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Abstract

Alzheimer’s disease (AD) is the most common age-related, progressive neurodegenerative disease. It is
characterized by memory loss and cognitive decline and responsible for most cases of dementia in the el-
derly. Late-onset or sporadic AD accounts for > 95% of cases, with age at onset > 65 years. Currently there
are no drugs or other therapeutic agents available to prevent or delay the progression of AD. The cellular
and molecular changes occurring in the brains of individuals with AD include accumulation of f-amyloid
peptide and hyperphosphorylated tau protein, decrease of acetylcholine neurotransmitter, inflammation,
and oxidative stress. Aggregation of f-amyloid peptide in extracellular plaques and the hyperphosphor-
ylated tau protein in intracellular neurofibrillary tangles are characteristic of AD. A major challenge is
identifying molecular biomarkers of the early-stage AD in patients as most studies have been performed
with blood or brain tissue samples (postmortem) at late-stage AD. Subjects with mild cognitive impair-
ment almost always have the neuropathologic features of AD with about 50% of mild cognitive impairment
patients progressing to AD. They could provide important information about AD pathomechanism and
potentially also highlight minimally or noninvasive, easy-to-access biomarkers. MicroRNAs are dysregu-
lated in AD, and may facilitate the early detection of the disease and potentially the continual monitoring
of disease progression and allow therapeutic interventions to be evaluated. Four recent reviews have been
published of microRNAs in AD, each of which identified areas of weakness or limitations in the reported
studies. Importantly, studies in the last three years have shown considerable progress in overcoming some
of these limitations and identifying specific microRNAs as biomarkers for AD and mild cognitive impair-
ment. Further large-scale human studies are warranted with less disparity in the study populations, and
using an appropriate method to validate the findings.
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Introduction

Alzheimer’s disease (AD) is the most common age-related,
progressive neurodegenerative disease. It is characterized by
memory loss and cognitive decline and accounts for most
cases of dementia in the elderly. Currently more than 35
million people globally have AD and it is forecast to affect
1% of all people worldwide by 2050 (Brookmeyer et al., 2007;
Querfurth and LaFerla, 2010; Thies and Bleiler, 2011). AD pa-
tients have been diagnosed as probable AD based on clinical
examination, magnetic resonance imaging, positron emission
tomography, cerebrospinal fluid (CSF) assays, and neuro-
psychological testing which includes cognitive performance
(McKhann et al., 1984; McKhann et al., 2011). There are two
major forms of AD, early-onset (familial) and late-onset
(sporadic). Early-onset AD is rare, whereas late-onset AD ac-
counts for > 95% of cases (Bali et al., 2012). Late-onset AD is
defined as AD with age at onset > 65 years, while early-onset
AD is AD with age at onset from 30 years to 65 years (Piac-
eri et al., 2013). Etiology involves a combination of genetic
(70%) and environmental factors (30%) (Dorszewska et al.,
2016). Many genes have been shown to be involved in the de-
velopment of late-onset AD including ABCA7, APOE, BINI
(Barber, 2012). At present there are no drugs or other ther-
apeutic agents available to prevent or delay the progression
of AD. No biomarkers have yet been confirmed for the early
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detection of AD before the onset of irreversible neurological
damage (Reddy et al., 2017). Multiple cellular and molecular
changes occur in the brains of individuals with AD. These
include neuronal and synaptic loss, mitochondrial damage,
production and accumulation of B-amyloid peptide (Ap) and
hyperphosphorylated tau protein, decrease of acetylcholine
neurotransmitter, inflammation, and oxidative stress. Aggre-
gation of AP peptide in extracellular plaques and the hyper-
phosphorylated tau protein in intracellular neurofibrillary
tangles (NFTs) are characteristic of AD (Serrano-Pozo et al.,
2011). MicroRNAs are small noncoding RNAs (~22 nucle-
otides) and involved in each of the cellular changes in AD.
They act by binding to the 3"-untranslated region (3'-UTR) of
their target mRNAs and interfere with gene regulation and
translation, and cause mRNA destabilization or degradation
(Guo et al,, 2010; Reddy et al,, 2017). They have been detected
in blood, CSF, saliva and urine, and also in blood cells such
as mononuclear cells and erythrocytes.

