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ABSTRACT

CCCTC-binding factor (CTCF) is a key regulator of 3D
genome organization and gene expression. Recent
studies suggest that RNA transcripts, mostly long
non-coding RNAs (lncRNAs), can serve as locus-
specific factors to bind and recruit CTCF to the chro-
matin. However, it remains unclear whether specific
sequence patterns are shared by the CTCF-binding
RNA sites, and no RNA motif has been reported
so far for CTCF binding. In this study, we have de-
veloped DeepLncCTCF, a new deep learning model
based on a convolutional neural network and a bidi-
rectional long short-term memory network, to dis-
cover the RNA recognition patterns of CTCF and
identify candidate lncRNAs binding to CTCF. When
evaluated on two different datasets, human U2OS
dataset and mouse ESC dataset, DeepLncCTCF was
shown to be able to accurately predict CTCF-binding
RNA sites from nucleotide sequence. By examining
the sequence features learned by DeepLncCTCF, we
discovered a novel RNA motif with the consensus se-
quence, AGAUNGGA, for potential CTCF binding in
humans. Furthermore, the applicability of DeepLnc-
CTCF was demonstrated by identifying nearly 5000
candidate lncRNAs that might bind to CTCF in the
nucleus. Our results provide useful information for
understanding the molecular mechanisms of CTCF
function in 3D genome organization.

INTRODUCTION

Genomic DNA is hierarchically packaged into complex
high-order structures in the nucleus. The 3D organization
of a genome is highly dynamic and functionally important
for gene regulation, cell differentiation and development (1–
3). Disruption of 3D genome organization has been shown
to be linked to human disease, such as cancer (4,5). The ar-
chitectural protein, CCCTC-binding factor (CTCF), plays
a critical role in orchestrating the 3D genome organization

(6,7). CTCF is a ubiquitous and highly conserved zinc fin-
ger protein with a DNA-binding domain (8). It can bind
to a large number of sites throughout the genome (8,9).
These CTCF-binding sites are enriched in the boundaries
between topologically associating domains (TADs) as well
as within intra-TAD chromatin loops in mammals (10,11).
Although the majority of the binding sites share a consen-
sus DNA motif, ∼18% of the binding sites lack the motif
and some DNA sites containing the motif do not bind to
CTCF (12). Thus, locus-specific factors may be employed
to target CTCF to these specific genomic sites.

Recent studies suggest that thousands of RNA tran-
scripts across the genome are bound by CTCF and can
serve as locus-specific factors to recruit CTCF to chromatin
(13,14). Interestingly, CTCF has higher affinity for RNA
over DNA (13), and the RNA-binding domain is differ-
ent from its DNA-binding domain (14). Moreover, CTCF–
RNA interactions have been shown to play fundamental
roles in promoting CTCF self-association and clustering,
and CTCF-dependent chromatin loop formation (15,16).
Deletion or mutation of CTCF’s RNA-binding regions can
impair the formation of chromatin loops and disturb gene
expression (15,16). Although the DNA motif of CTCF has
been well characterized (12), it is still unclear how CTCF
recognizes its target RNAs as no consensus RNA motif has
been reported for CTCF binding.

CTCF represents an increasing number of essential pro-
teins with dual DNA- and RNA-binding capacity, which
have unique structural and functional characteristics (17).
RNA-binding proteins are often considered to be function-
ally distinct from DNA-binding proteins, but this notion
has been challenged by the discovery of many long non-
coding RNAs (lncRNAs), which can interact with DNA-
binding proteins and play important roles in gene regu-
lation and 3D genome organization (17–23). Particularly,
many lncRNAs are found to interact with CTCF (13,14).
For example, the lncRNA Wrap53, an antisense transcript
of p53, directly interacts with CTCF to regulate p53 ex-
pression (14). The lncRNA Jpx activates Xist and induces
the initiation of X chromosome inactivation by evicting
CTCF from the Xist promoter through physical interaction
with CTCF (24). Furthermore, CTCF can be recruited to
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specific genomic sites and mediate long-range chromoso-
mal interactions by interacting with lncRNAs (13). For in-
stance, the lncRNAs Tsix and Xite are necessary for X chro-
mosome pairing by recruiting CTCF to the pairing center
(13). The lncRNAs Xist and Firre, which play important
roles in 3D genome organization (25,26), are shown to di-
rectly interact with CTCF in X chromosome inactivation
or anchoring the inactive X chromosome to the nucleolus
(13,27). Since lncRNAs are often expressed in a tissue- or
cell-type-specific manner (28,29), comprehensive identifica-
tion of CTCF-binding lncRNAs may provide valuable in-
formation for understanding the mechanisms of dynamic
3D genome organization.

