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Abstract: Epithelial–mesenchymal transition (EMT) causes epithelial cells to lose their polarity and
adhesion property, and endows them with migratory and invasive properties to enable them to become
mesenchymal stem cells. EMT occurs throughout embryonic development, during wound healing,
and in various pathological processes, including tumor progression. Considerable research in the
last few decades has revealed that EMT is invariably related to tumor aggressiveness and metastasis.
Apart from the interactions between numerous intracellular signaling pathways known to regulate
EMT, extracellular modulators in the tumor microenvironment also influence tumor cells to undergo
EMT, with extracellular vesicles (EVs) receiving increasing attention as EMT inducers. EVs comprise
exosomes and microvesicles that carry proteins, nucleic acids, lipids, and other small molecules to
stimulate EMT in cells. Among EVs, exosomes have been investigated in many studies, and their role
has been found to be significant with respect to regulating intercellular communications. In this review,
we summarize recent studies on exosomes and their cargoes that induce cancer-associated EMT.
Furthermore, we describe the possible applications of exosomes as promising therapeutic strategies.

Keywords: Epithelial mesenchymal transition; Exosome; Cancer; Wnt/β-catenin pathway; Hippo
pathway

1. Introduction

Epithelial–mesenchymal transition (EMT) is a reversible cellular process that transforms epithelial
cells into quasi-mesenchymal cell states. It is observed during normal development, embryonic
development, wound healing, and certain pathological processes. During EMT, cells lose their
adhesion property, apical–basal polarity, and basement anchoring, and gain migratory and invasive
properties. In tumor cells, EMT induces invasiveness and metastatic properties that can lead to
malignancy, resulting in poor prognosis for the patient [1]. Additionally, EMT often induces the
development of therapeutic resistance through acquisition of stemness and inhibition of tumor cell
death [2–4]. Although several studies have investigated the suppression of EMT in tumor cells,
the underlying mechanisms have not yet been fully elucidated. Many studies have identified the
intracellular signaling pathways involved in EMT and their corresponding regulators. Several
tumor-cell-derived growth factors, such as transforming growth factor β (TGF-β), hepatocyte growth
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factor (HGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), Wnt ligand, interleukin-6
(IL-6), and hedgehogs act as extracellular EMT inducers and activate downstream signaling, including
the TGF-β/SMAD, PI3K/ protein kinase B (AKT), mitogen-activated protein kinases (MAPKs), and
Wnt/β-catenin signaling pathways [5]. Although downstream transcription factors including β-catenin,
Zinc finger protein SNAI1 (SNAIL)/Zinc Finger Protein SNAI2 (SLUG), Zinc finger E-box-binding
homeobox 1/2 (ZEB1/2), and Twist-related protein 1 (TWIST) govern EMT-related gene expression,
recent studies suggest that controlling the expression and function of these factors does not completely
inhibit EMT induction in tumor cells [6–8].

Recently, extracellular vesicles (EVs) have been identified as important communicators between
tumor cells and their microenvironment. EVs are lipid-bilayer-delimited particles that are released from
cells, and are usually categorized into at least three classes: exosomes, microvesicles, and apoptotic
bodies. They carry proteins, nucleic acids, lipids, metabolites, and even organelles from donor cells.
EVs enter recipient cells via endocytosis and release their bioactive contents into the cytosolic space.
Among the three types of EVs, previous studies have found that cancer-derived exosomes considerably
induce EMT in recipient cells, and identified the major molecules contained in the exosomes [9–11].
Furthermore, it has been reported that regulation of exosomal bioactive molecules such as nucleotides,
proteins, and organic intermediates can be employed as a strategy to suppress EMT.

In this review, we summarize the EMT-regulating molecules contained in exosomes and describe
the associated molecular mechanisms. In addition, we suggest that exosomal contents can potentially
be used for predicting tumor prognosis and in the formulation of personalized therapies to overcome
tumor EMT induction.