A major challenge is identifying molecular biomarkers
characteristic of the early-stage AD in patients as most stud-
ies have been performed with blood or brain tissue samples
(postmortem) at late-stage AD. Towards this end, subjects
with mild cognitive impairment (MCI) almost always have
the neuropathologic features of AD (Morris et al., 2001;
Morris and Cummings, 2005; Garcia-Ptacek et al., 2016)
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and could provide important information. About 50% of
MCI patients progress to AD (Sewell et al., 2010). Also the
clinical-epidemiological relationship between AD and major
depressive disorder (MDD) suggests they might have com-
mon neurobiological abnormalities (Rodrigues et al., 2014;
Mendes-Silva et al., 2016). The pattern of microRNA regula-
tion in each disorder could help with elucidating AD path-
omechanism and also elucidate minimally or noninvasive,
easy-to-access biomarkers.

The currently available biomarkers of AD are detected ei-
ther by CSF analysis of AP and tau protein levels (Mattsson et
al., 2009), brain imaging using positron emission tomography
to detect AP deposits (Vlassenko et al., 2012), or postmortem
gross specimen analysis and histology of brain sections (Braak
et al., 2006). All of these are expensive, invasive, require
skilled expertise to perform and interpret, or time-consuming
(Lusardi et al., 2017), and only available in a small number
of cases. The CSF levels of AP42 isoform and tau protein and
particularly the ratio of tau/AP42 and phospho-tau/Ap42 are
useful for predicting the risk of progressing from MClI/very
mild dementia to AD (Holzman, 2011; Fagan and Perrin,
2012) and have been used to identify MCI patients diagnosed
with probable early AD (Najaraj et al., 2017). However, blood
contamination occurs in up to 20% of CSF samples collected
by lumbar puncture (Aasebo et al., 2014) and may be a con-
founding factor affecting AP42 levels (Bjerke et al., 2010).
Also CSF collection by lumbar puncture may not be easily
accomplished in elderly patients due to lumbar disc degener-
ation with narrowing of the intervertebral spaces.

Increasing evidence suggests that microRNAs are dysreg-
ulated in neurodegenerative diseases such as AD, Parkin-
son’s disease, and stroke. Circulating microRNAs within
blood may be characterized and used as minimally invasive

diagnostic biomarkers. They may facilitate the early detec-
tion of the disease and potentially the continual monitoring
of disease progression and allow therapeutic interventions
to be evaluated. Four recent reviews have been published
on studies of microRNAs in AD. They were by Batistela et al.
(2017), Mendez-Silva et al. (2016), Van Giau and An (2016),
Wu et al. (2016) and, where reported, included studies up to
June 2015 and September 2015. Each of the reviews identified
areas of weakness or limitations in the reported studies (Table
1) and the findings were often conflicting. The limitations in-
cluded small size and heterogeneity of study populations, no
postmortem confirmation of AD diagnosis or assay of other
biomarkers, variations in analytical methods and platforms
used and validation of findings, different methods of normal-
ization, statistical testing and data processing, selection of
cognitively normal controls (NC) and no confirmation that
they did not develop clinical cognitive impairment. Also Ren
et al. (2016) indicated that in many of the previous studies on
microRNAs in brain, CSF, and blood from AD patients, most
samples were from patients being treated with acetylcholin-
esterase inhibitor, which could have a confounding effect on
analysis, rather than de novo drug-naive patients. Interesting-
ly, differential correlation analysis using paired microRNAs
detected different and more sensitive plasma microRNA bio-
markers for MCI than were found by single molecule analysis
using a t-test (Kayano et al., 2016). Plasma paired microRNA
sets were shown to have high sensitivity and specificity for
differentiating MCI from age-matched control, and also dif-
ferentiated AD from age-matched control. In addition, the
paired microRNA sets detected MCI in 7 of 10 elderly pa-
tients at asymptomatic stage 0.5-5 years preceding the clinical
diagnosis (Sheinerman et al., 2012).