High-throughput sequencing-based methods, such
as cross-linking immunoprecipitation followed by
deep sequencing (CLIP-seq), can be used to identify
transcriptome-wide binding targets of CTCF (13). How-
ever, due to the low-level and cell-type-specific expression
of lncRNAs (29), these methods could suffer from false
negatives. Moreover, the experimental methods are expen-
sive and time-consuming. To overcome these drawbacks,
computational methods can be used to predict putative
lncRNA targets of CTCF. Although machine learning
models have been reported for predicting chromatin loop
formation through CTCF–DNA interaction (30,31), such
a predictive method has not been employed to analyze
the binding of CTCF to RNA. Recently, deep learning
techniques such as convolutional neural networks (CNNs)
and recurrent neural networks have achieved superior
performance in many biological problems (32–38). For
instance, deep learning models have been developed to
accurately predict 3D chromatin contacts and enhance
the resolution of Hi-C data (32,39). Several deep learn-
ing approaches have also been developed for general
protein–RNA binding prediction, such as DeepBind (37),
DeeperBind (40) and iDeepS (41). However, no model
has been trained specifically for CTCF or other proteins
with dual DNA- and RNA-binding capacity. Moreover,
model performance may be further improved by using
advanced techniques such as the Bayesian hyperparameter
optimization (42–44) and attention-based mechanisms
(45,46).

In this study, we have developed a new deep learn-
ing model, DeepLncCTCF, to discover the RNA recogni-
tion patterns of CTCF and identify candidate lncRNAs
that may interact with CTCF. DeepLncCTCF utilized a
CNN and a bidirectional long short-term memory net-
work (BLSTM) to predict CTCF–RNA binding from nu-
cleotide sequence, and model performance was enhanced
by the Bayesian hyperparameter optimization and using
an attention-based mechanism. The model achieved accu-
rate prediction of CTCF-binding RNA sites on two differ-
ent CLIP-seq datasets. A candidate consensus RNA motif
(AGAUNGGA) has been identified for the human CTCF
through analyzing the learned sequence features of the
convolution layer. Notably, this candidate RNA motif of
CTCF is strikingly different from its DNA recognition mo-
tif (CCGCGNGGNGGCAG) (12). Moreover, by apply-
ing DeepLncCTCF to human lncRNAs, we identified 4925
candidate CTCF-binding lncRNAs, which may help eluci-
date how CTCF functions in 3D genome organization.

MATERIALS AND METHODS

Dataset preparation

Transcriptome-wide identification of CTCF-binding RNA
sites was performed in two previous studies: one for human
bone osteosarcoma epithelial cells (U2OS cells) with two
biological replicates using photoactivatable ribonucleoside-
enhanced cross-linking and immunoprecipitation followed
by deep sequencing (14), and the other for mouse embry-
onic stem cells (mESCs) with two biological replicates on
Days 0 and 3 of cell differentiation by CLIP-seq (13). Pro-
cessed CLIP-seq peak data from the two studies were down-
loaded from NCBI’s Gene Expression Omnibus (47) (GEO
accession: GSE53554 and GSE58242). To ensure data qual-
ity for model construction, the shared regions of the two
biological replicates in each study were used to derive pos-
itive instances. For mESCs, the shared regions from Days
0 and 3 were combined. The length of each shared region
was normalized by obtaining the midpoint and then extend-
ing N nucleotides (nt) both upstream and downstream in
the RNA transcript, yielding a positive instance of (2N +
1) nt. The negative instances were generated by randomly
selecting regions of length (2N + 1) from the same RNA
transcripts with the positive instances, under the constraints
that they did not overlap any CLIP-seq peaks. Six different
lengths of the input sequences (51, 101, 201, 301, 401 and
501 nt) were evaluated for model performance before the se-
quence length of 201 nt was selected. The high-confidence
positive and negative instances (56 820 and 56 769 instances
for the human U2OS dataset; 15 688 and 15 662 instances
for the mouse ESC dataset) were randomly partitioned for
training, validation and testing with proportions of 60%,
20% and 20%. To further evaluate the models for human
U2OS cells or mouse ESCs, a separate test dataset with low-
confidence positive instances was also compiled using the
CLIP-seq peaks only from one of the two biological repli-
cates (excluding the shared regions) with the same proce-
dure as described earlier.

DeepLncCTCF model construction

As shown in Figure 1, a deep learning model, called
DeepLncCTCF, was constructed to predict CTCF-binding
RNA sites using nucleotide sequence as input. Owing to the
requirement of a numerical input for a deep learning algo-
rithm, one-hot encoding was used to convert an input se-
quence to a 4 × 201 binary matrix, as described in previous
studies (35,48). Then, the input matrix was fed into a con-
volution layer to capture sequence motifs. CNNs have been
shown to be powerful in image recognition (49). The en-
coded matrix of a sequence may be regarded as a simplified
image data, and convolutional filters, the key components
of the convolution layer, can be used to recognize sequence
motifs, irrespective of their positions within the sequence.
A filter f = { fil}l=1,...,L

i=1,...,4 is a real number matrix with dimen-
sions of 4 × L, where the first dimension matches the chan-
nels of the input matrix and the second dimension is the de-
sired motif length. After the convolution layer, a max pool-
ing layer was used to summarize the most activated presence
of a motif in the sequence by computing the maximum acti-
vation value over spatially adjacent subregions. This down-
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Figure 1. Model architecture of DeepLncCTCF. The hyperparameters shown in the figure achieved the highest model performance with the input sequence
length of 201 nt on the dataset of human U2OS cells. First, the input sequence is converted into a 4 × 201 binary matrix using one-hot encoding. Second,
the convolutional filters act as motif detectors to scan the input matrix. Third, max pooling is used to reduce the dimension of the representation. Fourth,
a BLSTM layer is used to model the dependencies among motifs learned by previous layers in both directions. Fifth, an attention layer is added to capture
the most informative features. Finally, the fully connected layers produce a binary output to predict a CTCF-binding site on the input RNA.

sampling strategy reduces the dimensionality of the feature
space and thus may increase model robustness.

