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ABSTRACT The microbial communities resident in animal intestines are composed of
multiple species that together play important roles in host development, health, and dis-
ease. Due to the complexity of these communities and the difficulty of characterizing
them in situ, the determinants of microbial composition remain largely unknown. Fur-
ther, it is unclear for many multispecies consortia whether their species-level makeup
can be predicted based on an understanding of pairwise species interactions or whether
higher-order interactions are needed to explain emergent compositions. To address this,
we examine commensal intestinal microbes in larval zebrafish, initially raised germfree,
to allow the introduction of controlled combinations of bacterial species. Using a dissec-
tion and plating assay, we demonstrate the construction of communities of one to five
bacterial species and show that the outcomes from the two-species competitions fail to
predict species abundances in more complex communities. With multiple species pres-
ent, interbacterial interactions become weaker, suggesting that higher-order interactions
in the vertebrate gut stabilize complex communities.

IMPORTANCE Understanding the rules governing the composition of the diverse mi-
crobial communities that reside in the vertebrate gut environment will enhance our abil-
ity to manipulate such communities for therapeutic ends. Synthetic microbial communi-
ties, assembled from specific combinations of microbial species in germfree animals,
allow investigation of the fundamental question of whether multispecies community
composition can be predicted solely based on the combined effects of interactions be-
tween pairs of species. If so, such predictability would enable the construction of com-
munities with desired species from the bottom up. If not, the apparent higher-order in-
teractions imply that emergent community-level characteristics are crucial. Our findings
using up to five coexisting native bacterial species in larval zebrafish, a model verte-
brate, provide experimental evidence for higher-order interactions and, moreover, show
that these interactions promote the coexistence of microbial species in the gut.
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Intestinal microbes exist in complex and heterogeneous communities of interacting,
taxonomically diverse species. The composition of these communities varies across

individuals and is crucial to the health of the host, having been shown in humans and
other animals to be correlated with dietary fat uptake (1, 2), organ development (3, 4),
immune regulation (5–10), and a wide range of diseases (11–20).

Despite the importance of intestinal communities, the determinants of their
composition remain largely unknown. A growing number of studies map the effects
of external perturbations, such as antibiotic drugs (21, 22) and dietary fiber (23) and
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fat (24, 25), on the relative abundance of gut microbial species. Intrinsic intermi-
crobial interactions, however, are especially challenging to measure and are im-
portant not only for shaping community composition in the absence of perturba-
tions but also for propagating species-specific perturbations to the rest of the
intestinal ecosystem.

The considerable majority of studies of the gut microbiota have been performed on
naturally assembled microbiomes by sequencing DNA extracted from fecal samples, an
approach that provides information about the microbial species and genes present in
the gut but that imposes several limitations on the inference of interspecies interac-
tions. The high diversity of natural intestinal communities and, therefore, the low
abundance of any given species among the multitude of its fellow residents implies
that stochastic fluctuations in each species’ abundance will be large, easily masking true
biological interactions. The accuracy of inference is considerably worse if only relative,
rather than absolute, abundance data are available (26–29), as is typically the case in
sequencing-based studies. Finally, we note that fecal sampling assesses only the
microbes that have exited the host, which may not be representative of the intestinal
community (30).

An alternative approach to using DNA sequencing and naturally assembled host-
microbiota systems is to build such systems from the bottom up using model organ-
isms. This is accomplished by using techniques for generating initially germfree ani-
mals, and well-defined sets of small numbers of microbial species, and then measuring
the populations of these species resident in the intestine. Recent work along these lines
has been performed using the nematode Caenorhabditis elegans (31) and the fruit fly
Drosophila melanogaster (32, 33). However, as described further below, these studies
imply different principles are at play in the different systems. Moreover, it is unclear
whether conclusions from either model platform translate to a vertebrate gut,
which has both greater anatomical complexity and more specific microbial selec-
tion (34). To address this, we measure bacterial interactions in larval zebrafish
(Fig. 1A), a model vertebrate organism amenable to gnotobiotic techniques (35–38),
which enabled, in earlier works that investigated pairs of bacterial species, the
discovery of specific interbacterial competition mechanisms related to intestinal
transport (39, 40). The experiments described here involve several hundred fish,
each with 1 to 5 resident bacterial species, enabling robust inference of interspecies
interactions.

The ability to quantify species abundance and to manipulate it by controlled
addition or subtraction of species is commonplace in macroscopic ecological investi-
gations. Its implementation here enables connections between intestinal microbiome
research and a large literature on ecosystem dynamics. An issue whose importance has
been realized for decades is the extent to which interspecies interactions are pairwise
additive or whether higher-order (often called indirect) interactions are necessary
to explain community structure (41, 42). The term “higher-order interactions” has been
defined in various ways in the ecological literature (42, 43), in some cases referring
specifically to nonadditive changes in a species’ growth rate given the presence of
additional species, or to changes in the nature of the interaction between two spe-
cies induced by additional species. In other cases it refers more generally to any
interaction that cannot be captured by a pairwise model. We adopt the latter, com-
monly used definition, which is agnostic to underlying mechanisms (44). In our analyses
below, we consider various pairwise models and assess their ability to describe data
from multispecies communities; mismatch is indicative of the existence of higher-order
interactions. Pairwise additivity, if dominant, simplifies the prediction of ecosystem
composition, which would be desirable for therapeutic applications of microbiome
engineering. Higher-order interactions may stabilize multispecies communities accord-
ing to several recent theoretical models described further in Discussion (45–48),
implying that quantifying and controlling indirect effects is necessary for reshaping gut
microbiomes.

Whether host associated or not, microbial communities have shown a variety of

Sundarraman et al. ®

September/October 2020 Volume 11 Issue 5 e01667-20 mbio.asm.org 2

https://mbio.asm.org


interaction types. A classic study involving cultured protozoan species found good
agreement between the dynamics of four-species consortia and predictions derived
from measurements of pairs of species (49). Similarly, Friedman and colleagues showed
that the outcomes of competitions among three-species communities of soil-derived
bacteria could be predicted simply from the outcomes of pairwise combinations (50). In
contrast, experiments based on the cheese rind microbiome found significant differ-
ences in the genes required for a nonnative Escherichia coli species to persist in a
multispecies bacterial community compared to predictions from pairwise coexistence
with community members (51). A closed ecosystem consisting of one species each of
algae, bacteria, and ciliate exhibited a strong nonpairwise interaction, in which the
bacteria is abundant in the presence of each of the algae or ciliate alone but is subject
to strong predation in the three-species system (52).