There is range of disease states from mild dementia to se-

Table 1 Limitations of previous studies of microRNAs in Alzheimer’s disease (AD) as indicated in four recent reviews

Limitation

Batistela et al. Mendez-Silva et al. Van Giau and An  Wu et al.
(2017) (2016) (2016) (2016)

A lack of reproducibility of findings can be attributable to many variables such as ¥ V V v

the size and homogeneity of study population, including age, sex, ethnicity, and
the stage of disease; selection of adequate controls; analytical methods i.e., next
generation sequencing (NGS), microarray or real-time quantitative polymerase
chain reaction (RT-qPCR); different methods of normalization; statistical testing
and data processing

There are few studies profiling microRNAs in more than one neurodegenerative v

disease

MicroRNAs and results need to be validated in large independent longitidinal
studies including subjects acroos the lifespsan trajectory with a comprehensive
cognitive assessment to ascertain the development of AD or other
neurodegenerative diseases

Studies evaluated young and middle-aged adults limiting the generalization of
findings to older adults

There is no current active clinical trial on microRNA-based therapeutics in AD
Whether microRNAs can be used in AD diagnosis alone or in combination with
other AD biomarkers (amyloid and tau, AB42) warrants further investigation
The studies in the review had no postmortem confirmation of diagnosis,
therefore cannot confidently ascertain if changes in microRNA expression were
due to AD pathology

No follow-up was performed to ensure the cognitively normal controls did not
develop clinical cognitive impairment

v indicates that the parameter was mentioned as a limitation in the review article. AB: p-Amyloid peptide.
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vere impairment within AD patients. The extent of cognitive
decline is commonly estimated by the Mini-Mental State
Examination (MMSE) and scores range from 0-30. Prob-
able AD patients can be classified as having mild (MMSE
scores 21-24), moderate (MMSE scores 10-20), or severe
dementia (MMSE scores 0-9), while normal subjects have
MMSE scores 25-30 (Galasko, 1998). The MMSE does not
have sufficient sensitivity to detect cognitive decline at the
MCI stage (MMSE mean score 27.0, reported by Nasreddine
et al., 2005), and other cognitive assessment examinations
have to be used. In the Montreal Cognitive Assessment
(MoCA) examination, scores range from 0-30 and a score
of > 27 is considered normal. In a study by Nasreddine et
al. (2005) normal subjects had a mean MoCA score of 27.4,
MCI individuals a mean MoCA score 22.1 (range 17-23),
and probable AD patients a mean MoCA score 16.2 (range
0-24). Identifying biomarkers capable of distinguishing
MCI from the normal elderly and probable AD cases, as well
the transition between the stages of mild, moderate, and
severe cognitive impairment in AD, is an important need in
indicating dysregulated signaling pathways and suggesting
possible potential treatment strategies.

The goal is to identify microRNA biomarkers of high sensi-
tivity and specificity in early-stage AD, and paired microRNA
analysis or using a panel of microRNAs may be an important
method to accomplish this. We have performed a PubMed
literature search of articles published in the period January
2016—June 2018 on microRNAs in AD and also MCI when
included as prodomal or early-stage AD. This is to provide
further information on microRNA dysregulation in AD and
to assess whether the weaknesses or limitations identified in
previous studies have been taken into account or overcome.

Braak NFT staging of AD pathology

Histomicroscopic evaluation of AD-related pathology is
based on the deposition of hyperphosphorylated tau pro-
tein within select neuronal types in specific nuclei or areas.
The staging of AD-related neurofibrillary pathology using
silver-stained sections 100 pum thickness has been described
(Braak and Braak, 1991). A more recent description em-
ploys sections 5-15 pm thickness and immunostained for
hyperphosphorylated tau protein with monoclonal antibody
ATS8 (Braak et al., 2006). Six stages can be recognized in the
progression of AD and they are usually grouped under stag-
es I-I1I, ITII-IV, V-VI with the major characteristics being
as follows. In stage I, lesions develop in the transentorhinal
region. Subcortical nuclei (viz. locus coeruleus, magnocel-
lular nuclei of the basal forebrain) occasionally exhibit the
earliest changes in the absence of cortical involvement. The
transentorhinal region is the first site in the cerebral cortex
to be involved. The entorhinal region proper is not or mini-
mally involved. In stage II, lesions extend into the entorhinal
region, while in stage III, lesions extend from the transen-
torhinal region to the neocortex of the fusiform and lingual
gyri and then diminish markedy beyond this region. In stage
IV, lesions progress more widely into neocortical associa-
tion areas. Stage V is characterized by lesions appearing in
previously uninvolved areas and extending widely into the
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first temporal convolution, and into high order association
areas of frontal, parietal, and occipital neocortex (peristriate
region). For stage VI, lesions reach the secondary and pri-
mary neocortical areas and extend into the striate region of
the occipital lobe.