A BLSTM layer was then used to model the long-
distance dependencies among learned motifs in both for-
ward and backward directions. Our rationale for including
the BLSTM layer is that the specificity and affinity of CTCF
binding may be determined by multiple related motifs in the
target RNA sequence. LSTM is a type of recurrent neural
network that can overcome the vanishing gradient problem
(50). The capability of LSTM to remember information for
a long duration enables it to capture the combinations or de-
pendencies among sequence motifs. Each LSTM unit typ-
ically consists of four components: three gates (input, for-
get and output) and a single cell. The cell memorizes values
over arbitrary intervals and the gates regulate the informa-

tion flow into and out of the cell (51). Specifically, suppose
the LSTM takes a sequence {xt}T

t = 1 as input, and at each
position t, denote the hidden state as ht, cell state as ct, for-
get gate as ft, input gate as it and output gate as ot, then the
information flow can be summarized as follows:

ft = σ
(
Wf · [xt, ht−1] + b f

)
,

it = σ (Wi · [xt, ht−1] + bi ) ,

ct = ft · ct−1 + it · tanh (Wc · [xt, ht−1] + bc) ,

ot = σ (Wo · [xt, ht−1] + bo) ,

ht = ot · tanh (ct) .
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Following the BLSTM layer, an attention layer was used
to capture the most important sequence motifs to enhance
model performance. Since the most discriminating motifs
may be located somewhere in the input sequence, the atten-
tion mechanism can be used to retrieve more information by
accessing the whole hidden state sequence of the BLSTM
and then assign more weights to the important positions
(52). Mathematically, the attention layer takes the hidden
states {ht}T

t = 1 from preceding BLSTM layer as inputs, and
returns the output vector r as shown below:

αt = exp (g (ht))∑T
i=1 exp (g (hi ))

,

r =
T∑

t=1

αtht,

where g(·) is a neural network with one fully connected layer
that returns a scalar importance value.

Lastly, a fully connected layer was used to integrate the
information from the attention layer and learn the nonlin-
ear relationships. Dropout and L2 regularization were used
to regularize the model and thus avoid overfitting. Dropout
is a process to randomly set the activation to zero for a pro-
portion of units, which can reduce overfitting (53). L2 reg-
ularization can be used to generalize the model by adding
penalty to the sum of the square of weights (54).

Model training and evaluation

DeepLncCTCF was trained using the Adam optimiza-
tion algorithm with minibatches (https://arxiv.org/abs/
1412.6980). All model parameters were learned to minimize
the binary cross-entropy loss function, which captures the
difference between the target values and predicted values.
After each epoch of training, the validation loss was mon-
itored. The model was continuously trained until the vali-
dation loss stopped to decrease for five consecutive epochs.
After training, the model was evaluated using a test dataset
and the performance was measured by several metrics, in-
cluding accuracy, sensitivity, specificity, Matthews correla-
tion coefficient (MCC) and the area under the receiver op-
erating characteristic (ROC) curve (AUC).

The hyperparameters for model construction were tuned
using Bayesian optimization via Hyperopt (55) with the
training and validation data from human U2OS cells.
Bayesian optimization has been shown to be more time-
efficient for hyperparameter tuning than grid or random
search, especially for a large hyperparameter space (42–
44). It optimizes the hyperparameters by constructing a
probability model (surrogate function) based on the past
evaluation results of the objective function. The proba-
bility model is updated after each evaluation of the ob-
jective function by incorporating new results, and is rela-
tively easier to optimize than the objective function. Tree-
structured Parzen estimator was employed as the surro-
gate function in Hyperopt, and (1 − AUC) was used as
the objective function to optimize the ROC AUC values.
The hyperparameters that achieved the best performance
on the validation data for each input length are detailed in

Supplementary Table S1. DeepLncCTCF was implemented
in Python using Keras 2.2.4 (https://github.com/fchollet/
keras). In this study, model training and testing were per-
formed using a high-performance computing cluster with
20 CPU cores and 100 GB memory. It took ∼5.5 h to fully
train the DeepLncCTCF model using the data from hu-
man U2OS cells and ∼2 min to make the predictions for
the high-confidence test dataset. By comparison, iDeepS
(41) took ∼5 h for model training and ∼40 min to make
the predictions (owing to secondary structure prediction).
DeeperBind (40) made the predictions after each epoch of
training, and the total time was ∼16 h. For DeepBind (37),
the training process could be speeded up using parallel im-
plementation on a GPU.