Within animals, the interaction types observed in the few studies to date that
make use of controlled microbial communities in gnotobiotic hosts are also dispa-
rate. Competitive outcomes of three-species communities from subsets of 11
different bacterial species in the gut of the nematode C. elegans could be predicted
from the outcomes of two-species experiments, with indirect effects found to be
weak (31). In contrast, work using well-defined bacterial assemblies of up to five
species in the fruit fly D. melanogaster found strong higher-order interactions
governing microbe-dependent effects on host traits, such as life span (32).

To our knowledge, there have been no quantitative assessments of interbacterial
interactions using controlled combinations of microbial species in a vertebrate host,
leaving open the question of whether higher-order interactions are strong or whether
pairwise characterizations suffice to predict intestinal community structure. Therefore,

FIG 1 Five chosen commensal species are robust colonizers of the larval zebrafish intestine. (A) A 7-dpf
larval zebrafish, with a dotted line outlining the intestine. Scale bar, 500 �m. (B) Chromogenic agar plate
showing colonies of all five candidate species (A. calcoaceticus, milky opaque; Aeromonas sp. strain
ZOR0001, reddish purple; Enterobacter sp. strain ZOR0014, blue; Plesiomonas sp. strain ZOR0011, dark
purple; P. mendocina, colorless translucent). (C) The abundance per zebrafish gut of each of the five
bacterial species when colonized in monoassociation with the host, assessed as number of CFU from
plated gut contents. Each circular data point is a CFU value from an individual fish (N � 13, 17, 15, 8, and
10, from left to right), with the mean and standard deviation indicated by the square markers and error
bars. AC, Acinetobacter calcoaceticus; AE, Aeromonas sp. strain ZOR0001; EN, Enterobacter sp. strain
ZOR0014; PL, Plesiomonas sp. strain ZOR0011; PS, Pseudomonas mendocina.
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we examined larval zebrafish, inoculating initially germfree animals with specific sub-
sets of five different species of zebrafish-derived bacteria and assessing their subse-
quent absolute abundances. Although the number of species is considerably smaller
than the hundreds that may be present in a normal zebrafish intestine, it is large
enough to sample a range of higher-order interactions yet small enough that the
number of permutations of species is tractable.

As detailed below, we find strong pairwise interactions between certain bacterial
species. However, we find weaker interactions and a greater than expected level of
coexistence in fish colonized by four or five bacterial species. This suggests that
measurements of pairwise intermicrobial interactions are insufficient to predict the
composition of multispecies gut communities and that higher-order interactions
dampen strong competition and facilitate diversity in a vertebrate intestine.

RESULTS

Zebrafish (Fig. 1A) were derived to be germfree and then were inoculated at 5 days
postfertilization (dpf) with the desired combination of microbial species by addition of
bacteria to the flasks housing the fish. Approximately 48 h later, fish were euthanized
and their intestines removed by dissection. Intestines and their contents were homog-
enized, diluted, and plated onto chromogenic agar (see Materials and Methods).
Secreted enzymes from each of the five candidate bacterial species generate particular
colors due to substrates in the chromogenic medium, allowing the quantification of the
number of CFU and, therefore, absolute intestinal abundance (Fig. 1B). All abundance
data are provided in Data Set S1 in the supplemental material.

The five species examined were selected as diverse representatives of genera
commonly found in the zebrafish intestine. Full names and species identifiers are given
in Materials and Methods. As expected given their association with the zebrafish gut
microbiome, each species in monoassociation, i.e., as the sole species inoculated in
germfree fish, colonizes robustly to an abundance of 103 to 104 CFU/gut, corresponding
to an in vivo density of approximately 109 to 1010 bacteria/ml (Fig. 1C).

Pairwise interactions in diassociations. We first examined all 10 possible coin-
oculations of two species, which enables the assessment of pairwise interactions in
the absence of higher-order effects. Intestinal CFU data show a wide range of
outcomes for different species pairs. As exemplars, the number of CFU per gut for
each of two species, Acinetobacter calcoaceticus and Enterobacter sp. strain
ZOR0014, in the presence of each of the other four is displayed in Fig. 2A and B,
respectively. The abundance of A. calcoaceticus is similar in the presence of any
second species to its value in monoassociation. In contrast, the mean Enterobacter
sp. strain ZOR0014 abundance is similar to its monoassociation value if coinocu-
lated with Plesiomonas sp. strain ZOR0011 or Pseudomonas mendocina, about 10
times lower if coinoculated with A. calcoaceticus, and over 2 orders of magnitude
lower if coinoculated with Aeromonas sp. strain ZOR0001, implying in the latter
cases strong negative interactions.

Parameterizing the strength of interactions between species is necessarily model
dependent, contingent on the functional form of the relationship between one species’
abundance and that of the other. We show that the conclusions we reach regarding
interaction strengths, especially their shifts when multiple species are present, are
qualitatively similar for a wide range of models and, therefore, robust. We first consider
a phenomenological interaction coefficient, Cij

II, that is linear in log abundance, char-
acterizing the effect of species j on species i as

log10 Pi
II � �log10 Pi

I� �Cij
IIlog10 Pj

II (1)

where Pi denotes the abundance of species i and the superscript I or II denotes a mono-
or diassociation experiment. This form is motivated by the distribution of gut
bacterial abundances being roughly lognormal, with species addition capable of
inducing orders-of-magnitude changes (Fig. 2A and B). This Cij

II value can be derived
as the interaction parameter in a competitive Lotka-Volterra model modified to act
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on log abundances (see Text S1). Qualitatively, a positive Cij implies that the
abundance of species i increases in the presence of j. Similarly, a negative Cij

indicates that the abundance of species i declines in the presence of species j.
Subsampling from the measured sets of bacterial abundances gives the mean and
standard deviation of the estimated interaction parameters (Text S1).

We plot in Fig. 2C the Cij
II defined by Equation 1, calculated from all diassociation

data of all species pairs (N � 190 fish in total). For determining Cij
II, we only use data

from fish in which both species were detected so that abundance changes of one
species can definitively be ascribed to the presence of the other within the gut.
Uncertainties in Cij

II are estimated from bootstrap subsampling (Text S1). The interac-
tions are predominantly negative. Thirteen out of 20 coefficients differ from zero by
over three standard deviations, indicating both a large magnitude and a less than 0.001
probability that the interaction strength is zero or of the opposite sign. The total
bacterial load, i.e., the sum of the bacterial abundances, is similar for all the diassocia-
tions, suggesting that the interaction effects do not stem from changes in intestinal
capacity (Fig. 2D).