MicroRNAs in AD and MCI
A total of nineteen research articles were found in the
PubMed search of which two had used blood, one PBMNSs,
four serum, four plasma, five CSF, two brain tissue, and one
olfactory mucosa samples (Table 2). While most had used a
validation method, which was usually real-time quantitative
polymerase chain reaction (RT-qPCR), there were several
studies where this was not performed. This is especially im-
portant as in many cases the validation findings were not in
complete agrement with the screening results. Also when
reported, all the studies had included both male and female
subjects for AD, MCI and NC, but often there was a dis-
parity in the proportions of the two genders in the different
groups and also in their mean ages. In nearly all the studies
there was no follow-up of MCI and NC individuals. More-
over, while several of the studies had involved quite large co-
horts of AD and NC patients, the majority were performed
with much smaller cohorts. Only a few studies had reported
on ethnicity or medications being used by the patients. In-
clusion and exclusion criteria were not reported in many of
the studies. These are all important limitations as identified
in the earlier reviews (Table 1) and many of these constitute
confounding factors. Not all of the studies had used receiver
operating characteristics (ROC) analysis with area under
curve (AUC) values to establish which microRNAs are good
or fair tests to distinguish AD from NC or MCI from NC
patients.

The imporant findings from the research articles in the
PubMed search are summarized as follows.

Blood samples

Chang et al. (2017) employed integrated analysis of microar-
ray datasets of blood of AD and NC subjects and identified
differentially expressed genes in AD that were regulated by
miR-26b-5p, -103a-3p, -107, -26a-5p. However, using bloods
from 3 AD and 3 NC patients, the upregulated expression of
miR-26b-5p and miR-26a-5p by RT-qPCR was inconsistent
with the integrated analysis results. In a study with large-sized
groups, Keller et al. (2016) combined a screening/discovery
set (USA) and a next-generation sequencing (NGS) validation
study set (Germany, with 49 AD and 55 NC) to show upreg-
ulated expression of miR-151a-3p and downregulated ex-
pression of miR-17-3p for AD compared with NC subjects.
ROC analysis indicated miR-151a-3p was a fair test to dis-
tinguish AD from NC (AUC 0.74). A marked upregulation
of microRNAs was found for AD compared with MCI with
miR-30c-5p having the lowest P value. This study had included
AP42, t-tau and p-tau markers to aid confirmation of AD.

PBMN samples
By qPCR validation, Ren et al. (2016) showed miR-339 and
miR-425 were upregulated and miR-639 was downregulated
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in AD PBMNs compared with NC PBMNs. ROC indicated
miR-339 as a fair test to distinguish AD PBMNs from NC
PBMNs (AUC 0.768), and miR-425 to be a good test to distin-
guish AD PBMNs from NC PBMNs (AUC 0.868). MiR-639
was a poor test to distinguish AD PBMNs from NC PBMNs
(AUC 0.287). The B-amyloid precursor protein p-secretase
BACEI might be a target of miR-339 and miR-425.

Blood serum

Wu et al. (2017) using RT-qPCR validation with serum
samples from 65 AD and 50 NC patients showed that ex-
pression levels of miR-146a-5p, -106b-3p, -195-5p, -20b-
5p, -497-5p were higher, while those of miR-125b-3p, -29c¢-
3p, -93-5p, -19b-3p were lower in AD than in NC subjects.
Computational analysis predicted that 3’-UTR of STAT 3
mRNA was a target of both miR-29¢-3p and miR-19b-3p.
A large-scale study by Jia et al. (2016) with serum from 84
AD and 62 NC individuals used PCR screening to show a
significant decrease in miR-29, -125b, -223 and an increase
in miR-519 in AD compared with NC. Serum miR-223
was positively correlated with MMSE scores and might be
a biomarker of AD severity. ROC indicated miR-223 to be
a fair test to distinguish AD from NC (AUC 0.786). Also
the combination miR-223 and miR-125b gave improved
sensitivity/specificity (AUC 0.879) than miR-223 or miR-
125b alone. Hara et al. (2017) found using a NGS validation
set of serum samples from 35 AD and 22 NC patients that
miR-501-3p was decreased in AD compared with NC and
correlated with MMSE scores. In brains of patients in the
screening/discovery set, miR-501-3p was markedly upreg-
ulated in AD compared with NC and positively correlated
with disease progression as indicated by Braak staging. ROC
showed serum miR-501-3p was a good test to distinguish
AD from NC (AUC 0.82, sensitivity 0.53, specificity 1.00). A
smaller-scale study by Kumar et al. (2017) with serum from
12 AD, 20 MCI and 18 NC subjects using RT-qPCR valida-
tion showed a significant upregulation of miR-455-3p in AD
compared with MCI and NC. Upregulation of miR-4668-
5p occurred for MCI compared with NC but not AD. Using
frontal cortex of brain postmortem samples, a significant
upregulation of miR-455-3p and miR-3613-3p was observed
for AD Braak stage V compared with NC, and also of miR-
4674 in AD Braak stage VI compared with NC. ROC indi-
cated serum miR-455-3p to be a fair test to distinguish AD
from NC (AUC 0.79), and miR-455-3p in postmortem brain
to be a good test to distinguish AD from NC (AUC 0.86).