2. Exosome-Induced EMT

Exosomes are secretory endosome-derived membranous vesicles with a size of ~40–100 nm,
secreted from a various types of mammalian cells. The term “exosome” was first coined by Trams
et al. in the early 1980s. Exosomes were initially assumed to be garbage disposal agents; however,
recent data have revealed the direct role of exosomes in governing the physiological and pathological
conditions of the surrounding cells by transferring information from donor cells to recipient cells
(Figure 1). The generation of exosomes begins from endocytosis to form early endosomes and
multivesicular endosomes (MVEs) are formed by inward budding of late endosomes. The MVEs
merge with the cell membrane and release the intraluminal endosomal vesicles to become exosomes
into the extracellular space [12,13]. Exosome can transport all the biomolecules, including lipids,
proteins, DNAs, mRNAs, and miRNA [14]. Most of the contents in exosomes are proteins related with
biogenesis and transportation ability of exosomes. Tetraspanins (CD9, CD63, CD81, CD82) take charge
of cell penetration, invasion, and fusion events. MVB formation proteins (Alix, TSG101) are involved in
exosome release. Annexins and Rab protein have roles in membrane transport and fusion. Alix, fotillin,
and TSG101 are participants in exosome biogenesis [15,16]. These exosome abundant proteins (TSG101,
HSP70, CD81, CD63) are commonly used as exosomal marker proteins [17]. Besides, other exosomal
contents involved in the intercellular crosstalk in the tumor microenvironment plays a large role in
cancer development through the formation of a mesenchymal niche. Recently, many studies have been
conducted to investigate the significant involvement of exosomes in the induction of cancer-related
EMT. We summarized these reports and proposed that the critical components in exosomes can serve as
promising EMT regulators, based on the signaling pathways and exosome-derived materials involved.
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Figure 1. Schematic representation of exosomes. Exosomes are generated from multivesicular 
endosome (MVE), loaded with cellular components in donor cells, and secreted to the extracellular 
environment. Exosomes transfer proteins, nucleic acids, metabolites, and even organelles to recipient 
cells in both autocrinal and paracrinal manners. The uptake of exosomes is mediated by receptor 
activation, endocytosis, and membrane fusion. 

Figure 1. Schematic representation of exosomes. Exosomes are generated from multivesicular endosome
(MVE), loaded with cellular components in donor cells, and secreted to the extracellular environment.
Exosomes transfer proteins, nucleic acids, metabolites, and even organelles to recipient cells in both
autocrinal and paracrinal manners. The uptake of exosomes is mediated by receptor activation,
endocytosis, and membrane fusion.

In the next section, we describe the major exosomal cargo molecules (oligonucleotides, proteins,
lipids, etc.) that cause the activation of EMT-related signaling pathways (Figure 2).

2.1. Hippo Pathway

Numerous studies have shown that the Hippo tumor suppressor signaling pathway has a
crucial role in restricting organ size by inhibiting the oncogenic co-activators Yes-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) [18–20]. Upon inactivation of the
Hippo pathway, unphosphorylated YAP/TAZ translocates to the nucleus and bind to the TEA
Domain Transcription Factor (TEAD) transcription factor [21,22]. TEAD-mediated target gene
transcription increases the expression of mesenchymal markers such as Vimentin and N-cadherin,
while simultaneously inhibiting the expression of epithelial markers including E-cadherin [23–26].
Additionally, YAP interacts with EMT-induced transcription factors ZEB1, SNAIL, and SLUG, and
their complex promotes cancer stem cell (CSC) traits [27–29]. Several recent studies have revealed
that exosomes could induce EMT through modulation of the Hippo pathway. Exosomes from
mesenchymal-stem-cell-derived adipocytes promoted Hippo-mediated EMT in breast cancer cells,
while their principal cargo was not identified [30]. In hepatocellular carcinoma cells, exosomal miR-665
has been suggested to serve as a novel invasive biomarker [31]. A previously conducted mechanistic
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study showed that miR-665 directly suppressed tyrosine phosphatase receptor type B (PTPRB)
expression as well as Hippo-mediated EMT in tumor cells [32]. In addition to exosomal microRNAs,
chronic-myelogenous-leukemia-derived exosomal amphiregulin (AREG) activated Epidermal growth
factor receptor (EGFR) and SNAIL expression [33]. AREG has been reported to be involved in the
formation of a feedforward cycle of EGFR/TAZ/AREG and in the induction of EMT [34]. These
results suggest that exosomal miRNA and proteins targeting the Hippo pathway could induce EMT in
recipient cells.Cells 2019, 8, x FOR PEER REVIEW 4 of 22 

 
Figure 2. Comprehensive schematic diagram of signaling pathways related to exosome-induced EMT 
in cancer. The principal signaling pathways and transcription factors involved in exosome-mediated 
EMT induction are depicted. 
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Figure 2. Comprehensive schematic diagram of signaling pathways related to exosome-induced EMT
in cancer. The principal signaling pathways and transcription factors involved in exosome-mediated
EMT induction are depicted.

2.2. β-Catenin Signaling Pathway

The Wnt/β-catenin signaling pathway is one of the most widely studied of the pathways that
trigger EMT, and β-catenin is a key molecule involved in cancer-promoting pathways [35,36]. This
signaling pathway also activates several EMT-related transcription factors, such as SNAIL, SLUG,
and TWIST [37,38]. In studies about exosomes, Wnt/β-catenin signaling pathway is one of the most
common target pathways.