Although the physical and chemical environment of the zebrafish gut is likely very
dissimilar to test tubes of standard growth media, we examined abundances of each of

FIG 2 Strong negative pairwise interactions dominate diassociation experiments. Abundances per zebrafish gut
of A. calcoaceticus (A) and Enterobacter sp. strain ZOR0014 (B) in monoassociation (gray) and in diassociation with
each of the other bacterial species (blue/green). Each circular data point is a CFU value from an individual fish
(N � 13, 21, 19, 20, and 27 [A] and N � 15, 19, 22, 18, and 23 [B], from left to right), with the means and standard
deviations indicated by the square markers and error bars. (C) Matrix of pairwise interaction coefficients, Cij

II,
characterizing the effect of species j on the abundance of species i. Coefficients that differ from zero by more than
three standard deviations (provided in Fig. S2A) are outlined in black. (D) The average bacterial load per zebrafish
in each of the diassociation combinations, expressed as log10 total CFU. The standard deviations are between 0.3
and 1.1 and are displayed in Fig. S1. Values on the diagonal are the monoassociation load for each of the five
species. AC, Acinetobacter calcoaceticus; AE, Aeromonas sp. strain ZOR0001; EN, Enterobacter sp. strain ZOR0014; PL,
Plesiomonas sp. strain ZOR0011; PS, Pseudomonas mendocina.
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the pairs of species in in vitro competition experiments, growing overnight cultures in
lysogeny broth (LB) medium and plating for CFU (see Materials and Methods). Assessing
Cij

II as described above, we find, as expected, that interaction coefficients calculated
from the in vitro experiments are markedly different from those measured in vivo
(Fig. 3B and Fig. S3).

Our characterizations of interactions within the zebrafish gut are not qualitatively
altered by using a more general power law model to compute Cij

II from absolute
abundance data (see “Interactions under more general models,” below) following the
presentation of measurements of interactions between more than two species.

Pairwise interactions in multispecies communities. To assess whether the strong
competitive interactions we found in two-species experiments are conserved in mul-
tispecies communities, we quantified pairwise interactions in experiments inoculating
fish with four or five bacterial species. To assess Cij

V, we adopted a method similar to the
leave-one-out approach often used in macroscopic ecological studies, dating at least to
classic experiments in which single species were removed from tide pools and the
abundances of the remaining species were measured to evaluate interspecies interac-
tions (53). Here, we performed coinoculation experiments, leaving out one of the five

II

�

FIG 3 Weak pairwise interactions in five-species experiments. (A) Abundance per zebrafish gut of one of the
bacterial species, Enterobacter sp. strain ZOR0014, when all five species are coinoculated (gray) and in each four
species coinoculation experiments (green), with the omitted species indicated on the axis. Each circular data
point is a CFU value from an individual fish (N � 40, 12, 12, 11, and 9, from left to right), with the mean and
standard deviation indicated by the square marker and error bars. (B) Matrix of pairwise interaction coefficients,
Cij

V, when 5 bacterial species are present. The coefficients outlined in black differ from zero by over three
standard deviations (see Fig. S2B). (C) The pairwise interaction coefficients inferred from 4- to 5-species
experiments versus those from 1- to 2-species experiments. The colors label species i for each interaction pair.
(D) The minimum interaction coefficient calculated from a power law interaction model for different values of
the exponent � for the 1- to 2-species (square filled markers) and the 4- to 5-species (square markers)
experiments. AC, Acinetobacter calcoaceticus; AE, Aeromonas sp. strain ZOR0001; EN, Enterobacter sp. strain
ZOR0014; PL, Plesiomonas sp. strain ZOR0011; PS, Pseudomonas mendocina.
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species of bacteria, and compared intestinal abundances for these four-species com-
munities to those measured in five-species coinoculation experiments.

In approximately N � 10 fish each, we performed all five different coinoculations of
four bacterial species. The difference in the abundance of species i in fish inoculated
with all five species compared to fish inoculated with four, missing species j, gives a
measure of the impact of species j on species i in the multispecies environment. As an
example, Enterobacter sp. strain ZOR0014 abundance in inoculations lacking A. cal-
coaceticus, Aeromonas sp. strain ZOR0001, Plesiomonas sp. strain ZOR0011, and P.
mendocina, and its abundance in five-species inoculations, are shown in Fig. 3A. In
contrast to the diassociation experiments (Fig. 2B), we see that Enterobacter sp. strain
ZOR0014 does not show large abundance differences, in either its mean or its distri-
bution, as a result of any fifth species being present. Independent of any model, this
suggests that nonpairwise, i.e., higher-order, interactions are present in the multispe-
cies community.

Again, a variety of options are possible for quantifying interaction coefficients in the
multispecies system. We first consider interaction coefficients as modifying mean log
abundances, analogous to the pairwise model of Equation 1:

log10 Pi
V � log10 Pi

IV � Cij
V log10 Pj

V (2)

The interaction coefficients, Cij
V, that we obtain, displayed in Fig. 3B, are different and

in general are considerably weaker than the Cij
II found in the two-species case (Fig. 2C).

There are only three interactions that differ from zero by over three standard devia-
tions. Strikingly, all three of these interactions are positive. This shift toward weaker and
more positive interactions between the two-species and multispecies interactions is
further illustrated in Fig. 3C, in which the multispecies interaction coefficients, Cij

V, are
plotted against the 2-species interaction coefficients, Cij

II.
Interactions under more general models. As noted, a model that is linearly

additive in logarithmic abundances is only one of an infinite number of choices and,
moreover, may not adequately capture the complexity of interactions in the gut. Earlier
experiments investigating the spatial structure of specific microbial communities in
the larval zebrafish intestine have shown that species such as Aeromonas sp. strain
ZOR0001, Enterobacter sp. strain ZOR0014, and P. mendocina form dense three-
dimensional aggregates (54). The size and location of aggregates and the locations of
cells, conspecific or otherwise, within these aggregates may affect their interactions in
ways that could be sublinear, linear, or superlinear in population size. Previous work has
also established that gut bacteria also influence intestinal mechanics (40), highlighting
one of many possible indirect interaction mechanisms whose functional forms are
unknown. Furthermore, other studies have shown that different modes of physical and
chemical communication could result in long-range interactions between different
species (55–57). To address these possibilities, we evaluated species interactions with a
more general power law model, wherein the interaction effects between species could
be nonlinear in the abundance of the effector species. Here, the interaction coefficient
Cij depends on a power, �, of the abundance of the effector species j, which we
evaluate in the range of � � 0.1 to 2, spanning sublinear and superlinear interactions.
Modified versions of Equations 1 and 2 give