Blood plasma

Zirnheld et al. (2016) analysed blood plasma from 20 mod-
erate-severe AD, 16 mild AD, 34 MCI and 37 NC subjects
by RT-qPCR validation and found miR-34c was more highly
expressed in moderate-severe and mild AD than in MCI or
NC, but with no significant difference beween moderate-se-
vere and mild AD or between MCI and NC. In addition,
miR-181c was more abundant in moderate-severe and mild
AD than MCI or NC, but no difference between moder-
ate-severe and mild AD or between MCI and NC. MiR-411
was more highly expressed in moderate-severe and mild AD
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than in MCI or NC, but no difference between moderate-se-
vere and mild AD or between MCI and NC. ROC indicated
miR-34c to be a fair test to differentiate moderate-severe
AD from MCI (AUC 0.78), a good test to distinguish mod-
erate-severe AD from NC (AUC 0.82), and a poor test to
distingush MCI from NC (AUC 0.68). Similarly, miR-181c¢
differentiated moderate-severe AD from both MCI and
NC (AUC 0.86, 0.79, respectively) but was a poor test to
distingiush between mild AD and MCI or NC (AUC 0.63,
0.60, respectively). MiR-411 was a good test to distinguish
moderate-severe AD from MCI and NC (AUC 0.92, 0.99,
respectively, and sensitivity 0.77, 0.77 respectively) and for
distinguishing mild AD from MCI and NC (AUC 0.93, 0.98,
respectively, and sensitivity 0.79, 0.93, respectively). Hence
miR-411 was a more powerful biomarker than miR-34c
or miR-181c¢ to distinguish MCI from mild, moderate and
severe AD. Kayano et al. (2016) used RT-qPCR screening
of microRNAs in blood plasma of 23 MCI and 30 NC sub-
jects. Differential corelation analysis identified 20 pairs of
microRNAs that distinguish MCI from NC. ROC showed
that two pairs miR-191/miR-101 and miR-103/miR-222 had
the highest AUC 0.962, and were good tests to distinguish
MCI from NC. Other microRNA pairs that included miR-
191 and miR-125b and miR-590-5p also had high AUC >
0.95. Differential correlation analysis detected much dif-
ferent and more sensitive biomarkers for MCI than t-test
(mean AUC 0.800). Nagaraj et al. (2017) performed RT-qP-
CR validation with blood plasma from 20 AD, 15 MCI and
15 NC and found that increased levels of miR-486-5p and
miR-483-5p were the most significant indicators of MCI
and AD. In addition, there was upregulation of miR-502-3p
and miR-200a-3p in MCI and AD compared with NC. ROC
indicated that miR-483-5p and miR-502-3p were good tests
to distinguish AD from NC, and MCI from NC (AUC > 0.9,
specificity and sensitivity > 0.80). A set of 6 microRNAs was
selected for distingushing MCI from NC and comprised
4 upregulated microRNAs (483-5p, 486-5p, 200a-3p, 502-
3p) and 2 downregulated microRNAs (30b-5p, 142-3p).
For MCI and AD patients, diagnoses were confirmed by CSF
biomarkers. Mendes-Silva et al. (2017) performed microRNA
screening of blood plasma from 13 MDD, 11 MDD with
MCI and 19 NC individuals using ion proton sequencing.
Ten microRNAs were differentially expressed between
MDD and NC, among which miR-184 and miR-1-3p were
differentially expressed between MDD and MDD with MCL