Motif analysis

Filters in a convolution layer act as motif detectors to scan
input sequences. Therefore, the filters in the convolution
layer were converted to position weight matrices (PWMs)
as described for DeepBind and Basset (37,56). Specifically,
for each positive sequence s in the test set, the activa-
tion value as f j of the filter f at position j was calculated.
If as f j > 0.5 × max

s, j
as f j , where max

s, j
as f j denotes the maxi-

mum activation value of the filter f across all the sequences
in the dataset, the subsequence with length L and starting
at the position j was selected. The selected subsequences
were aligned to obtain PWMs using WebLogo (57). The
PWMs learned from the human U2OS and mouse ESC
datasets were compared using Tomtom 4.11.4 of MEME
Suite (http://meme-suite.org/tools/tomtom) (58).

The PWMs captured by DeepLncCTCF served as rele-
vant features to distinguish between positive and negative
instances. To identify the PWMs that may represent spe-
cific RNA motifs in positive instances, two analyses were
conducted. First, enrichment analysis on the PWMs was
used to measure their overrepresentations in the positive
instances of the test data using hypergeometric test. Sec-
ond, for each PWM, the Kolmogorov–Smirnov (KS) test
was used to detect any significant difference in its position
distributions between positive and negative instances.

The PWMs were grouped by hierarchical clustering
based on Spearman’s correlations between the activities of
filters from which the PWMs were obtained. The activity of
a filter f over a sequence s was computed as the weighted
sum of the activation values of filter f across all positions
over sequence s, as f = ∑

j ws j as f j , as described for Deep-
CpG (35). The weight ws j was assigned the highest value if
j is the central position of the sequence s, and linearly de-
creased as the distance between position j and the central
position increases.

Motif discovery using MEME

Many computational methods such as MEME (58), LD-
DMS (59) and EMS3 (60) have been developed to efficiently
explore the putative patterns hidden in biological sequences.
In this study, the widely used and readily accessible MEME
(http://meme-suite.org/tools/meme) with the differential en-
richment mode (58) was applied to the identification of can-
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http://meme-suite.org/tools/meme
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didate RNA motifs enriched in the positive instances rela-
tive to the negative instances in the human U2OS dataset.
The motif length was set to range from 8 to 25 nt. Motifs
discovered by MEME were compared with the PWMs cap-
tured by DeepLncCTCF using Tomtom (58).

RNA secondary structure prediction

In addition to nucleotide sequences, RNA secondary struc-
ture profiles were also examined for model construction.
RNA secondary structures were predicted using a modified
version of RNAplfold (61,62), and the probabilities for each
position of a sequence to be in a hairpin loop, inner loop,
multi-loop, external regions and paired regions were calcu-
lated. The probabilities of all positions in a sequence were
represented as a real number matrix with dimensions of 5 ×
201.

Conventional machine learning algorithms

DeepLncCTCF was compared with several conventional
machine learning algorithms, including support vector ma-
chine (SVM), random forest (RF) and gradient boosting
(XGB, implemented using XGBoost). To derive sequence-
based features for these models, we calculated the frequen-
cies of all subsequences of length k, known as k-mers, for
each data instance. A set of 340 k-mer features was obtained
with k equal to 1–4 (41 + 42 + 43 + 44 = 340). The param-
eters for SVM, RF and XGB were tuned using grid search
with the training data from human U2OS cells. The training
parameters are shown in Supplementary Table S2.

Identification of candidate CTCF-binding lncRNAs

To identify candidate lncRNAs that bind to CTCF, human
lncRNA transcripts were downloaded from GENCODE
version 29 (63). DeepLncCTCF was used to predict poten-
tial CTCF-binding sites on the lncRNAs that were not in-
cluded in the training dataset. All subsequences of 201 nt
were fed into DeepLncCTCF to predict whether they could
bind to CTCF. If the predicted probability of a subsequence
to be a CTCF-binding RNA site was ≥0.8, it was regarded
as a high-confidence CTCF-binding RNA site. The CTCF-
binding sites that overlapped with each other were com-
bined into a single one. To reduce the false positive rate, the
lncRNAs with at least two high-confidence CTCF-binding
RNA sites were selected as candidate CTCF-binding lncR-
NAs.

RESULTS

DeepLncCTCF for accurate prediction of CTCF-binding
sites on RNAs

We have developed DeepLncCTCF to discover the RNA
recognition pattern of CTCF using nucleotide sequence
as input (Figure 1). As described in the ‘Materials and
Methods’ section, high-confidence positive and negative in-
stances for model construction were obtained from human
U2OS cells and mouse ESCs (13,14). Since the input size
may affect model performance, we examined six different
input sequence lengths, ranging from 51 to 501 nt. As shown

in Figure 2A, model performance increased steeply from 51
to 201 nt, but began to level off after 201 nt. Since the risk
of model overfitting as well as computational cost generally
increases with the size of input, we selected the input length
of 201 nt for model construction in this study.