Exosomal miR-301a is secreted by hypoxic glioblastoma (GBM) cells and targets transcription
elongation factor A like 7 (TCEAL7), which, in turn, results in the activation of the Wnt/β-catenin
signaling pathway [39]. In a previous study, miR-301a was found to induce EMT in prostate cancer cells
through inhibition of p63, which caused the release of ZEB1/2 in a miRNA-mediated inhibition and
induction EMT [40]. Exosomal miR-1260b reportedly activates the Wnt/β-catenin signaling pathway in
lung adenocarcinoma cells [41]. miR-1260b was suggested to directly suppress suppressor of cytokine
singling 6 (SOCS6) expression and activate KIT proto-oncogene (KIT) signaling in non-small-cell
lung cancer (NSCLC) [42]. KIT signaling is known to induce EMT via the KIT-MEK-ERK pathways,
supporting the significant roles of miR-1260b [43]. In another study, it was reported that miR-92a
in fibroblast-derived exosomes activates the Wnt/β-catenin signaling pathway and induces EMT in
colorectal cancer cells [44]. Additionally, miR-92a induced EMT by regulating the PI3K/AKT signaling
pathway by targeting PTEN in NSCLC [45]. Similarly, exosomal delivery of miR-155 promoted EMT in
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breast cancer cells [46]. Although the underlying molecular mechanisms were not investigated in the
study, miR-155 has been suggested to be oncogenic and EMT-inducible [47–49]. In the context of EMT,
miR-155 activated the PI3K/SGK3/β-catenin signaling pathways through direct regulation of p85α
expression [50,51]. Lastly, overexpressed PRMT5 circular RNA (circPRMT5), secreted via exosomes
was found to promote EMT in recipient cells both in vivo and in vitro via sponging miR-30c [52,53].
Another similar study found that miR-30c targeted BCL9, a coactivator of the Wnt/β-catenin signaling
pathway [54]. In a similar study, circABCC1 present within colorectal-cancer-cell-derived exosomes
reportedly induced Wnt/β-catenin signaling activation in recipient cells, but the underlying molecular
mechanisms were not investigated [55].

In studies about exosome-mediated Wnt/β-catenin signaling pathway, many Wnt ligands
have been shown to be delivered via exosomes for biological function. Exosomal delivery of
Wnt1 induced migration of colorectal cancer cells through activation of Wnt signaling, which
was suppressed by inhibition of exosome production [56]. Wnt3a in fibroblast-derived exosomes
induced activation of Wnt signaling and the development of drug resistance in colorectal cancer
cells [57]. Wnt5a in exosomes from endothelial cells was biologically active and increased pericyte
recruitment [58]. Wnt10b delivered by exosomes from fibroblasts induced EMT in breast cancer
cells [59]. Fibroblast-derived exosomes promoted autocrine Wnt11a stimulation through formation
of the PCP complex that is essential for exosome-mediated EMT induction in cancer cells [60,61].
Hypoxic-colorectal-cancer-cell-derived exosomal Wnt4 activated the β-catenin signaling pathway in
endothelial cells, which contributed to colorectal cancer progression [62]. In large B-cell lymphoma,
exosome-mediated Wnt3a activated the Wnt signaling pathway and promoted the progression of
lymphoma cells [63]. Colorectal-cancer-cell-derived exosomes containing mutant β-catenin activated
Wnt signaling in recipient cells in an autocrine manner [64]. Macrophage-derived exosomes containing
Wnt5a activated the Wnt/β-catenin signaling pathway in breast cancer cells; this was further supported
by the fact that Wnt5a increased exosome production in melanoma cells [65,66]. Therefore, regulation
of Wnt ligands present in exosomes could serve as a promising therapeutic strategy to control EMT
induction in cancer cells.

Significant roles of exosome-derived proteins have also been reported in the context of
Wnt/β-catenin pathway activation. A recent study found that the EMT regulator SNAIL moves
directly to the exosomes. Exosomes released by cancer-associated fibroblasts (CAFs) transferred SNAIL
to lung cancer cells, and this SNAIL induced EMT in recipient lung cancer cells [67]. Deficiency of p53
specifically increased the expression of ubiquitin regulatory protein ligase E3 component N-recognin 2
(UBR2) in bone marrow mesenchymal stem cells as well as in its exosomes, activating Wnt signaling
and downstream gene expression in gastric cancer cells [68]. Recently, a large extracellular matrix
glycoprotein, Tenascin-C (TNC), was identified as an exosomal protein capable of inducing EMT.
TNC is transferred by autocrinal exosomes from pancreatic ductal adenocarcinoma cells, and was
found to promote EMT in the pancreatic ductal adenocarcinoma (PDAC) cell line via regulation
of the Wnt/β-catenin pathway [69]. In breast cancer cells, TNC induces EMT by activation of SRC
proto-oncogene tyrosine kinase (SRC) through phosphorylation at Y418 and through phosphorylation
of focal adhesion kinase (FAK) at SRC substrate sites Y861 and Y925 [70].