Pi
II � �Pi

I� �Cij
II(Pj

V)� (3)

and

Pi
V � �Pi

IV� �Cij
V(Pj

V)� (4)

from which we can evaluate Cij
II and Cij

V, respectively. Note that � � 1 in Equations 3 and
4, i.e., interactions that are linear in abundance, is simply the steady-state behavior of
the competitive Lotka-Volterra model commonly used in population modeling and is
shown in Fig. S5. We provide the Cij

II and Cij
V for several different � values in Fig. S4.

Throughout, as in the logarithmic model shown above, pairwise interactions in diasso-
ciation are, in many cases, strongly negative, while the multispecies interactions are
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weaker. This is summarized by studying the trends in the most negative Cij
II and Cij

V for
different values of �, depicted in Fig. 3D, which shows that for all � values, the strongest
Cij

V is significantly weaker than the strongest Cij
II, suggesting that our results are robust

to choice of model.
Five-species coexistence. We next consider coinoculation of all five bacterial

species. Examination of over 200 fish shows a large variety in abundances, depicted in
Fig. 4A as the relative abundance of each species in each larval gut. Multiple species are
able to coexist, with the median number of species present being 4 (Fig. 4B). The mean
total bacterial load as well as its distribution (Fig. 4C) are similar to the mean and
distribution of the mono- and diassociation experiments, as well as four-species coin-
oculation experiments discussed earlier. We calculated the expected abundance of
each bacterial species if the interactions governing the five-species community were
simply a linear combination of the pairwise interactions governing diassociations, Cij

II.
Any of the additive models we evaluated can be extended to combinations of species.
Considering the model focused on above, with interaction coefficients modifying log
abundances, the predicted abundance of species i in the presence of another species
j is given by

log10 Pi
V � �log10 Pi

I� ��
j�i

Cij
II log10 Pj

V (5)

where the superscript V denotes the five-species coinoculation experiment. A model
linear in species abundance (� � 1) is also considered in the Text S1 and gives
qualitatively similar outputs and conclusions. Sampling from the measured distribu-
tions of each of the interaction coefficients and the mean abundance in monoassocia-
tion allows the calculation of the distribution of expected Pi

V values (see Data Set S3).
We plot the measured and predicted distributions of intestinal abundances of each

of the five species for the five-species coinoculation experiment in Fig. 4D. The
measured distributions of each of the species are very similar. In contrast, the distri-
butions of the predicted abundances vary significantly by species. For two of the
species, A. calcoaceticus and P. mendocina, the means of the observed and predicted
distributions are similar. For the other three species, in contrast, the observed and
predicted populations are in strong disagreement, with the pairwise prediction being
at least an order of magnitude lower than the observed abundances. For Enterobacter
sp. strain ZOR0014 and Plesiomonas sp. strain ZOR0011 in particular, we would expect
extinction in a large fraction of fish due to strong negative pairwise interactions; in
actuality, both species are common and abundant.

Similarly, we can extract from the model the predicted frequency of occurrence of
each of the species, regardless of abundance, i.e., the fraction of fish with a nonzero
population of that species. We find that the predicted frequency is much lower than the
experimentally observed frequency for Plesiomonas sp. strain ZOR0011 and Enterobac-
ter sp. strain ZOR0014 (Fig. 4E).

By measuring absolute abundances of bacterial populations in the gut, we provide
direct assessments of interspecies interactions. More common sequencing-based meth-
ods, applied, for example, to the human gut microbiome, typically provide relative
measures of species abundance, i.e., each taxonomic unit’s fraction of the total load.
Correlations among relative abundances are often used as measures of interaction
strengths (58, 59). Calculating the Pearson correlation coefficients of the relative
abundances of each pair of species in fish inoculated with all five bacterial species, we
find a strikingly different interaction matrix (Fig. 4F) than that inferred from absolute
abundance changes (Fig. 3B), with many strong negative values. There are many likely
reasons for the difference between Pearson correlations and our more directly mea-
sured interaction coefficients. The Pearson r necessarily attributes correlations between
pairs of species as being indicative of the dynamics of that pair independent of other
species, is confounded by overall changes in total bacterial load, and, perhaps most
importantly, is necessarily symmetric (Cij � Cji). Our Cij values, inferred from absolute
abundance data, are notably asymmetric (Fig. 2C and 3B).
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DISCUSSION

Using a model system comprising five commensal bacterial species in the larval
zebrafish intestine, we have characterized aspects of gut microbiome assembly. Con-
trolled combinations of inoculated species and measurements of absolute abundance

FIG 4 Communities are more diverse and abundant in five-species experiments than would be predicted solely based
on two-species pairwise interactions. (A) Stacked bar plot of the relative abundances of the five bacterial species when
all five were coinoculated. Each bar is from a single dissected fish. The bars are ordered by total bacterial load. (B)
Histogram of the total number of bacterial species present in the gut when all five species were coinoculated. (C) The
total bacterial load as a function of the number of inoculated species. Each circular data point is a CFU value from an
individual fish (N � 63, 232, 187, and 202, from left to right), with the mean and standard deviation indicated by the
square marker and error bars. (D) The predicted (blue Xs) and measured (brown circles) abundances of each bacterial
species in the zebrafish gut when all five species are coinoculated. Predictions are based on an interaction model that
is linear in log abundance using the pairwise Cij

II coefficients, as described in the text. Solid square markers indicate the
mean and standard deviation of the distributions excluding null counts. The dotted line indicates the experimental
detection limit of 25 cells. The experimental data are from N � 202 fish in total, and the predicted distributions arise
from 250 samples of the distribution of interaction coefficients. (E) The observed frequency of occurrence in the gut
from the five-species coinoculation experiment versus the predicted frequencies for each of the five species. (F) The
Pearson correlation coefficients calculated from the relative abundances of pairs of species when all five species were
coinoculated. AC, Acinetobacter calcoaceticus; AE, Aeromonas sp. strain ZOR0001; EN, Enterobacter sp. strain ZOR0014; PL,
Plesiomonas sp. strain ZOR0011; PS, Pseudomonas mendocina.
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in the gut, both challenging to perform in other vertebrate systems, reveal clear
signatures of interactions among species. We find strong, competitive interactions
among certain pairs in fish inoculated with two bacterial species. In contrast, pairwise
interactions are weak in intestines colonized by four to five species, and all species are
present at equal or greater abundance than would be predicted based on two-species
data.