CSF

Lusardi et al. (2017) performed RT-qPCR validation of
microRNAs in CSF from 50 AD and 49 NC subjects and
found that replicated microRNAs increased in AD were
miR-378a-3p, -1291, -597-5p, and those decreased in AD
were miR-143-3p, -142-3p, -328-3p,-193a-5p, -30a-3p, -19b-
3p, -30d-5p, -340-5p, -140-5p, -125b-5p, -26b-5p, -16-5p,
-146a-5p, -29a-3p, -195-5p, -15b-5p, -223-3p. Candidate
miRNAs not retested increased in AD were miR-520b, -603,
-202-3p, -519b-3p, -484, while those decreased in AD were
miR-584-5p, -145-3p, -24-3p, -532-5p, -28-3p, -146b-5p,
-27b-3p, -331-3p, -145-5p, 590-5p, -365a-3p. ROC indicat-
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ed that the top performing linear combinations of 3 or 4
microRNAs were a fair test to distinguish AD from NC (AUC
0.80—0.82). Muller et al. (2016b) also used large group sizes
of 57 AD, 37 MCI and 40 NC individuals to perform qPCR
screening of microRNAs in CSF samples collected at three
different centers. Importantly, no differences in microRNAs
levels were found between AD, MCI and NC after correcting
for confounding factors that included age, gender, sample
storage time, centrifugation status. In a separate study, Muller
et al. (2016a) showed using qPCR screening of microRNAs
in CSF samples from 18 AD and 20 NC subjects with low
concentrations of erythrocytes and leukocytes that miR-29a
was upregulated in AD compared with NC and differentiat-
ed AD from NC with a sensitivity of 0.78 and specificity of
0.60. Riancho et al. (2017) performed RT-qPCR validation
of microRNAs in raw and exosome-enriched CSF sam-
ples from 28 AD and 28 NC individuals. AD patients had
clinical presentation consistent with AD and positive CSF
biomarkers AP and tau for AD. NC subjects had no mem-
ory impairments and negative CSF biomarkers A and tau
for AD. MiR-9-5p was not detected in AD but was present
in 50% of NC samples. Similarly, miR-598 was absent in
all AD but present in 72% of NC samples. Liu et al. (2018)
collected CSF from 17 AD, 36 MCI and 41 SMC (subjective
memory complaints) patients and which was centrifuged
and cell pellet sorted into lymphocyte populations by flow
cytometry. RT-PCR screening of microRNAs showed the
relative expression of let-7b in CSF cells was significantly
increased in AD and MCI compared with SMC. Total num-
ber of CSF lymphocytes and ratio of CD4+ lymphocytes in
AD and MCI were significantly higher than in SMC. Let-
7b expression in CD4+ lymphocytes from AD and MCI was
significantly higher than SMC, while let-7b expression in
CD8+ T lymphocytes, B lymphocytes and NK cells were not
significantly different. Adding let-7b to AB40 and AP42 as
predictive parameters increased the probability of predicting
AD to 89.7% (AUC 0.93).

Brain tissue and olfactory mucosa

Kumar and Reddy (2018) using RT-PCR screening of
microRNAs in frontal cortex Broadmann’s Area 10 of post-
mortem brains of 27 AD and 15 NC individuals found that
the expression of miR-455-3p was significantly increased in
AD compared with NC. Also using banked skin fibroblasts
and lymphocytes from AD and NC individuals, expression
of miR-455-3p was significantly higher for AD compared
with NC. ROC indicated that frontal cortex miR-455-3p was
a fair test to distinguish AD from NC (AUC 0.792, sensitivi-
ty 0.889, specificity 0.667). Weinberg et al. (2015) performed
qPCR validation of microRNAs in frontal and inferior tem-
poral cortex of postmortem brains of 10 AD, 10 MCI and 12
NC subjects. In frontal cortex, miR-498 and miR-150 were
significantly upregulated in AD, and miR-150 was upregulat-
ed in MCI, compared with NC. Several microRNAs were sig-
nificantly downregulated in AD including miR-886-3p, -132,
-21, -23a, -140-3p, -212, -23b, let-7d, -181a, -498, -150. Two
distinct clusters miR-212/miR-132 and miR-23a/miR-23b
were significantly downregulated in MCI. For temporal cor-