Analysis of the expression of SRY-Box transcription factor 2 (SOX2) overlapping transcript
(Sox2ot)—a long non-coding RNA (lncRNA)—derived from exosomes of highly invasive PDAC cells
in plasma samples revealed that the plasma exosomal Sox2ot expression was high and correlated with
TNM classification of malignant tumor stage and overall survival rate of PDAC patients. Further
research showed that Sox2ot promotes EMT and stem-cell-like properties by regulating Sox2 expression.
Sox2ot competitively binds to the miR-200 family to regulate the expression of Sox2, thus promoting
invasion and metastasis of PDAC [71]. Previously, Sox2 inhibits Wnt/β-catenin signaling pathway
through phosphorylation of β-catenin and glycogen synthase kinase 3 beta (GSK3β), leading to
inhibition of the downstream gene expression [72]. The transfer and expression of long intergenic
non-coding RNA regulator of reprogramming (linc-ROR) by CSC exosomes is responsible for the
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induction of EMT and the significant increase in the invasive potential of normal thyroid cells. Exosomal
transfer of linc-ROR, a long non-coding RNA, was reported to induce EMT through the formation of
a distant metastatic niche [73]. The significant role of linc-ROR through the Wnt/β-catenin pathway
has been previously suggested in various types of cancers [74,75]. Furthermore, linc-ROR sponged
miR-205 and increased the stability of the EMT inducer, ZEB2 [74]. These studies suggest that exosomal
delivery of lncRNA may cause EMT induction.

2.3. ERK Pathway

miR-21 shows features of an oncogenic miRNA by targeting many tumor suppressor genes related
to cell proliferation, apoptosis, and invasion in multiple histological cancer types, including OSCC.
Hypoxia enhanced miR-21 levels in both OSCC cells and OSCC-derived exosomes. This induction
of miR-21 by hypoxia was directly regulated by HIF-1a and HIF-2a in OSCC cells [76]. Additionally,
inhibition of miR-21 reversed EMT and CSC phenotype, accompanied by phosphatase and tensin
homolog (PTEN) upregulation and AKT/extracellular Signal Regulated Kinase (ERK)1/2 inactivation.
Interestingly, downregulation of PTEN by siPTEN suppressed the effects of miR-21 antagomir on EMT
and CSC phenotype, confirming that PTEN is a target of miR-21 during reversal of EMT and CSC
phenotype in breast cancer cells [77].

Studies on liver cancer suggest that controlling exosome production and secretion could regulate
exosomal EMT induction. Rab27a, a small GTPase, is required for efficient secretion of exosomes via
mediation of multivesicular endosome docking at the plasma membrane [78]. In HLE (hepatoma cell
line), the MAPK/ERK-mediated EMT was induced by MHCC97H hepatoma-cell-derived exosomes,
and Rab27a knockdown reduced exosome secretion as well as EMT induction. Exosomes released
by gastric cancer cells enhanced tumor proliferation by activating the MAPK/ERK pathway [79]. A
similar result was obtained in a study that demonstrated that exosomes from hepatocellular carcinoma
(HCC) cells increased ERK activity in normal hepatocytes [80].

An exosomal lncRNA, HOTAIR (Hox antisense intergenic RNA), was found to be highly expressed
in bladder cancer patients and induced the invasiveness of the tumor through induction of EMT [81–84].
HOTAIR bound to miR-29b and rescued expression of DNMT3b, leading to PTEN expression, activation
of the ERK and AKT signaling, and activation of EMT signaling pathway [85].

3. Therapeutic Candidates for Preventing Exosomal EMT Induction

Based on the roles of exosomes with respect to transferring bioactive molecules from donor cells to
recipient cells, some investigators noticed that delivery of tumor-suppressive molecules via exosomes
may regulate tumor progression. This was in accordance with some reports suggesting the significant
involvement of exosomal delivery of nucleic acids in the inhibition of EMT in tumor cells, and their
potential for therapeutic application. In this section, we summarize promising exosomal contents that
prevent EMT in recipient tumor cells and their molecular relevance, based on previous studies.

