿,𝑈 and 𝑘 = 1,2, ...𝐾,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

3.3. Classical methods

The compromise solution to the problem (12) can be obtained using classical procedures suggested by Cochran [9], 
Sukhatme [29], and Khan et al. [18].

1. Sukhatme [29] proposed the compromise allocation by minimizing the trace of the mean square errors of an estimator in 
multivariate stratified random sampling. The compromise allocation using the Sukhtame’s Method is defined as:

Minimize

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

subject to

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(17)
10

2. The mathematical model for compromise allocation using Khan et al. [18] weighted method is formulated as:
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Minimize

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

𝑊𝑘,𝑚𝑉𝑘,𝑚

(
�̄�𝑠𝑡

)
,

subject to

𝑐𝑜 +
𝐻∑
ℎ=1

𝑑(𝑐𝐼𝐹
ℎ

)𝑛ℎ ≤𝐵,

2 ≤ 𝑛ℎ ≤𝑀ℎ,

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

𝑊𝑘,𝑚 = 1,

𝑛ℎ(ℎ = 1,2, ...,𝐻) are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Where 𝑊𝑘,𝑚 ∶ (𝑘 = 1, 2, 3, .., 𝐾; 𝑚 =𝐿, 𝑈 ) are relative weights defined as:

𝑊𝑘,𝑚 =
𝑆2
𝑌𝑘,𝑚∑𝐾

𝑘=1
∑𝑈

𝑚=𝐿 𝑆2
𝑌𝑘,𝑚

.

3. Cochran [9] suggested the compromise allocation as an average of individual optimum allocations in multi-character surveys. 
Using the individual optimum allocation 𝑛ℎ𝑘,𝑚 (𝑘 = 1, 2, 3, ..., 𝐾), the compromise allocation under Cochran’s approach is defined 
as:

𝑛ℎ =
1
2𝐾

𝐾∑
𝑘=1

𝑈∑
𝑚=𝐿

𝑛ℎ(𝑘,𝑚)
.

4. Numerical study

Researchers have been studying changes in atmospheric climate variables over the last few decades. The survey sampling tech-

niques are used to collect the data for estimating the population mean and other parameters of these variables, presented in interval 
form. For example, daily temperature, humidity, visibility, and wind speed fluctuate within a minimum and maximum value and 
are presented in interval form like [min, max]. This interval-valued data is linked with linguistic variables such as low, normal, or 
high, which have fuzzy meanings with some degree of indeterminacy. Therefore, neutrosophic statistical techniques are best suited 
to analyze the fuzzy data of these atmospheric climate variables, which have some degree of indeterminacy.

We performed the numerical study based on the daily temperature, daily humidity, daily visibility, and daily wind speed data of 
Qassim city, Saudi Arabia, for the year 2018. We stratified the date into four strata according to seasonal variation. The description 
of the study variables and their mathematical presentation are given in Table 4. The statistical summary is given in Table 5. We 
assumed that 𝑐𝐼𝐹1 = (5, 6, 8), 𝑐𝐼𝐹2 = (4, 8, 12), and 𝑐𝐼𝐹3 = (3, 5, 8), 𝑐𝐼𝐹

ℎ
= (4, 6, 10), 𝑐𝑜 = 30, and 𝐵 = 250. Using the ranking function 

defined in Eq. (11), the intuitionistic fuzzy measurement costs 𝑐𝐼𝐹
ℎ

(ℎ = 1, 2, 3, 4) are transformed into classical numbers 𝑑(𝑐𝐼𝐹
ℎ

)(ℎ =
1, 2, 3, 4) = (5.78, 7.28, 4.78, 6.48), respectively.

Table 4

Variables description and their symbolic presentation.