DeepLncCTCF achieved an AUC of 0.863 for human
U2OS cells and 0.861 for mouse ESCs on the high-
confidence test datasets (Table 1, Figure 2B and C, and Sup-
plementary Figure S1A and B). It outperformed conven-
tional SVM, RF and XGB models as indicated by AUC,
accuracy, sensitivity, specificity and MCC (Table 1, Figure
2B and C, and Supplementary Figure S1A and B). The re-
sults suggest that DeepLncCTCF can learn relevant fea-
tures from nucleotide sequence for accurate prediction of
CTCF-binding RNA sites. However, model performance
was not further improved by adding RNA secondary struc-
ture information to the input with the human U2OS dataset
(Table 1 and Figure 2B and C), and might be slightly en-
hanced with the mouse ESC dataset (Supplementary Figure
S1A and B), suggesting that DeepLncCTCF could capture
the structural information from the nucleotide sequence.
Notably, when an attention layer was used, a statistically
significant increase in prediction accuracy was achieved
with both datasets (Table 1, Figure 2B and C, and Supple-
mentary Figure S1A and B; P-value = 0.0002 for the hu-
man U2OS dataset and P-value = 0.001 for the mouse ESC
dataset, one-sided Wilcoxon rank-sum test), indicating the
effectiveness of emphasizing on the most important features
to enhance model performance.

Furthermore, we compared the performance of
DeepLncCTCF with the other deep learning models,
including iDeepS (41), DeeperBind (40) and DeepBind
(37). We demonstrated that DeepLncCTCF with or with-
out an attention layer significantly outperformed iDeepS,
DeeperBind and DeepBind on the same test datasets
(Figure 2B and C, and Supplementary Figure S1A and
B). Moreover, we noted that DeepLncCTCF achieved
comparable performance on the human U2OS and mouse
ESC datasets, whereas the other three models did not
perform as well on the mouse ESC dataset (Supplementary
Figure S1A and B) as they did on the human U2OS
dataset (Figure 2B and C). When the models were further
evaluated with the separate, low-confidence test datasets
(see the ‘Materials and Methods’ section), DeepLncCTCF
also achieved better performance (Figure 2D and Supple-
mentary Figure S1C). Taken together, the results suggest
the superior performance of DeepLncCTCF for identifying
CTCF-binding RNA sites from the primary sequence.

Identification of CTCF-binding RNA motifs

Convolutional filters can recognize motif patterns in the
input sequences. The filters in the convolution layer of
DeepLncCTCF constructed with the human U2OS dataset
were thus converted into 128 PWMs (Supplementary Fig-
ure S2). To identify the PWMs that may represent candidate
motifs in CTCF-binding RNA sites, their enrichments in
positive instances and differences of position distributions
between positive and negative instances were analyzed us-
ing hypergeometric and KS tests, respectively. Among the
128 PWMs, 65 were found to be significantly enriched in
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Figure 2. Accurate prediction of CTCF-binding RNA sites by DeepLncCTCF. (A) The AUC of DeepLncCTCF using six different input sequence lengths
in nucleotides. The trend line was fitted using polynomial regression. The shaded area indicates the 95% confidence intervals. (B) Comparison of model
performance based on accuracy, sensitivity, specificity, MCC and AUC using the high-confidence test dataset of human U2OS cells. The models are
DeepLncCTCF, DeepLncCTCF struct (using both RNA sequences and secondary structure information as input), DeepLncCTCF no attn (without the
attention layer), iDeepS (41), DeeperBind (40), DeepBind (37), XGB and SVM. (C) ROC curves of the models on the high-confidence test dataset of human
U2OS cells. (D) ROC curves of the models on the separate, low-confidence test dataset of human U2OS cells (see the ‘Materials and Methods’ section).

the positive data with the hypergeometric false discovery
rate (FDR) ≤0.01 and show significantly different position
distributions between positive and negative instances (KS
P-value ≤0.01) (Supplementary Table S3), including the six
most significant PWMs shown in Figure 3 and Supplemen-
tary Figure S3 (M35, M48, M71, M75, M96 and M123; KS
P-value <1e-40 and hypergeometric FDR <1e-180). These
six PWMs appear to fall into two groups based on their

sequence logos (Figure 3A; M48, M71, M75 and M96 in
group 1; M35 and M123 in group 2), and each group may
represent one consensus motif as multiple filters can learn
the shifted and truncated versions of a single motif. Inter-
estingly, the sequence sites matching the 6 PWMs or the
65 selected PWMs showed a position bias with the highest
frequency near the center of CTCF-binding RNA regions,
whereas these sites appeared to be evenly distributed along
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Table 1. Predictive performance of various models on the high-confidence test dataset of human U2OS cells

Model Accuracy Sensitivity Specificity MCC AUC

DeepLncCTCF 0.775 ± 0.004 0.733 ± 0.031 0.817 ± 0.033 0.553 ± 0.008 0.863 ± 0.005
DeepLncCTCF struct 0.773 ± 0.007 0.727 ± 0.038 0.818 ± 0.036 0.549 ± 0.015 0.860 ± 0.008
DeepLncCTCF no attn 0.761 ± 0.004 0.739 ± 0.028 0.784 ± 0.032 0.524 ± 0.009 0.848 ± 0.003
iDeepS 0.737 ± 0.006 0.709 ± 0.087 0.765 ± 0.086 0.483 ± 0.008 0.818 ± 0.002
DeeperBind 0.725 ± 0.009 0.676 ± 0.080 0.773 ± 0.076 0.457 ± 0.012 0.803 ± 0.006
DeepBind 0.670 ± 0.004 0.678 ± 0.029 0.663 ± 0.027 0.324 ± 0.009 0.744 ± 0.004
SVM 0.696 ± 0.002 0.734 ± 0.005 0.658 ± 0.004 0.393 ± 0.004 0.768 ± 0.003
RF 0.680 ± 0.002 0.702 ± 0.003 0.658 ± 0.004 0.360 ± 0.004 0.750 ± 0.002
XGB 0.696 ± 0.003 0.716 ± 0.005 0.676 ± 0.005 0.392 ± 0.006 0.771 ± 0.002