In a study performed using cholangiocarcinoma cells, it was confirmed that exosome-encapsulated
miR-30e delivery could suppress EMT in tumor cells through inhibition of SNAIL expression [86].
miR-30e has been widely studied and suggested to be a tumor suppressive miRNA that regulates tumor
growth, invasion, and metastasis [87,88]. In the context of EMT induction, miR-30e is an important
EMT inhibitor that works by targeting ITGB1, TUSC3, USP22, and SOX9 mRNAs, which reportedly
induce EMT by activating transcription factors including SNAIL, SLUG, TWIST, and ZEB1/2 [89–92].
The preclinical significance of miR-30e treatment for EMT regulation was validated in tumor xenograft
models, making exosomal miR-30e delivery a promising therapeutic strategy.

Recently, the EMT-suppressive effects of exosomal miR-26a were demonstrated in prostate cancer
cells [93]. Although specific molecular events governed by miR-26 were not fully described, miR-26a
was reportedly downregulated in tumor tissues and prevented EMT through direct inhibition of
connective tissue growth factor (CTGF), rho-associated, coiled-coil-containing protein kinase 1 (ROCK1),
enhancer of zeste homolog 2 (EZH2), and Jagged-1, which led to inactivation of the Jagged-1/Notch and
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TGFβ1/SMAD pathways [94–98]. Among the target genes, CTGF and ROCK1 indicated the involvement
of miR-26a in YAP/TAZ signaling and further emphasized the importance of the miRNA [99].

miR-34a was supposed to be one of the foremost tumor-suppressive miRNAs, and the molecular
mechanisms underlying its function were extensively studied [100]. A study on fibroblast-derived
exosomes revealed that the level of miR-34a was significantly reduced in exosomes from CAFs, and
that overexpression of miR-34a through exosomal transfer could suppress EMT in oral squamous
cancer cells [101]. As miR-34a also reportedly targets signal transducer and activator of transcription 3
(STAT3), lymphoid Enhancer Binding Factor 1 (LEF1), ZEB1, and SNAIL, direct regulation of EMT
could be achieved by treatment with miR-34a [102–105].

Exosomal miR-34c, a functionally similar family member of miR-34a, was reported to inhibit
EMT by targeting β-catenin in nasopharyngeal cancer cells. Tumor-suppressive miR-34c was often
downregulated in various types of tumor cells and regulated EMT through direct binding with
SOX9, SATB2, MAP3K2, and DANCR mRNA [106–110]. The clinical prospects of miR-34c were
substantiated by a study which showed that miR-34c inhibited exosome shedding by directly
targeting RAB27B, thereby terminating the vicious cycle of oncogenic exosome-mediated intercellular
communication [111].

A recent study about exosomes from bone-marrow-derived mesenchymal stem cells found that
exosomal miR-101 inhibited EMT in oral cancer cells [112]. Although the molecular mechanisms were
only elucidated to regulate COL10A1 expression, miR-101 reportedly played a role in EMT inhibition
through direct inhibition of ZEB1/2, SOX9, TRIM44, ROCK2, and DUSP1, which supports its functional
relevance [113–117].

Exosomes from miR-143 overexpressing bone-marrow-derived mesenchymal stem cells
suppressed EMT in prostate cancer cells by directly targeting TFF3 mRNA [118]. Although not
much is known about the role of TFF3 in EMT regulation, its significant correlation with TWIST1
has been reported in colorectal cancer [119]. The relationship between miR-143/TFF/EMT was also
supported by previous studies which showed that miR-143 directly targets MYO6, HMB1, ERK5,
Activin A, and LAMP3 mRNA, and eventually inactivates TWIST1, SNAIL, and SLUG [120–124].

Although the roles of miR-148b in regulation of tumor repression have been widely studied, only
a few studies suggested ROCK1 and BRG1 as molecular targets related to EMT regulation [125,126].
Nevertheless, two studies have suggested that miR-148b in exosomes derived from mesenchymal stem
cells and fibroblasts suppress EMT in recipient tumor cells [127,128]. Further studies are warranted to
elucidate the molecular mechanisms underlying the function of exosomal miR-148b in EMT regulation.

In a previous study, exosomal miR-200 family reduced the invasiveness of colon cancer through
inhibition of ZEB1 and SLUG [129]. With respect to the molecular mechanisms, the miR-200 family
is known to be significantly involved in the induction of EMT via targeting of ZEB1, NANOG, and
FOXF2 mRNA [130–132]. Among them, the effects of ZEB1 expression were clearly evident in a
couple of studies. However, another study reported that extracellular vesicles containing miR-200
promoted cancer metastasis in xenograft mouse models [133]. As the EMT-suppressive roles of miR-200
have been studied widely, further studies could clarify the precise roles of the exosomal miR-200 in
EMT regulation.