Variables description Notations

Population Winter: h=1 Spring: h=2 Summer: h=3 Autumn: h=4

Daily humidity percentage 𝑌1𝑁 𝑌11𝑁 𝑌12𝑁 𝑌13𝑁 𝑌14𝑁
Daily lower humidity percentage 𝑌1𝐿 𝑌11𝐿 𝑌12𝐿 𝑌13𝐿 𝑌14𝐿
Daily upper humidity percentage 𝑌1𝑈 𝑌11𝑈 𝑌12𝑈 𝑌13𝑈 𝑌14𝑈
Daily temperature 𝑌2𝑁 𝑌21𝑁 𝑌22𝑁 𝑌23𝑁 𝑌24𝑁
Daily lower temperature 𝑌2𝐿 𝑌21𝐿 𝑌22𝐿 𝑌23𝐿 𝑌24𝐿
Daily upper temperature 𝑌2𝑈 𝑌21𝑈 𝑌22𝑈 𝑌23𝑈 𝑌24𝑈
Daily visibility 𝑌3𝑁 𝑌31𝑁 𝑌32𝑁 𝑌33𝑁 𝑌34𝑁
Daily lower visibility 𝑌3𝐿 𝑌31𝐿 𝑌32𝐿 𝑌33𝐿 𝑌34𝐿
Daily upper visibility 𝑌3𝑈 𝑌31𝑈 𝑌32𝑈 𝑌33𝑈 𝑌34𝑈
Daily wind speed 𝑌4𝑁 𝑌41𝑁 𝑌42𝑁 𝑌43𝑁 𝑌44𝑁
Daily lower wind speed 𝑌4𝐿 𝑌41𝐿 𝑌42𝐿 𝑌43𝐿 𝑌44𝐿
Daily upper wind speed 𝑌4𝑈 𝑌41𝑈 𝑌42𝑈 𝑌43𝑈 𝑌44𝑈

The objective is to obtain the most precise estimate of the mean of these atmospheric study variables. How many sampling units 
(days) be selected from each stratum (season) to make the sample representative and achieve this objective for each study variable 
11

at optimum utilization resources. This problem is formulated as a multi-objective minimization problem as follows:
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Table 5

Statistical summary of climates variables data.

h 𝑌1ℎ𝑁 𝑌2ℎ𝑁 𝑌3ℎ𝑁 𝑌4ℎ𝑁 𝜎2
𝑌1ℎ𝑁

𝜎2
𝑌2ℎ𝑁

1 [41.50 , 78.63] [10.31 , 22.69] [3.92 , 15.06] [3.31 , 20.80] [296.77 , 309.25] [15.21 , 16.82]

2 [26.01 , 60.80] [20.79 , 33.96] [2.60 , 15.91] [4.62 , 28.55] [174.69 , 479.61] [15.79 , 21.32]

3 [14.65 , 34.72] [28.52 , 43.47] [11.83 , 16.00] [3.64 , 27.32] [3.53 , 67.13] [5.57 , 4.34]

4 [39.08 , 63.87] [20.34 , 32.84] [4.46 , 14.31] [2.97 , 22.16] [751.49 , 845.76] [29.20 , 79.16

h 𝜎2
𝑌3ℎ𝑁

𝜎2
𝑌4ℎ𝑁

𝑀ℎ j 𝑌𝑗𝑁 𝜎2
𝑌𝑗𝑁

1 [53.31 , 10.52] [10.98 , 51.82] 90 1 [30.22 , 59.39] [418.58 , 670.51]

2 [26.75 , 244.70] [15.43 , 103.13] 92 2 [20.04 , 33.30] [57.87 , 84.00]

3 [45.86 , 0.00] [11.84 , 96.09] 92 3 [5.72 , 15.32] [59.31 , 67.76]

4 [61.47 , 15.06] [12.52 , 44.41] 92 4 [3.64 , 24.74] [12.94 , 84.07]

Table 6

Optimum allocation for individual objectives.

𝑛ℎ 𝑉1,𝐿(�̄�𝑠𝑡) 𝑉1,𝑈 (�̄�𝑠𝑡) 𝑉2,𝐿(�̄�𝑠𝑡) 𝑉2,𝑈 (�̄�𝑠𝑡) 𝑉3,𝐿(�̄�𝑠𝑡) 𝑉3,𝑈 (�̄�𝑠𝑡) 𝑉4,𝐿(�̄�𝑠𝑡) 𝑉4,𝑈 (�̄�𝑠𝑡)