Model performance is measured by the mean accuracy, sensitivity, specificity, MCC and AUC for 10 repetitions. The highest value for each performance
metric is shown in bold. The standard deviation for each metric value is also shown. The models include DeepLncCTCF, DeepLncCTCF struct (using
both RNA sequence and secondary structure information as input), DeepLncCTCF no attn (without the attention layer), iDeepS (41), DeeperBind (40),
DeepBind (37), SVM, RF and XGB.

Figure 3. Selected DeepLncCTCF PWMs that may represent CTCF-binding RNA motifs. (A) Sequence logos of the PWMs. (B) Significant enrichment
of the PWMs in positive data instances (hypergeometric FDR ≤1e-180).
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the negative instances (Supplementary Figures S3 and S4).
The results suggest that CTCF may have a specific recogni-
tion pattern for RNA binding.

To further reveal the consensus RNA motifs of CTCF,
clustering analysis of the 128 PWMs was performed by first
calculating pairwise Spearman’s correlations between filter
activities and then applying hierarchical clustering on the
correlation matrix (see the ‘Materials and Methods’ sec-
tion). As shown in Figure 4 and Supplementary Table S4,
we have empirically identified six clusters, including the ma-
jority (66.2%) of the 65 PWMs that may represent specific
RNA motifs in positive instances. PWMs in the same cluster
tend to have similar core motifs (Figure 4). In particular, the
PWMs in clusters 2 and 4 may represent candidate motifs
in CTCF-binding RNA sites. Clusters 2 and 4 include the
most significant PWMs in group 1 (M48, M71, M75 and
M96) and group 2 (M35 and M123), respectively (Figure
3). The core motifs with the consensus sequences AGAU
(cluster 2) and AGAUNGGA (cluster 4) are likely to be in-
volved in the RNA recognition of CTCF. The multiple oc-
currences of the two consensus motifs in the two clusters in-
dicate their importance for predicting CTCF-binding RNA
sites. Interestingly, the consensus sequence AGAU appears
to be part of the larger motif AGAUNGGA, suggesting
the latter as the possible consensus RNA motif of CTCF.
Remarkably, this consensus RNA motif (AGAUNGGA) is
strikingly different from CTCF’s DNA consensus sequence
(CCGCGNGGNGGCAG) (12). The result is consistent
with the previous finding that CTCF’s RNA-binding do-
main is different from its DNA-binding domain (14).

To our knowledge, specific RNA motifs for CTCF bind-
ing have not been demonstrated in previous studies. To
further assess the candidate RNA motifs identified by
DeepLncCTCF, we also performed motif discovery in the
same dataset using MEME with the differential enrichment
mode (58). Eleven enriched motifs were discovered (Sup-
plementary Figure S5), which were further compared with
the 128 PWMs learned by DeepLncCTCF using the Tom-
tom algorithm (58). As shown in Supplementary Table S5,
38 of the DeepLncCTCF PWMs were significantly matched
to 8 MEME motifs (E-value ≤0.05). In particular, 22 and
15 DeepLncCTCF PWMs were matched to the MEME
motifs ME4 and ME0, respectively. More importantly, all
PWMs in cluster 2 and six of the seven PWMs in cluster
4 were matched to ME4, further suggesting the consensus
sequence, AGAUNGGA, as a CTCF-binding RNA motif.
However, besides the DeepLncCTCF PWMs matched with
MEME motifs, 30 of the 65 PWMs selected for candidate
RNA motifs were not discovered by MEME, indicating that
DeepLncCTCF learned additional informative motifs. Col-
lectively, our results suggest that CTCF clearly has a specific
recognition pattern for RNA binding and DeepLncCTCF
is able to recognize the complex pattern.

Comparison of human and mouse motifs learned by DeepLnc-
CTCF

The CTCF protein and its DNA-binding motif are highly
conserved between humans and mice (12). It is thus in-
teresting to examine whether CTCF-binding RNA motifs
may also share any similarity between these two species.