The application of EMT-suppressive miR-375 was ascertained in a study that found that treatment
with Emblica officinalis extracts causes exosomal miR-375 to increasingly target SNAIL and inhibit
invasiveness of ovarian cancer [134]. Similarly, exosomal miR-375 suppressed EMT in glioblastoma
cells through direct targeting of SLC31A1 mRNA [135]. miR-375 is often downregulated in various
types of cancers and shows tumor-suppressive effects by directly targeting various oncogenes at the
mRNA level [136]. With respect to EMT induction, the regulation of YAP1 expression by direct binding
of miR-375 was controlled by ZEB1 in prostate cancer, thereby forming a feedforward cycle [137].
Additionally, miR-375 inhibited the expression of 14-3-3ζ, which led to inhibition of the Wnt/β-catenin
signaling pathway and EMT in gastric cancer [138]. These studies demonstrated the significant
involvement of miR-375 in regulation of EMT in cancer cells.
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These studies cumulatively proved that miRNAs previously known to regulate EMT also showed
the same effects upon exosomal delivery, the exosomes being obtained from mesenchymal stem
cells with transfection of the desired miRNAs. It can be theorized that a universal recipe for
exosomal encapsulation of miRNAs may be developed, wherein these constructs serve as adjuvants
for anti-cancer therapy based on these investigations. Although many studies have established the
preclinical significance of co-treatment of miRNAs with anti-cancer therapies including chemotherapy
and radiotherapy, the therapeutic effects of combining multiple miRNAs have not been widely
investigated. For better therapeutic significance, a combination of several miRNAs mentioned above
could be formulated to achieve synergistic effects on the regulation of tumor EMT and progression in
future studies.

4. Clinical Application

To date, many studies have been conducted to understand the biological functions of exosomes,
and some have identified clinical utility. Most clinical studies have used exosomes as biomarkers
for diagnosis or prognosis of disorders including cancers. In the same context, exosomes containing
EMT inducers have been utilized for prediction of metastatic prognosis of cancers in clinical
trials. For example, profiling exosomal RNA in primary high-grade osteosarcoma metastasizing
to the lung could provide diagnostic and prognostic biomarkers [139] (NCT03108677). In addition,
one investigation analyzed circulating exosomes and miRNAs in cancer patients to predict the
possibility of bone metastasis [140] (NCT03895216). Additionally, exosomes were recently utilized as a
treatment. A vaccination of tumor antigen was mediated by dendritic-cell-derived exosomes [141]
(NCT01159288), and a transfer of curcumin to normal and cancerous colon cells was mediated by
plant exosomes [142] (NCT01294072). In clinical trials with pancreatic cancer patients, attempts were
made to target the mutant form of the GTPase KRAS (KRASG12D) by transfer of siRNA mediated by
mesenchymal-stromal-cell-derived exosomes (iExosomes) [143,144] (NCT03608631). Although there
have not been many clinical investigations performed to date, we present in this section studies that
confirmed therapeutic effects and show a marked potential for clinical applications.

As described above, miRNAs and proteins delivered via exosomes have exhibited potential as
EMT regulators in a variety of cancers. As most studies were performed using cell models, data
regarding studies performed on in vivo models are insufficient. There are two representative types of
therapeutic strategy for inhibiting exosome-induced EMT. One is the transfer of tumor-suppressive
factors through exosomes, and the other is the inhibition of EV production. This section discusses
previous studies covering the in vivo effects of exosomes in regulating EMT in tumors.

There have been many attempts to incorporate various compounds into exosome therapy.
Exosomes from the plasma of head and neck squamous cell carcinoma (HNSCC) patients treated with
photodynamic therapy (PDT) downregulated the expression of SLUG and ZEB1 [145]. Studies on
cancer EMT revealed that transcriptional activation of ZEB1 by SLUG promoted EMT progression that
decreased adhesion and increased migration of cancer cells [146]. Exosomes from patient plasma could
be used for management of EMT as part of a novel therapeutic approach. In a previous study, exosomes
packed with an miR-21-sponge were successfully employed in a GBM rat model, suggesting that this
construct could have EMT-inhibitory effects [147]. miR-21 targets several EMT pathway-related genes,
such as PDCD4, TIMP3, and RECK [148]. This strategy of inhibition using exosomes containing an
miR-21-sponge construct has therapeutic potential for blocking GBM and GBM-induced EMT. Another
study suggested that suppressing miR-21 also enhanced the therapeutic effects of sunitinib-based
chemotherapy [149].