𝑛1 11 10 10 9 11 6 9 9

𝑛2 8 10 9 9 7 23 11 11

𝑛3 3 5 7 4 12 2 11 14

𝑛4 18 15 14 18 12 6 10 8

Minimize

𝑉1,𝐿(�̄�𝑠𝑡) =
18.0434

𝑛1
+ 11.0985

𝑛2
+ 0.2240

𝑛3
+ 46.7114

𝑛4

𝑉1,𝑈 (�̄�𝑠𝑡) =
18.8020

𝑛1
+ 30.4704

𝑛2
+ 4.2648

𝑛3
+ 52.5708

𝑛4

𝑉2,𝐿(�̄�𝑠𝑡) =
0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

𝑉2,𝑈 (�̄�𝑠𝑡) =
1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

𝑉3,𝐿(�̄�𝑠𝑡) =
3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

𝑉3,𝑈 (�̄�𝑠𝑡) =
0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

𝑉4,𝐿(�̄�𝑠𝑡) =
0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

𝑉4,𝑈 (�̄�𝑠𝑡) =
3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

subject to

30 + 5.78𝑛1 + 7.27𝑛2 + 4.78𝑛3 + 6.48𝑛4 ≤ 250

2 ≤ 𝑛1 ≤ 90,2 ≤ 𝑛2 ≤ 92,2 ≤ 𝑛3 ≤ 92,2 ≤ 𝑛4 ≤ 91

𝑛1 𝑛2, 𝑛3 and 𝑛4 are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

The compromise optimum value of the bounded decision variables 𝑛ℎ(ℎ = 1, 2, 3, 4) will produce the required objectives. For this, 
we found the optimum allocation of each objective individually, which is presented in Table 6. The trade-off among these objectives 
under the optimum allocation is summarized in Table 7. For using the neutrosophic fuzzy (NF) programming and intuitionistic fuzzy 
(IF) programming approaches, we specified the domain of each objective function for the compromise optimum allocation, given in 
Table 8.

The true membership functions 𝛼 ̃𝐴𝑘,𝑚
∶ 𝑘 = 1, 2, 3, 4 & 𝑚 = 𝐿, 𝑈 , false membership functions 𝛽 ̃𝐴𝑘,𝑚

∶ 𝑘 = 1, 2, 3, 4 & 𝑚 = 𝐿, 𝑈 and 
indeterminate membership functions 𝜃 ̃𝐴𝑘,𝑚

∶ 𝑘 = 1, 2, 3, 4 & 𝑚 =𝐿, 𝑈 are designed graphically which are presented in Fig. 1.

4.1. Neutrosophic fuzzy programming method

The compromise optimum solution for the problem formulated in Eq. (19) can be obtained by solving the following neutrosophic 
12

fuzzy optimization model using mixed integer non-linear programming technique.



Heliyon 10 (2024) e28327A. Ullah, J. Shabbir, A.M. Alomair et al.

Maximize

4∑
𝑘=1

𝑈∑
𝑚=𝐿

(𝛼𝑘,𝑚 + 𝜃𝑘,𝑚 − 𝛽𝑘,𝑚)