To this end, we have compared the PWMs learned by the
DeepLncCTCF model using the human U2OS dataset with
the PWMs of the model using the mouse ESC dataset. The
mouse model discovered 126 PWMs (Supplementary Fig-
ure S6), 40 of which may represent candidate RNA motifs
in positive instances based on KS and hypergeometric tests
(Supplementary Figure S7 and Supplementary Table S6;
KS P-value ≤0.01 and hypergeometric FDR ≤0.01). Inter-
estingly, 10 mouse PWMs were significantly matched to hu-
man PWMs (Supplementary Table S7; E-value ≤0.05). In
particular, the mouse PWM M2 (1 of the 40 PWMs selected
for candidate RNA motifs, KS P-value = 0.006 and hyper-
geometric FDR = 4.35e−7) significantly matched to the hu-
man PWM M121 (1 of the 65 selected PWMs, KS P-value
= 9.63e−43 and hypergeometric FDR = 7.22e−21) (Fig-
ure 5). If the threshold of Tomtom E-value was changed to
0.2, additional 23 mouse PWMs were also found to match
with human PWMs. For instance, the mouse PWMs, M36
and M93 (2 of the 40 PWMs for candidate RNA motifs),
matched to human M65 and M32 (2 of the 65 PWMs for
candidate RNA motifs), respectively (Figure 5). The results
suggest that the RNA-binding patterns of CTCF in humans
and mice may share some similarities.

Identification of candidate lncRNAs that may bind to CTCF

One potential application of DeepLncCTCF is to iden-
tify CTCF-binding lncRNAs. As described in the ‘Mate-
rials and Methods’ section, DeepLncCTCF was applied
to 13 997 human lncRNA genes that were not included
in the training dataset, and 4925 were predicted as candi-
date CTCF-binding lncRNAs (Supplementary Table S8).
Notably, the predicted candidate lncRNAs include XIST,
TSIX and MYCNOS, which were previously shown to di-
rectly interact with CTCF (13,64). Moreover, of the 23 con-
served lncRNAs that were previously shown to bind CTCF
in mice, 18 were included in the human training dataset and
the remaining 5 were predicted as CTCF-binding lncRNAs.
The results demonstrate the applicability of DeepLncCTCF
for identifying candidate lncRNAs that may bind to CTCF.

CTCF–lncRNA interactions play important roles in 3D
genome organization (13,24,27). Particularly, XIST and
FIRRE have been shown to directly interact with CTCF
during X chromosome inactivation (13,27), and several
lncRNAs such as NEAT1 and MALAT1 are known to
function as nuclear organization factors to shape 3D
genome architecture (25,65–70). Moreover, the candidate
CTCF-binding lncRNAs were found to be significantly en-
riched in a set of nuclear lncRNAs identified in a previ-
ous study (71) (Supplementary Figure S8A). Interestingly,
∼63% of the lncRNAs transcribed using bidirectional pro-
moters were predicted as candidate CTCF-binding lncR-
NAs, which is relatively high when compared with the can-
didate lncRNAs of other biotypes (Supplementary Figure
S8B). These lncRNAs may function as enhancer RNAs
to facilitate the formation of enhancer–promoter loops as
CTCF is known to be enriched at the loop boundaries to
regulate gene expression (72). These findings provide addi-
tional evidence for the involvement of CTCF–lncRNA in-
teractions in 3D genome organization.
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Figure 4. Clustering analysis of the PWMs captured by DeepLncCTCF. Six clusters were identified by inspecting the dendrogram, and PWMs with similar
core motifs tended to cluster together. The core motifs of clusters 2 and 4 appear to have the consensus sequences AGAU and AGAUNGGA, respectively.

Recent studies suggest that disruption of 3D genome ar-
chitecture is involved in human disease, including cancer
(73,74). We have thus examined whether CTCF-binding
lncRNAs play roles in cancer development. Interestingly,
763 of 1619 known cancer-associated lncRNAs in the
Lnc2Cancer database (version 2.0) (75) were identified as
candidate CTCF-binding lncRNAs (Supplementary Table
S8) or included in the training dataset. In particular, the
lncRNAs XIST, NEAT1 and MALAT1 have been shown
to be dysregulated in multiple cancers (Table 2) (28,76–81).
Many other well-known cancer-associated lncRNAs, such
as MEG3, GAS5, SNHG1 and CCAT2 (28,76,77,82–88),
may also interact with CTCF (Table 2). The interactions be-
tween these cancer-associated lncRNAs and CTCF provide
useful information for understanding their roles in cancer
development.

DISCUSSION

In this study, we have developed DeepLncCTCF to dis-
cover the RNA recognition pattern of CTCF and iden-
tify candidate CTCF-binding lncRNAs. CTCF exempli-
fies a new class of dual DNA- and RNA-binding pro-
teins, which play essential roles in transcriptional regulation
and chromatin organization (22,23). We demonstrated that
DeepLncCTCF could accurately predict CTCF-binding
RNA sites based on nucleotide sequence alone, and sig-
nificantly outperformed iDeepS (41), DeeperBind (40) and
DeepBind (37). Notably, by examining the sequence fea-
tures learned by the convolution layer of DeepLncCTCF,
we have identified a candidate consensus RNA motif,
AGAUNGGA, for CTCF binding in humans. To our
knowledge, this is the first RNA motif reported so far for
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Figure 5. Sequence logos of some similar PWMs learned from human U2OS and mouse ESC datasets. The PWMs learned by DeepLncCTCF from the
human U2OS dataset were compared with the PWMs of the mouse ESC model using the Tomtom algorithm (58). The E-values of the matches are shown
above the sequence logos.