Another approach is therapy based on the use of exosomes that repress tumor metastasis by
targeting EMT inducers. The findings of studies on this therapy have been difficult to apply in
clinical trials, but these studies might contribute toward developing a therapeutic strategy against
cancer-induced EMT.
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In a study on mouse- or rat-derived exosomes, artificial exosomes loaded with miRNAs targeting
Claudin 7 and EpCAM through electroporation were intravenously injected, resulting in significant
inhibition of cancer EMT and metastasis [150]. Claudin 7 promotes EMT in human colorectal cancer
and is required for EpCAM expression [151]. For therapeutic applications, the use of exosomes has
beneficial effects in the management of EMT. In a recent study, EVs obtained from bone marrow
mesenchymal stem cells overexpressing miR-200b prevented EMT by targeting ZEB1 and ZEB2 mRNA.
Although the therapeutic target was not cancer cells, the result suggested a significant role of miR-200b
in clinical applications for regulation of EMT [152].

Another study demonstrated that the tumor suppressive miR-335 could be produced in B cells by
plasmid DNA induction (iEVs) which is suggested a new therapeutic method utilizing exosomes and
showed anticancer effects. miR-335 has been reported to inhibit tumor re-initiation, and is known to be
widely silenced in genetic and epigenetic manners during tumorigenesis. Induced exosomal miR-355
can overcome this limitation. One of the targets of miR-335 is SOX4, a transcription factor involved in
embryonic development, cell fate determination, and EMT [153].

Although there have been few clinical attempts to inhibit exosome production in order to regulate
the cancer EMT, there has been a report supporting its anti-tumorigenic roles. A study prevented EV
production using cetuximab, a monoclonal antibody targeting EGFR, and was successful in reducing
the production of EMT-inducing exosomes from oral cancer cells [154].

In addition to the two major therapeutic strategies described above, some studies have suggested
new approaches that need to be improved for their clinical application. One group posited
exosomes or exosome-like platforms for anticancer drug delivery. Exosomes derived from brain
endothelial cells overexpressing CD63 tetraspanin transmembrane proteins successfully penetrated the
blood-brain barrier (BBB) and delivered containing anticancer drugs in the zebrafish brain cancer model.
Exosome-delivered drugs significantly decreased the growth of xenografted cancer cells [155]. Another
group devised exosome-mimetic nanosystems (EMNs) that simulated natural tumor-derived exosomes
with respect to their structure and functionality, but with a controlled composition, for targeted delivery
of therapeutic oligonucleotides to lung adenocarcinoma cells. These EMNs delivered miRNA-145 to
lung adenocarcinoma cells [156]. These studies offer new strategies for the delivery of anti-cancer,
anti-EMT drugs, and therapeutic oligonucleotides via artificially exosomes or exosome mimics. Further
research could open avenues to new anticancer therapies by delivering drugs and miRNAs that are
effective against a variety of cancers or a variety of tumorigenic processes, including EMT.

5. Conclusions

In this review, we summarized the major exosomal molecules that induce EMT and their underlying
molecular mechanisms (Figure 3, Table 1). Previously known EMT-related signaling pathways are
involved in exosome-induced EMT, miRNAs being the important mediators. Furthermore, we reviewed
studies on therapeutic candidates that can be delivered via exosomes and their clinical applications
as anti-cancer therapies. Although there is more to be discovered about the roles of exosomes, it is
undeniable that exosomes play a critical role in the regulation of EMT in recipient tumor cells. This
research review should be helpful in providing a deeper understanding of exosome-induced EMT, and
could also guide researchers pursuing novel investigations in this area.
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Table 1. The contents of exosomes and their mechanisms leading to EMT in cancer.

Name Cancer Type Target Signaling Pathway Reference

miRNA

miR-665 Hepatocellular carcinoma PTPRB Hippo pathway [23,24]

miR-34c Nasopharyngeal carcinoma β-catenin, SOX9, SATB2, MAP3K2, DANCR, RAB27B

Wnt/β-catenin pathway

[92–97]

miR-301a GBM TCEAL7, p63, ZEB1, ZEB2, E-cadherin [31,32]

miR-92a Colorectal cancer FBXW7, MOAP1 [36]

miR-155 Breast cancer FOXO3a, SGK3, p85a [38–43]

miR-30c Esophageal cancer circPRMT5, BCL9 [44–46]

miR-1260b Lung adenocarcinoma SOCS6, YY1 [33]

miR-375 Gastric cancer 14-3-3ζ, YAP, SNAI1, SLC31A1 [120–124]

miR-34a OSCC STAT3, LEF1, ZEB1, SNAI1 NOTCH signaling pathway [87–91]

miR-1260b NSCLC KIT, MEK, ERK ERK pathway [34,35]

miR-21 OSCC HIF-1a, HIF-2a, PTEN [64]

miR-92a NSCLC PTEN, PI3K, AKT PI3K/AKT pathway [37]