subject to

18.0434
𝑛1

+ 11.0985
𝑛2

+ 0.2240
𝑛3

+ 46.7114
𝑛4

≤ 11.3870 − 5.6896𝛼1,𝐿

18.8020
𝑛1

+ 30.4704
𝑛2

+ 4.2648
𝑛3

+ 52.5708
𝑛4

≤ 15.3527 − 6.0677𝛼1,𝑈

0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

≤ 0.6772 − 0.2931𝛼2,𝐿

1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

≤ 1.1873 − 0.5809𝛼2,𝑈

3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

≤ 2.7077 − 1.6090𝛼3,𝐿

0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

≤ 2.3570 − 1.4184𝛼3,𝑈

0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

≤ 0.6596 − 0.3501𝛼4,𝐿

3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

≤ 4.3223 − 2.5955𝛼4,𝑈

18.0434
𝑛1

+ 11.0985
𝑛2

+ 0.2240
𝑛3

+ 46.7114
𝑛4

≤ 10.24908 − 4.55168𝜃1,𝐿

18.8020
𝑛1

+ 30.4704
𝑛2

+ 4.2648
𝑛3

+ 52.5708
𝑛4

≤ 14.13914 − 4.85424𝜃1,𝑈

0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

≤ 0.61858 − 0.23448𝜃2,𝐿

1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

≤ 1.07112 − 0.46472𝜃2,𝑈

3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

≤ 2.38588 − 1.28728𝜃3,𝐿

0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

≤ 2.07332 − 1.13472𝜃3,𝑈

0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

≤ 0.58958 − 0.28008𝜃4,𝐿

3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

≤ 3.8032 − 2.0764𝜃4,𝑈

18.0434
𝑛1

+ 11.0985
𝑛2

+ 0.2240
𝑛3

+ 46.7114
𝑛4

≤ 8.5422 + 2.8448𝛽1,𝐿

18.8020
𝑛1

+ 30.4704
𝑛2

+ 4.2648
𝑛3

+ 52.5708
𝑛4

≤ 12.3188 + 3.0339𝛽1,𝑈

0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

≤ 0.53065 + 0.1466𝛽2,𝐿

1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

≤ 0.89685 + 0.2905𝛽2,𝑈

3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

≤ .1.90315 + 0.8046𝛽3,𝐿

0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

≤ 1.6478 + 0.7092𝛽3,𝑈

0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

≤ 0.48455 + 0.1751𝛽4,𝐿

3.1509
𝑛

+ 6.5519
𝑛

+ 6.1045
𝑛

+ 2.7602
𝑛

≤ 3.02455 + 1.2978𝛽4,𝑈

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

(20)
13

1 2 3 4

and constraints given in Eq. (21)
⎪⎪⎭
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Table 7

Payoff matrix.

Optimum 
allocation

Objectives function values

𝑉1,𝐿(�̄�𝑠𝑡) 𝑉1,𝑈 (�̄�𝑠𝑡) 𝑉2,𝐿(�̄�𝑠𝑡) 𝑉2,𝑈 (�̄�𝑠𝑡) 𝑉3,𝐿(�̄�𝑠𝑡) 𝑉3,𝑈 (�̄�𝑠𝑡) 𝑉4,𝐿(�̄�𝑠𝑡) 𝑉4,𝑈 (�̄�𝑠𝑡)

𝑛ℎ1,𝐿
5.6974 9.8603 0.4283 0.6275 1.6905 2.0534 0.4771 3.2936

𝑛ℎ1,𝑈
6.0731 9.2849 0.3846 0.6209 1.3315 1.6810 0.3670 2.3752

𝑛ℎ2,𝐿
6.4060 9.6301 0.3841 0.6436 1.2021 1.8582 0.3387 2.1123

𝑛ℎ2,𝑈
5.8891 9.4615 0.4035 0.6064 1.4896 1.8504 0.4143 2.7576

𝑛ℎ3,𝐿
7.1371 10.7985 0.4081 0.7195 1.0986 2.3570 0.3282 1.9612

𝑛ℎ3,𝑈
11.3870 15.3527 0.6772 1.1873 2.7077 0.9386 0.6596 4.3223

𝑛ℎ4,𝐿
7.7053 10.5039 0.4076 0.7539 1.1616 1.5780 0.3095 1.7767

𝑛ℎ4,𝑈
8.8687 11.7351 0.4461 0.8715 1.2004 1.6014 0.3143 1.7268

Table 8

Domain of membership functions of 𝑉𝑘,𝑚(�̄�𝑠𝑡).

Limits 𝑉1,𝐿(�̄�𝑠𝑡) 𝑉1,𝑈 (�̄�𝑠𝑡) 𝑉2,𝐿(�̄�𝑠𝑡) 𝑉2,𝑈 (�̄�𝑠𝑡) 𝑉3,𝐿(�̄�𝑠𝑡) 𝑉3,𝑈 (�̄�𝑠𝑡) 𝑉4,𝐿(�̄�𝑠𝑡) 𝑉4,𝑈 (�̄�𝑠𝑡)

𝐿𝑇 5.6974 9.2849 0.3841 0.6064 1.0986 0.9386 0.3095 1.7268

𝑈𝑇 11.3870 15.3527 0.6772 1.1873 2.7077 2.3570 0.6596 4.3223

𝐿𝐹 8.5422 12.3188 0.5307 0.8969 1.9032 1.6478 0.4846 3.0246

𝑈𝐹 11.3870 15.3527 0.6772 1.1873 2.7077 2.3570 0.6596 4.3223

𝐿𝐼 5.6974 9.2849 0.3841 0.6064 1.0986 0.9386 0.3095 1.7268

𝑈𝐼 10.2491 14.1391 0.6186 1.0711 2.3859 2.0733 0.5896 3.8032

30 + 5.78𝑛1 + 7.27𝑛2 + 4.78𝑁3 + 6.48𝑁4 ≤ 250

2 ≤ 𝑛1 ≤ 90,2 ≤ 𝑛2 ≤ 92,2 ≤ 𝑛3 ≤ 92,2 ≤ 𝑛4 ≤ 91

𝛼𝑘,𝑚 ≤ 𝛼�̃�𝑘,𝑚
, 𝜃𝑘,𝑚 ≤ 𝜃�̃�𝑘,𝑚

, 𝛽𝑘,𝑚 ≥ 𝛽�̃�𝑘,𝑚
, 𝛼𝑘,𝑚, 𝜃𝑘,𝑚, 𝛽𝑘,𝑚 ∈ [0,1]