Table 2. List of selected lncRNAs that may interact with CTCF

LncRNA Function CTCF-binding RNA sites
Nuclear/cytosolic (log2 fold
change) References

XIST X chromosome inactivation; promote cell
proliferation, migration and invasion and
induce apoptosis

Predicted 6.73 (66,78,79)

MALAT1 Function in nuclear speckle; promote cell
proliferation and metastasis

Experimental 5.35 (69,77,80)

NEAT1 Formation and maintenance of nuclear
paraspeckle; promote cell growth and
metastasis

Experimental 3.34 (28,70,81)

FIRRE Formation of interchromosomal
regulatory domain

Experimental 0.77 (25,68)

GAS5 Inhibit cell proliferation, migration and
invasion

Experimental 6.55 (77,84–85)

MEG3 Inhibit cell proliferation and induce
apoptosis

Predicted 5.96 (76,86)

SNHG1 Promote cell proliferation, cell cycle
progression and inhibit cell apoptosis

Experimental 5.27 (82,87)

CCAT2 Promote tumor growth, metastasis and
chromosomal instability

Predicted 4.02 (76,88)

The CTCF-binding sites on the lncRNAs are either used for model training (‘Experimental’) or predicted by DeepLncCTCF. These lncRNAs are involved
in 3D genome organization and/or cancer development. The nuclear to cytosolic log2 fold change from a previous study (71) is shown to indicate their
enrichment in the nucleus.

CTCF binding. Furthermore, we have applied DeepLnc-
CTCF to the transcriptome-wide prediction of candidate
CTCF-binding lncRNAs, some of which were previously
known to interact with CTCF.

When compared with the other deep learning methods
for protein–RNA binding prediction, such as iDeepS (41),
DeeperBind (40) and DeepBind (37), DeepLncCTCF uti-
lized the Bayesian optimization for hyperparameter tun-
ing and an attention-based mechanism to capture the most
important features in the input sequence. The optimized
DeepLncCTCF model, even without the attention layer,
significantly outperformed iDeepS (41), DeeperBind (40)
and DeepBind (37), suggesting the robustness of our ap-
proach for RNA motif modeling and discovery. The atten-
tion layer further enhanced the predictive performance of
DeepLncCTCF as indicated by several metrics, including
AUC, accuracy, sensitivity, specificity and MCC. Besides

the model architecture and hyperparameter optimization,
efforts were made to improve the quality of training data.
As pointed out by a previous study (89), generating nega-
tive data instances by shuffling the positive data instances or
randomly selecting from transcripts without positive data
instances could lead to overoptimistic performance or in-
troduce false negatives. In this study, the negative data in-
stances were compiled by randomly selecting regions within
the same transcripts as for the positive data instances, en-
abling the model to learn the informative RNA motifs for
CTCF binding.

Although DeepLncCTCF learned certain sequence fea-
tures to distinguish between CTCF-binding and non-
binding sites, the underlying RNA motif pattern only be-
came clear after further analyses. The filters in the convolu-
tion layer of DeepLncCTCF were converted into PWMs,
and statistical analyses were conducted to identify the
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PWMs that might represent candidate RNA motifs for
CTCF binding. Since multiple filters could be employed to
represent a single motif, clustering analysis was thus applied
to the PWMs. To this end, we have discovered the candi-
date CTCF-binding RNA motif with a consensus sequence
of AGAUNGGA in humans. Interestingly, this RNA mo-
tif is strikingly different from CTCF’s DNA consensus se-
quence (CCGCGNGGNGGCAG) (12). The result is con-
sistent with the previous finding that CTCF’s RNA-binding
domain is different from its DNA-binding domain (14).
However, further experimental verification is required to
confirm the prediction of this RNA motif for CTCF bind-
ing.

Recent studies suggest that CTCF–lncRNA interactions
can play important roles in shaping 3D genome organiza-
tion (17–23). Considering the cell-type-specific expression
of most lncRNAs (28,29), the interactions between CTCF
and lncRNAs may provide a regulatory mechanism for es-
tablishing dynamic 3D genome organization. We thus uti-
lized the DeepLncCTCF model to identify a list of can-
didate CTCF-binding lncRNAs, which could provide use-
ful information for further elucidating the RNA-dependent
mechanism of CTCF function in 3D genome organiza-
tion. In addition, we noted that many well-known cancer-
associated lncRNAs might interact with CTCF. Since the
disruption of 3D genome architecture occurs in cancer cells
(73,74), the possible interactions between these lncRNAs
and CTCF might help understand their roles in cancer de-
velopment.

In conclusion, our work provides a powerful method for
exploring the RNA recognition patterns of CTCF and iden-
tifying candidate CTCF-binding lncRNAs. The deep learn-
ing method has been used to analyze human and mouse
datasets in this study, and can be applied to other species
when datasets become available in the future. The DeepLnc-
CTCF model may also be used to predict the functional
impact of sequence variations on CTCF–RNA interaction.
Genome-wide association studies have identified a large
number of disease-associated variants with a majority of
them located in the non-coding regions (90). Computa-
tional methods are needed to predict which of these variants
may disrupt CTCF–RNA interaction and thus affect 3D
genome organization. The prediction results can be used to
annotate and prioritize the disease-associated variants for
further experimental studies.
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