Our quantification of interaction strengths relies on a minimal set of assumptions
that serve as a general test of additive models. Interaction strengths are necessarily
parameters of particular models. We made use of a model in which the log-transformed
population of a species is a linear function of the other species’ log-transformed
populations and a more general power law model that spans both sublinear and
superlinear dependences on population sizes. There are good reasons to be skeptical
of such frameworks. First, intestinal populations may not be well described by equi-
librium, steady-state values. Second, these models lack spatial structure information. In
vivo microscopy of one or two species in the zebrafish gut (39, 40, 60) underscores both
of these concerns: populations are very dynamic, with rapid growth and stochastic
expulsions; interactions can be mediated by complex intestinal mechanics; and aggre-
gation and localization behaviors are species specific.

Imaging, however, provides justifications for these rough models. Prior micro-
scopy-based studies have shown that growth rates are rapid, with populations
reaching carrying capacities within roughly 12 h (39, 60), well below the 48-h
assessment time considered here. Because of strong aggregation observed in nearly
all bacterial species, most individual bacteria residing in the bulk of clusters will not
directly interact with other species, leading to interactions that are sublinear in
population size, suggesting a logarithmic or � � 1 power law functional form.
Furthermore, stochastic dynamics can be mapped onto robust average properties
for populations (39, 61). Therefore, it is reasonable to make use of simple models
not as rigorous descriptions of the system but as approximations whose parameters
characterize effective behaviors. We note that all these issues also affect more
commonly used models, such as standard competitive Lotka-Volterra models that
are linear in population sizes. These models are often applied to gut microbiome
data and used to infer interaction parameters (26, 62, 63) despite a lack of
information about their realism. The power law model of interactions provides the
strongest indication of the generality of our conclusions. Over a range of interaction
forms extending from highly sublinear (� � 0.1) to superlinear (� � 2.0), strong
competitive interactions are dampened when four or five species are present
(Fig. 3D), suggestive of higher-order interactions among intestinal bacteria.

The ecological potential for higher-order or indirect interactions, i.e., interactions
that cannot be reduced to pairwise additive components but rather result from the
activities of three or more species, to be important determinants of community
structure has been appreciated for decades (41, 42, 49). Identification of higher-order
interactions among constituent species is important for accurate prediction of re-
sponses to ecological perturbations such as species invasion or extinction, as well as
functions of multispecies communities, as such features will not be adequately forecast
by the examination of direct interactions in subsystems (41, 64).

Inferring and quantifying indirect interactions in natural ecosystems is, however,
challenging, calling for subtle and model-dependent statistical tests (41, 42, 65).
Constructed or manipulated systems enable more straightforward assays in which
particular species are introduced or removed amid a backdrop of others. Several such
systems involving macroscopic organisms (66–70), as well as microorganisms (32, 52),
have uncovered significant indirect interactions. However, some studies of microbial
communities have found weak or negligible higher-order interactions (49, 50), includ-
ing one study examining combinations of species introduced to the C. elegans gut (31).
The complexity of interactions in a vertebrate gut has remained unclear, and
correlation-based methods for inferring interactions from sequencing-based data have
assumed that pairwise interactions suffice (58, 71, 72).
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Our measurements using gnotobiotic larval zebrafish, a model vertebrate, show
strong pairwise interactions when only two bacterial species are present in the intestine
and weak pairwise interactions when four to five species are present, indicating that
higher-order interactions are important (Fig. 3). In many cases, the effect is evident from
the raw data itself. For example, Enterobacter sp. strain ZOR0014 is strongly suppressed
by Aeromonas sp. strain ZOR0001 if the two are inoculated together (Fig. 2B). Compar-
ing Enterobacter sp. strain ZOR0014 abundance in fish colonized by all species except
Aeromonas sp. strain ZOR0001 with its abundance in fish colonized by all species, in
contrast, shows little difference, indicating that the Enterobacter sp. strain ZOR0014-
Aeromonas sp. strain ZOR0001 interaction is strongly attenuated by the presence of the
other bacterial groups (Fig. 3A).

Two additional observations also imply the presence of strong higher-order
interactions in our intestinal ecosystem. Considering fish colonized by all five
bacterial species, the mean abundance of each species is at least as high as would
be predicted solely from direct interactions (Fig. 4D). Moreover, the diversity of
bacterial species is higher than would be predicted, as all of the species occur in
more than 50% of fish, contrary to prediction (Fig. 4E). Considering fish colonized
by all five bacterial species, the abundance of each species is at least as high and
the diversity of bacterial species is higher than the values that would be predicted
solely from direct interactions.

Our finding of higher species diversity than expected from pairwise interactions
in a system of several gut bacterial species is consistent with recent theoretical
studies that suggest, for a variety of reasons, that higher-order interactions are
likely to stabilize communities and promote coexistence. The topic of multispecies
coexistence has a long history in ecology. Especially since classic work by Robert
May showing that a system comprising pairwise interacting constituents will, in
general, be less stable as the number of species increases (73), explaining how
complex communities can exist has been a theoretical challenge. There are many
resolutions to this paradox, such as spatial heterogeneity, interactions across
trophic levels, and temporal variation. However, even without such additional
structure, incorporating higher-order terms into general random competitive inter-
action models leads to widespread coexistence (45–47). Such large-scale coexis-
tence can also emerge naturally from contemporary resource competition models
(48, 74), in which cross-feeding or metabolic tradeoffs necessarily involve multiple
interacting species. Intriguingly, the abundance distributions of all five of our gut
bacterial species, when inoculated together, are similar to one another. The average
Shannon entropy of the five-species community (H � 1.16 � 0.24) (see Text S1 in
the supplemental material) also resembles that of a purely neutrally assembled
community (H � 1.61), reminiscent of dynamics mimicking neutral assembly that
emerge from multispecies dynamics driven by resource use constraints (48, 75).