𝛼𝑘,𝑚 ≥ 𝜃𝑘,𝑚, 𝛼𝑘,𝑚 ≥ 𝛽𝑘,𝑚, 𝛼𝑘,𝑚 + 𝜃𝑘,𝑚 + 𝛽𝑘,𝑚 = 1;𝑘 = 1,2,3,4;𝑚 =𝐿,𝑈

𝑛1 𝑛2, 𝑛3 and 𝑛4 are an integers.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(21)

The compromise optimum solution is 𝑛1 = 9, 𝑛2 = 11, 𝑛3 = 7, 𝑛4 = 13 and cost is 249.69.

4.2. Intuitionistic fuzzy programming method

The compromise optimum solution for the problem formulated in Eq. (19) can be obtained by solving the following intuitionistic 

fuzzy optimization model using mixed integer non-linear programming technique.
14
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Fig. 1. Membership functions.
15
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Maximize

4∑
𝑘=1

𝑈∑
𝑚=𝐿

(
𝛼𝑘,𝑚 − 𝛽𝑘,𝑚

)
subject to

18.0434
𝑛1

+ 11.0985
𝑛2

+ 0.2240
𝑛3

+ 46.7114
𝑛4

≤ 11.3870 − 5.6896𝛼1,𝐿

18.8020
𝑛1

+ 30.4704
𝑛2

+ 4.2648
𝑛3

+ 52.5708
𝑛4

≤ 15.3527 − 6.0677𝛼1,𝑈

0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

≤ 0.6772 − 0.2931𝛼2,𝐿

1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

≤ 1.1873 − 0.5809𝛼2,𝑈

3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

≤ 2.7077 − 1.6090𝛼3,𝐿

0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

≤ 2.3570 − 1.4184𝛼3,𝑈

0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

≤ 0.6596 − 0.3501𝛼4,𝐿

3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

≤ 4.3223 − 2.5955𝛼4,𝑈

18.0434
𝑛1

+ 11.0985
𝑛2

+ 0.2240
𝑛3

+ 46.7114
𝑛4

≤ 8.5422 + 2.8448𝛽1,𝐿

18.8020
𝑛1

+ 30.4704
𝑛2

+ 4.2648
𝑛3

+ 52.5708
𝑛4

≤ 12.3188 + 3.0339𝛽1,𝑈

0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

≤ 0.53065 + 0.1466𝛽2,𝐿

1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

≤ 0.89685 + 0.2905𝛽2,𝑈

3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

≤ .1.90315 + 0.8046𝛽3,𝐿

0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

≤ 1.6478 + 0.7092𝛽3,𝑈

0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

≤ 0.48455 + 0.1751𝛽4,𝐿

3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

≤ 3.02455 + 1.2978𝛽4,𝑈

30 + 5.78𝑛1 + 7.27𝑛2 + 4.78𝑁3 + 6.48𝑁4 ≤ 250

2 ≤ 𝑛1 ≤ 90,2 ≤ 𝑛2 ≤ 92,2 ≤ 𝑛3 ≤ 92,2 ≤ 𝑛4 ≤ 91

𝛼𝑘,𝑚 ≤ 𝛼�̃�𝑘,𝑚
, 𝛽𝑘,𝑚 ≥ 𝛽�̃�𝑘,𝑚

, 𝛼𝑘,𝑚 ≥ 𝛽𝑘,𝑚

𝛼𝑘,𝑚 + 𝛽𝑘,𝑚 = 1, 𝛼�̃�𝑘,𝑚
, 𝛽�̃�𝑘,𝑚

∈ [0,1];𝑘 = 1,2,3,4;𝑚 =𝐿,𝑈

𝑛1 𝑛2, 𝑛3 and 𝑛4 are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

The compromise optimum solution is 𝑛1 = 11, 𝑛2 = 11, 𝑛3 = 6, 𝑛4 = 12 and cost is 249.99.