Protein

AREG Chronic myelogenous leukemia EGFR, SNAI1, YAP/TAZ Hippo pathway [25,26]

linc-ROR Breast cancer miRNP, miR-205, ZEB2

Wnt/β-catenin pathway

[69]

Cir-ABCC1 Colorectal cancer Unclear [47]

UBR2 Gastric cancer p53 [60]

TNC PDAC E-cadherin, CD44, MMP-7, MET [61]

TNC Breast cancer p-Y418, p-FAK, SRC [62]

Wnt1 Colorectal cancer TCF/LEF [48]

Wnt3a Colorectal cancer TCF/LEF [49]

Wnt4 Colorectal cancer HIF1α [54]

Wnt5a Breast cancer p38 [50,57,58]

Wnt10b Breast cancer p85a [51]

Wnt11a Breast cancer PCP [52,53]

HOTAIR Bladder cancer PTEN, miR-29b, DNMT3b MAPK/ERK pathway [81–85]

Cbl Liver cancerGastric cancer Rab27a, AKT [65–67]

lncRNA-Sox2ot PDAC Sox2ot, miR-200 Sox2ot pathway [68]
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Abbreviations

ABCC1 ATP binding cassette subfamily C member 1
AKT protein kinase B
AREG amphiregulin
BCL9 B-cell CLL/lymphoma 9 protein
BRG1 brahma-related gene 1
CAF cancer associated fibroblast
COL10A1 collagen type X alpha 1 chain
CSC cancer stem cell
CTGF connective tissue growth factor
DANCR differentiation antagonizing non-protein coding RNA
DUSP1 dual specificity protein phosphatase 1
EGF epidermal growth factor
EGFR epidermal growth factor receptor
EMN exosome-mimetic nanosystem
EMT epithelial-mesenchymal-transition
EpCAM epithelial cell adhesion molecule
ERK extracellular signal regulated kinase
EV extracellular vesicle
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EZH2 enhancer of zeste homolog 2
FAK focal adhesion kinase
FBXW7 F-Box and WD repeat domain containing 7
FGF fibroblast growth factor
FOXF2 forkhead box F2
FOXO3a forkhead box O3
GBM glioblastoma multiform
HCC hepatocellular carcinoma
HGF hepatocyte growth factor
HIF-1α hypoxia-inducible factor 1-alpha
HLE human lens epithelial cell
HMB1 high mobility group box 1
HNSCC head and neck squamous cell carcinoma
ITGB1 integrin subunit beta 1
KIT KIT proto-oncogene
LAMP3 lysosome-associated membrane protein 3
LEF1 lymphoid enhancer-binding factor 1
MAP3K2 mitogen-activated protein kinase kinase kinase 2
MAPK mitogen-activated protein kinase
MEK MAP kinase-ERK kinase
MOAP1 modulator of apoptosis 1
MYO6 myosine 6
NSCLC non-small-cell lung carcinoma
OSCC oral squamous cell carcinoma
PCP planar cell polarity
PDAC pancreatic ductal adenocarcinoma
PDCD4 programmed cell death protein 4
PDT photodynamic therapy
PI3K phosphoinositide 3-kinase
PRMT5 protein arginine methyltransferase 5
PTEN phosphatase and tensin homolog
PTPRB protein tyrosine phosphatase receptor type B
RAB27B RAB27B, member RAS oncogene family
RECK reversion-inducing-cysteine-rich protein with kazal motifs
ROCK1 rho-associated, coiled-coil-containing protein kinase 1
ROR RNA regulator of reprogramming
SATB2 special AT-rich sequence-binding protein 2
SGK3 serum and glucocorticoid kinase 3
SLAI1 snail family transcriptional repressor 1
SLC31A1 solute carrier family 31 member 1
SOCS6 suppressor of cytokine signaling 6
Sox2ot SOX2 overlapping transcript
SOX9 SRY-Box transcription factor 9
SRC SRC proto-oncogene tyrosine kinase
STAT3 signal transducer and activator of transcription 3
TAZ transcriptional coactivator with PDZ-binding motif
TCEAL7 transcription elongation factor A like 7
TEAD transcriptional enhanced associate domain
TFF3 trefoil factor 3
TGF-β transforming growth factor β
TIMP3 metalloproteinase inhibitor 3
TNC tenascin C
TRIM44 tripartite motif-containing protein 44
TUSC3 tumor suppressor candidate 3
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UBR2 ubiquitin regulatory protein ligase E3 component n-recognin 2
USP22 ubiquitin specific peptidase 22
YAP yes-associated protein
YY1 YY1 transcription factor
ZEB1/2 zinc finger E-box binding homeobox 1
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