Our findings imply that measurements of two-species interactions among mi-
crobial residents of the vertebrate gut are insufficient for predictions of community
dynamics and composition. Moreover, they imply that inference from microbiome
data of interspecies interactions, for example, by fitting Lotka-Volterra-type models
with pairwise interaction terms (26, 62, 63, 76), should not be thought of as
representing fundamental pairwise interactions that would be manifested if, for
example, the constituent species were isolated but rather as effective interactions
in a complex milieu.

Our measurements do not shed light on what mechanisms give rise to higher-order
interactions in our system. Likely candidates include metabolic interactions among
the species, interactions mediated by host activities, such as immune responses, and
modulation of spatial structure by coexisting species. Immune responses are sensitive
to specific bacterial species (77) and to bacterial behaviors (78). Regarding spatial
structure in particular, in vivo imaging of these bacterial species in monoassociation has
shown robust aggregation behaviors that correlate with location in the gut (54). Given
the physical constraints of the intestinal environment, we think that the modification of
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spatial organization due to the presence of species with overlapping distributions is a
likely mechanism for higher-order interactions. Notably, both immune responses and
spatial structure are amenable to live imaging in larval zebrafish (39, 40, 54). Although
the parameter space of transgenic hosts, fluorescent labels, and interaction timescales
to explore in imaging studies is potentially very large, such future studies are likely to
yield valuable insights into the mechanisms orchestrating the strong interactions
observed here. Furthermore, examination of the roles of priority effects and other
aspects of initial colonization, as well as the stability of diverse communities with
respect to invasion, may reveal routes for intentionally manipulating the vertebrate
microbiome to engineer desired traits.

MATERIALS AND METHODS
Animal care. All experiments with zebrafish were done in accordance with protocols approved by

the University of Oregon Institutional Animal Care and Use Committee and by following standard
protocols (79).

Gnotobiology. Wild-type (ABC�TU strain) larval zebrafish (Danio rerio) were derived germfree as
described in reference 36. In brief, embryos were washed at approximately 7 h postfertilization with
antibiotic, bleach, and iodine solutions and then moved to tissue culture flasks containing 15 ml sterile
embryo medium solution with approximately 1 ml of sterile solution per larva. The flasks were then
stored in a temperature-controlled room maintained at 28°C.

Bacterial strains and culture. The five bacterial strains used in this study, namely, Aeromonas sp.
strain ZOR0001, Pseudomonas mendocina (ZWU0006), Acinetobacter calcoaceticus (ZOR0008), Enterobac-
ter sp. strain ZOR0014, and Plesiomonas sp. strain ZOR0011 were originally isolated from the zebrafish
intestine and have been fluorescently labeled to express green fluorescent protein (GFP) and dTomato,
facilitating their identification in our experimental assays (80, 81). Stocks of bacteria were maintained in
25% glycerol at �80°C.

Inoculation of tissue culture flasks. One day prior to inoculation of the tissue culture flasks,
bacteria from frozen glycerol stocks were shaken overnight in lysogeny broth (LB medium; 10 g/liter
NaCl, 5 g/liter yeast extract, 12 g/liter tryptone, 1 g/liter glucose) and grown for 16 h overnight at
30°C. Samples of 1 ml of each of the overnight cultures were washed twice by centrifuging at
7,000 � g for 2 min, removing the supernatant, and adding 1 ml of fresh sterile embryo medium. At 5
dpf, the tissue culture flasks were inoculated with this solution at a concentration of 106 CFU/ml. For
each of the competition experiments involving 2, 4, and 5 bacterial species, equal concentrations
were inoculated into the flasks. After inoculation, the flasks were maintained at 30°C until dissection
at 7 dpf.

Dissection and plating. To determine the intestinal abundance of bacterial species, dissections
of larval zebrafish were performed at 7 dpf. Zebrafish were euthanized by hypothermal shock.
Intestines were removed by dissection, placed in 500 �l of sterile embryo medium, and homoge-
nized with zirconium oxide beads using a bullet blender. The homogenized gut solution was diluted
to 10�1 and 10�2, and 100-�l volumes of these dilutions were spread onto agar plates. For mono-
and diassociated inoculations, tryptic soy agar (TSA) plates were used in which fluorescence could
be used to differentiate up to two species. For inoculations of more than two species, Universal
HiChrome agar (Sigma-Aldrich) plates were used, allowing for visual differentiation of each species
using a colorimetric indicator. The abundances of each of the species in the zebrafish gut were
determined by counting the numbers of CFU on the plates. These abundances for different
experiments are provided in Data Set S1.

In vitro competition experiments. To determine the in vitro competition coefficients, all of the
different pairwise combinations of the five species were grown in overnight cultures of LB medium as
described above. On the following day, cultures were plated at 10�7 or 10�6 dilutions, depending on the
ability to detect both species in a given dilution. Abundances were obtained by counting the number of
CFU of each species on the plates. These values are provided in Data Set S1.
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16. Rajilić Stojanović M, Biagi E, Heilig HGHJ, Kajander K, Kekkonen RA, Tims
S, de Vos WM. 2011. Global and deep molecular analysis of microbiota
signatures in fecal samples from patients with irritable bowel syndrome.
J Gastroenterol 141:1792–1801. https://doi.org/10.1053/j.gastro.2011.07
.043.

17. Durack J, Lynch SV. 2019. The gut microbiome: relationships with dis-
ease and opportunities for therapy. J Exp Med 216:20 – 40. https://doi
.org/10.1084/jem.20180448.

18. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG,
Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette
C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J,
Marteau P, Seksik P, Langella P. 2008. Faecalibacterium prausnitzii is an
anti-inflammatory commensal bacterium identified by gut microbiota
analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:
16731–16736. https://doi.org/10.1073/pnas.0804812105.

19. Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER,
Büttner L, de Lima Romão E, Behrendt CL, Lopez CA, Sifuentes-
Dominguez L, Huff-Hardy K, Wilson RP, Gillis CC, Tükel A, Koh AY,
Burstein E, Hooper LV, Bäumler AJ, Winter SE. 2018. Precision editing of
the gut microbiota ameliorates colitis. Nature 553:208 –211. https://doi
.org/10.1038/nature25172.

20. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot
Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. 2013.
Cross-talk between Akkermansia muciniphila and intestinal epithelium
controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066 –9071.
https://doi.org/10.1073/pnas.1219451110.

21. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized
responses of the human distal gut microbiota to repeated antibiotic
perturbation. Proc Natl Acad Sci U S A 108:4554 – 4561. https://doi.org/
10.1073/pnas.1000087107.

22. Modi SR, Collins JJ, Relman DA. 2014. Antibiotics and the gut microbiota.
J Clin Investig 124:4212– 4218. https://doi.org/10.1172/JCI72333.

23. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma
J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W,
Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B,
Wei H, Zhang M, Peng Y, Zhang C. 2018. Gut bacteria selectively pro-
moted by dietary fibers alleviate type 2 diabetes. Science 359:
1151–1156. https://doi.org/10.1126/science.aao5774.

24. Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. 2019. High fat
diet induces microbiota-dependent silencing of enteroendocrine cells.
Elife 8:e48479. https://doi.org/10.7554/eLife.48479.

25. Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL,
Turnbaugh PJ. 2015. Diet dominates host genotype in shaping the
murine gut microbiota. Cell Host Microbe 17:72– 84. https://doi.org/10
.1016/j.chom.2014.11.010.

26. Fisher CK, Mehta P. 2014. Identifying keystone species in the human gut
microbiome from metagenomic timeseries using sparse linear regression.
PLoS One 9:e102451. https://doi.org/10.1371/journal.pone.0102451.

27. Shang Y, Sikorski J, Bonkowski M, Fiore-Donno AM, Kandeler E,
Marhan S, Boeddinghaus RS, Solly EF, Schrumpf M, Schöning I, Wubet

Higher-Order Interactions in the Zebrafish Gut ®

September/October 2020 Volume 11 Issue 5 e01667-20 mbio.asm.org 13

http://www.nih.gov/
https://doi.org/10.1016/j.chom.2012.08.003
https://doi.org/10.1016/j.chom.2012.08.003
https://doi.org/10.1016/j.chom.2018.03.011
https://doi.org/10.7554/eLife.20145
https://doi.org/10.1073/pnas.1607235113
https://doi.org/10.1016/j.cell.2005.05.007
https://doi.org/10.1016/j.cell.2005.05.007
https://doi.org/10.1053/j.gastro.2014.01.060
https://doi.org/10.1053/j.gastro.2014.01.060
https://doi.org/10.1038/nature12726
https://doi.org/10.1146/annurev-immunol-020711-074937
https://doi.org/10.1146/annurev-immunol-020711-074937
https://doi.org/10.1016/j.immuni.2015.10.016
https://doi.org/10.1016/j.immuni.2015.10.016
https://doi.org/10.1038/nature11551
https://doi.org/10.1186/s13073-016-0303-2
https://doi.org/10.1146/annurev-pathol-011811-132421
https://doi.org/10.1146/annurev-pathol-011811-132421
https://doi.org/10.1016/J.ENG.2017.01.008
https://doi.org/10.1016/J.ENG.2017.01.008
https://doi.org/10.1007/s00335-013-9488-5
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.1053/j.gastro.2011.07.043
https://doi.org/10.1053/j.gastro.2011.07.043
https://doi.org/10.1084/jem.20180448
https://doi.org/10.1084/jem.20180448
https://doi.org/10.1073/pnas.0804812105
https://doi.org/10.1038/nature25172
https://doi.org/10.1038/nature25172
https://doi.org/10.1073/pnas.1219451110
https://doi.org/10.1073/pnas.1000087107
https://doi.org/10.1073/pnas.1000087107
https://doi.org/10.1172/JCI72333
https://doi.org/10.1126/science.aao5774
https://doi.org/10.7554/eLife.48479
https://doi.org/10.1016/j.chom.2014.11.010
https://doi.org/10.1016/j.chom.2014.11.010
https://doi.org/10.1371/journal.pone.0102451
https://mbio.asm.org


T, Buscot F, Overmann J. 2017. Inferring interactions in complex
microbial communities from nucleotide sequence data and environ-
mental parameters. PLoS One 12:e0173765. https://doi.org/10.1371/
journal.pone.0173765.

28. Carr A, Diener C, Baliga NS, Gibbons SM. 2019. Use and abuse of
correlation analyses in microbial ecology. ISME J 13:2647–2655. https://
doi.org/10.1038/s41396-019-0459-z.

29. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. 2015.
Proportionality: a valid alternative to correlation for relative data.
PLoS Comput Biol 11:e1004075. https://doi.org/10.1371/journal.pcbi
.1004075.

30. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes
S, Kotler E, Zur M, Regev-Lehavi D, Brik RBZ, Federici S, Cohen Y, Linevsky R,
Rothschild D, Moor AE, Ben-Moshe S, Harmelin A, Itzkovitz S, Maharshak N,
Shibolet O, Shapiro H, Pevsner-Fischer M, Sharon I, Halpern Z, Segal E, Elinav
E. 2018. Personalized gut mucosal colonization resistance to empiric probi-
otics is associated with unique host and microbiome features. Cell 174:
1388–1405. https://doi.org/10.1016/j.cell.2018.08.041.

31. Lopez AO, Vega NM, Gore J. 2019. Interspecies bacterial competition
determines community assembly in the C. elegans intestine. bioRxiv
https://doi.org/10.1101/535633.

32. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, Gavry-
ushkin A, Carlson JM, Beerenwinkel N, Ludington WB. 2018. Microbiome
interactions shape host fitness. Proc Natl Acad Sci U S A 115:
E11951–E11960. https://doi.org/10.1073/pnas.1809349115.

33. Aranda-Díaz A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT,
Ludington WB, Huang KC. 2020. Bacterial interspecies interactions mod-
ulate pH-mediated antibiotic tolerance. Elife 9:e51493. https://doi.org/
10.7554/eLife.51493.

34. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K,
Bohannan BJ. 2016. Contribution of neutral processes to the assembly of
gut microbial communities in the zebrafish over host development.
ISME J 10:655– 664. https://doi.org/10.1038/ismej.2015.142.

35. Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. 2020. The
zebrafish as a model for gastrointestinal tract-microbe interactions. Cell
Microbiol 22:e13152. https://doi.org/10.1111/cmi.13152.

36. Melancon E, De La Torre Canny SG, Sichel S, Kelly M, Wiles TJ, Rawls JF,
Eisen JS, Guillemin K. 2017. Best practices for germ-free derivation and
gnotobiotic zebrafish husbandry. Methods Cell Biol 138:61–100. https://
doi.org/10.1016/bs.mcb.2016.11.005.