4.3. Classical methods
16

1. The compromise optimum allocation using Sukhatme’s method is obtained by solving the model which is given as follows:
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Minimize(
18.0434

𝑛1
+ 11.0985

𝑛2
+ 0.2240

𝑛3
+ 46.7114

𝑛4

)
+
(
18.8020

𝑛1
+ 30.4704

𝑛2
+ 4.2648

𝑛3
+ 52.5708

𝑛4

)
+
(
0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

)
+
(
1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

)
+
(
3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

)
+
(
0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

)
+
(
0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

)
+
(
3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

)
subject to

30 + 5.78𝑛1 + 7.27𝑛2 + 4.78𝑛3 + 6.48𝑛4 ≤ 250

2 ≤ 𝑛1 ≤ 90,2 ≤ 𝑛2 ≤ 92,2 ≤ 𝑛3 ≤ 92,2 ≤ 𝑛4 ≤ 91

𝑛1 𝑛2, 𝑛3 and 𝑛4 are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

We get 𝑛1 = 6, 𝑛2 = 3, 𝑛3 = 5, 𝑛4 = 27 and cost is 249.98.

2. The mathematical model for Khan weighted method is given as follows:

Minimize

0.2877
(
18.0434

𝑛1
+ 11.0985

𝑛2
+ 0.2240

𝑛3
+ 46.7114

𝑛4

)
+0.4608

(
18.8020

𝑛1
+ 30.4704

𝑛2
+ 4.2648

𝑛3
+ 52.5708

𝑛4

)
+0.0398

(
0.9245
𝑛1

+ 1.0033
𝑛2

+ 0.3539
𝑛3

+ 1.8153
𝑛4

)
+0.0577

(
1.0229
𝑛1

+ 1.3543
𝑛2

+ 0.2757
𝑛3

+ 4.9205
𝑛4

)
+0.0408

(
3.2411
𝑛1

+ 1.6994
𝑛2

+ 2.9135
𝑛3

+ 3.8211
𝑛4

)
+0.0466

(
0.6399
𝑛1

+ 15.5459
𝑛2

+ 0.0000
𝑛3

+ 0.9361
𝑛4

)
+0.0089

(
0.6676
𝑛1

+ 0.9800
𝑛2

+ 0.7520
𝑛3

+ 0.7783
𝑛4

)
+0.0578

(
3.1509
𝑛1

+ 6.5519
𝑛2

+ 6.1045
𝑛3

+ 2.7602
𝑛4

)
subject to

30 + 5.78𝑛1 + 7.27𝑛2 + 4.78𝑛3 + 6.48𝑛4 ≤ 250

2 ≤ 𝑛1 ≤ 90,2 ≤ 𝑛2 ≤ 92,2 ≤ 𝑛3 ≤ 92,2 ≤ 𝑛4 ≤ 91

𝑛1 𝑛2, 𝑛3 and 𝑛4 are an integers.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Khan’s approach based compromise optimum solution is 𝑛1 = 23, 𝑛2 = 7, 𝑛3 = 2, 𝑛4 = 9 and cost is 249.98.

3. The integer compromise allocation under Cochran approach is obtained by rounding the average of individual optimum alloca-
17

tion (Table 6) to the integer values. We get 𝑛1 = 9, 𝑛2 = 12, 𝑛3 = 8, 𝑛4 = 11 and cost is 246.70.
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Table 9

Variance of neutrosophic estimators and utilized cost under compromise allocation methods.

Methods 𝑉1(�̄�𝑠𝑡𝑁 ) 𝑉2(�̄�𝑠𝑡𝑁 ) 𝑉3(�̄�𝑠𝑡𝑁 ) 𝑉4(�̄�𝑠𝑡𝑁 ) Trace Cost

Sukhatme [7.6447,14.9263] [0.5816,0.7761] [1.7027,5.1369] [0.5824,3.8293] 35.1801 249.98

Khan [6.8353,11.980] [0.5172,0.8394] [2.1369,2.1663] [0.5967,4.2290] 29.3006 249.98

Cochran [6.3673,8.7764] [0.3506,0.6251] [1.0852,1.2653] [0.2858,1.7072] 20.4629 246.70

IF [5.7423,8.4068] [0.3405,0.5889] [1.1250,1.3631] [0.3052,1.9266] 19.7985 249.99

NF [5.8021,8.3481] [0.3392,0.5715] [1.0966,1.3700] [0.2958,1.8272] 19.6505 249.69

Fig. 2. Efficiency comparison of compromise allocation methods.

5. Comparative analysis and discussion

In this section, we performed the comparative analysis among compromise optimum allocation methods based on numerical 
study. The results of this analysis are given in Table 9 and Fig. 2.

In this section, we performed a comparative study of the classical methods, intuitionistic fuzzy (IF) programming approach, and 
neutrosophic fuzzy (NF) programming method for the compromise optimum allocation (COA) in multi-variate stratified random 
sampling (MVSS). The variance of the neutrosophic estimates of the means of atmospheric variables, daily humidity (𝑌1𝑁 ), daily 
temperature (𝑌2𝑁 ), daily visibility level (𝑌3𝑁 ), and daily wind speed (𝑌4𝑁 ), under these compromise optimum allocation methods 
are given in Table 9 along with utilized resources and trace value. The greater trace value produces the overall lower precision of 
these estimates. The Sukhatme’s method produced a greater trace value as compared to other methods. The NF programming method 
produced a minimum trace value at minimum utilization of resources as compared to the rest of these methods. The comparative 
analysis in terms of percentage relative efficiency is carried out and graphically visualized in Fig. 2. Fig. 2 shows the effect of 
compromise optimum allocation methods on the precision of means estimates of atmospheric variables (𝑌𝑗𝑁 (𝑗 = 1, 2, 3, 4)). The Khan 
method produced 20% more efficient results overall as compared to the Sukhatme’s method at the same utilization level of the 
sample survey budget (Fig. 2(a)). But the Khan method compromised the efficiency of mean estimates of 𝑌4𝑁 (Fig. 2(b)). Fig. 2(a) 
indicates that the Cochran method produced 71.92%, the IF programming approach produced 77.69%, and the NF programming 
method produced 79.029% more efficient results overall as compared to the Sukhatme’s method. But the Cochran method utilized 
1.33% less resources, the NF method utilized 0.116% less resources, and the IF method utilized 0.014% more resources as compared 
to the Sukhatme’s method. From Fig. 2(b), we observed that all compromise optimum allocation methods produced a more efficient 
estimate of the mean 𝑌3𝑁 as compared to other variables 𝑌𝑗𝑁 (𝑗 = 1, 2, 4). From Table 9 and Fig. 2(a), it is clear that the IF method 
and NF method performed better than the Sukhatme’s method, Khan and Cochran’s classical methods. Using the results of Table 9, 
we found that the NF method produced 0.753% more efficient results overall as compared to the IF method while saving 0.12% 
resources available for the sample survey. This superiority of the NF programming method is due to two reasons. First, the better 
trade-off among the multiple conflicting objectives at optimal utilization of sample survey resources Second, the advantage of taking 
into account the indeterminacy degree in compromise optimum allocation decision-making in an applied multi-character sample 
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survey from a heterogeneous population.
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6. Conclusion

In this study, we investigated the compromise optimum allocation problem for estimating the means of heterogeneous neu-

trosophic multi-characteristics under the study in stratified random sampling design, dealing with fuzzy uncertainty in per-unit 
measurement cost. We proposed the neutrosophic fuzzy programming (NF) approach and the intuitionistic fuzzy programming (IF) 
method for deciding the compromise optimum value of stratum sample size under the intuitionistic fuzzy cost function. The com-

parative analysis based on a numerical study showed that the proposed NF and IF methods produced more precise estimates of 
population means of atmospheric variables; daily air temperature, daily humidity, daily visibility, and daily wind speed as com-

pared to existing classical methods. All the proposed and existing compromise optimal allocation techniques are compared with 
the Sukhatme’s method. According to the results, the IF approach gave 77.69% more precise estimates of means overall, which is 
high compared to the existing methods. The NF method produced 79.03% more efficient results and saved 0.12% survey resources 
as compared to the Sukhatme’s method. The greater efficiency of proposed methods over classical methods is due to incorporat-

ing expert knowledge and indeterminacy degree in the compromise optimum allocation decision-making process. Moreover, the NF

method produced more efficient results with less utilization of survey resources relative to the IF method. The neutrosophic fuzzy 
programming methods for solving the compromise allocation problem in neutrosophic multi-variate stratified random sampling are 
more efficient and economical in terms of precision of estimates of means and optimal utilization of survey sampling resources. This 
study can be extended to solve optimum allocation problem in other sampling design for estimating the means of heterogeneous 
neutrosophic multi-characteristics.
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