37. Dooley K, Zon LI. 2000. Zebrafish: a model system for the study of
human disease. Curr Opin Genet Dev 10:252–256. https://doi.org/10
.1016/S0959-437X(00)00074-5.

38. Rawls JF, Samuel BS, Gordon JI. 2004. Gnotobiotic zebrafish reveal evolu-
tionarily conserved responses to the gut microbiota. Proc Natl Acad Sci
U S A 101:4596–4601. https://doi.org/10.1073/pnas.0400706101.

39. Wiles TJ, Jemielita M, Baker RP, Schlomann BH, Logan SL, Ganz J,
Melancon E, Eisen JS, Guillemin K, Parthasarathy R. 2016. Host gut
motility promotes competitive exclusion within a model intestinal mi-
crobiota. PLoS Biol 14:e1002517. https://doi.org/10.1371/journal.pbio
.1002517.

40. Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK,
Parthasarathy R. 2018. The Vibrio cholerae type VI secretion system can
modulate host intestinal mechanics to displace gut bacterial symbionts.
Proc Natl Acad Sci U S A 115:E3779 –E3787. https://doi.org/10.1073/pnas
.1720133115.

41. Wootton JT. 1994. The nature and consequences of indirect effects in
ecological communities. Annu Rev Ecol Syst 25:443– 466. https://doi.org/
10.1146/annurev.es.25.110194.002303.

42. Billick I, Case TJ. 1994. Higher order interactions in ecological
communities: what are they and how can they be detected? Ecology
75:1530 –1543. https://doi.org/10.2307/1939614.

43. Sanchez A. 2019. Defining higher-order interactions in synthetic ecology:
lessons from physics and quantitative genetics. Cell Syst 9:519 –520.
https://doi.org/10.1016/j.cels.2019.11.009.

44. Mittelbach GG, McGill BJ. 2019. Community ecology. Oxford University
Press, Oxford, United Kingdom.

45. Bairey E, Kelsic ED, Kishony R. 2016. High-order species interactions
shape ecosystem diversity. Nat Commun 7:1–7. https://doi.org/10.1038/
ncomms12285.

46. Levine JM, Bascompte J, Adler PB, Allesina S. 2017. Beyond pairwise
mechanisms of species coexistence in complex communities. Nature
546:56 – 64. https://doi.org/10.1038/nature22898.

47. Grilli J, Barabás G, Michalska-Smith MJ, Allesina S. 2017. Higher-order

interactions stabilize dynamics in competitive network models. Nature
548:210 –213. https://doi.org/10.1038/nature23273.

48. Posfai A, Taillefumier T, Wingreen NS. 2017. Metabolic trade-offs pro-
mote diversity in a model ecosystem. Phys Rev Lett 118:e028103. https://
doi.org/10.1103/PhysRevLett.118.028103.

49. Vandermeer JH. 1969. The Competitive structure of communities: an
experimental approach with protozoa. Ecology 50:362–371. https://doi
.org/10.2307/1933884.

50. Friedman J, Higgins LM, Gore J. 2017. Community structure follows
simple assembly rules in microbial microcosms. Nat Ecol Evol 1:1–7.
https://doi.org/10.1038/s41559-017-0109.

51. Morin M, Pierce EC, Dutton RJ. 2018. Changes in the genetic require-
ments for microbial interactions with increasing community complexity.
Elife 7:e37072. https://doi.org/10.7554/eLife.37072.

52. Mickalide H, Kuehn S. 2019. Higher-order interaction between species
inhibits bacterial invasion of a phototroph-predator microbial commu-
nity. Cell Syst 9:521–533. https://doi.org/10.1016/j.cels.2019.11.004.

53. Paine RT. 1980. Food webs: linkage, interaction strength and community
infrastructure. J Anim Ecol 49:667– 685. https://doi.org/10.2307/4220.

54. Schlomann BH, Wiles TJ, Wall ES, Guillemin K, Parthasarathy R. 2018.
Bacterial cohesion predicts spatial distribution in the larval zebrafish
intestine. Biophys J 115:2271–2277. https://doi.org/10.1016/j.bpj.2018
.10.017.

55. Ozgen VC, Kong W, Blanchard AE, Liu F, Lu T. 2018. Spatial interference
scale as a determinant of microbial range expansion. Sci Adv
4:eaau0695. https://doi.org/10.1126/sciadv.aau0695.

56. Stubbendieck RM, Straight PD. 2016. Multifaceted interfaces of bacterial
competition. J Bacteriol 198:2145–2155. https://doi.org/10.1128/JB.00275
-16.

57. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM. 2015. Ion
channels enable electrical communication within bacterial communities.
Nature 527:59 – 63. https://doi.org/10.1038/nature15709.

58. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD,
Bushman FD. 2013. Archaea and fungi of the human gut microbiome:
correlations with diet and bacterial residents. PLoS One 8:e66019.
https://doi.org/10.1371/journal.pone.0066019.

59. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CET,
Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun
F, Caron DA, Fuhrman JA. 2011. Marine bacterial, archaeal and protistan
association networks reveal ecological linkages. ISME J 5:1414 –1425.
https://doi.org/10.1038/ismej.2011.24.

60. Schlomann BH, Wiles TJ, Wall ES, Guillemin K, Parthasarathy R. 2019.
Sublethal antibiotics collapse gut bacterial populations by enhancing
aggregation and expulsion. Proc Natl Acad Sci U S A 116:21392–21400.
https://doi.org/10.1073/pnas.1907567116.

61. Schlomann BH. 2018. Stationary moments, diffusion limits, and extinc-
tion times for logistic growth with random catastrophes. J Theor Biol
454:154 –163. https://doi.org/10.1016/j.jtbi.2018.06.007.

62. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, Sander C,
Xavier JB. 2013. Ecological modeling from time-series inference: insight
into dynamics and stability of intestinal microbiota. PLoS Comput Biol
9:e1003388. https://doi.org/10.1371/journal.pcbi.1003388.

63. Marino S, Baxter NT, Huffnagle GB, Petrosino JF, Schloss PD. 2014.
Mathematical modeling of primary succession of murine intestinal mi-
crobiota. Proc Natl Acad Sci U S A 111:439 – 444. https://doi.org/10.1073/
pnas.1311322111.
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