tex, miR-212 and miR-132 expression levels were decreased
only in AD, with miR-23a and miR-23b being unchanged
across the groups. Moon et al. (2016) used RT-PCR screening
of microRNAs in olfactory mucosa of subjects categorized
on clinical dementia rating (CDR) score, ADAS-Cog-K score
and Beck Depression Inventory II score. The groupings were
11 CDR 1, 13 CDR 0.5, and 9 CDR 0. Olfactory mucosa miR-
206 was increased in CDR 0.5 and CDR 1 compared with
CDR 0 and increased with progression of dementia. ROC in-
dicated miR-206 was a good test to distinguish CDR 0.5 from
CDR 0 (AUC 0.942, sensitivity 0.875, specificity 0.942). Also
it was a good test to distinguish CDR 1 from CDR 0 (AUC
0.976, sensitivity 0.909, specificity 0.933).

The microRNAs indicated to have upregulated or down-
regulated expression in blood serum, blood plasma, CSF of
AD and MCI patients are shown in Figure 1.

Future Perspectives

The development of reliable, minimally or non-invasive
methods for diagnosing early AD in MCI patients is imper-
ative for increased efficiency of existing therapies, as well
as for recruiting patients for clinical trials of new drugs,
monitoring disease progression and response to treatment.
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o
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Figure 1 Changes in microRNA expression in blood serum, blood
plasma, and cerebrospinal fluid (CSF) of Alzheimer’s disease (AD) and
mild cognitive impairment (MCI) patients compared to normal controls
as indicated by polymerase chain reaction/real-time polymerase chain
reaction (PCR/RT-PCR) screening and validation assays in the articles
reviewed.

Increased or decreased expression is indicated by arrows pointing upwards
or downwards, respectively. Color code is AD (red) and MCI (blue).
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2010). Measurement of microRNAs in olfactory epithelium
could be performed in patients with CSF levels of AB and
tau indicative of AD as a possible way of validating chang-
es in blood microRNA levels. In this regard, the olfactory
epithelium miR-206 level was significantly correlated with
cognitive assessment score in non-depressed subjects with
cognitive impairment and could serve as a diagnostic mark-
er of early AD (Moon et al., 2016).

Histomicroscopic examination of brain tissue specimens
enables classification into early-, mid- and late-stages of AD.
Brains stored in brain banks could be used for this purpose
and blood collected from patients shortly before their death
could be examined at early-stage AD (Braak NFT stages I
and II) for diagnostic biomarkers. In addition progression of
the disease could be monitored through biomarker analysis
using blood samples from patients at mid-stage AD (Braak
NFT stages III and IV) and late-stage AD (Braak NFT stages
V and VI). Kumar et al. (2017) showed a gradual increase or
decrease in several chosen serum microRNAs for controls,
MCI and AD patients and could be used to monitor disease
progression to AD. Also Hara et al. (2017) found in brains
of patients in the screening/discovery set, miR-501-3p was
markedly upregulated in AD compared with NC and pos-
itively correlated with disease progression as indicated by
Braak staging. Keller et al. (2016) replicated and validated
previous findings in a US study of blood microRNAs in AD
patients compared to controls with a new cohort of subjects
in Germany using next-generation sequencing. Included
in the validation cohort were MCI patients and a substan-
tial dysregulation of microRNAs in AD patients was found
compared to MCI with 119 being upregulated and 29 down-
regulated in AD compared to MCI. Upregulated expression
of miR-151a-3p and downregulated expression of miR-
17-3p was found for AD compared with NC. In addition,
blood samples of AD patients with disease duration < 2
years (early-stage) were compared to those of patients with
longer disease duration (mid-/late-stage) and no significant
differences in microRNAs were observed. (For time frame
of the stages in AD progression see Ellis and Higuera, 2016).
These findings warant further replication using larger-sized
cohorts and RT-qPCR validation.

Several of the reviewed studies showed that microRNAs
could distinguish MCI from NC subjects. For example, Ku-
mar et al. (2017) observed an upregulation of miR-4668-5p
in blood serum for MCI compared with NC but not AD pa-
tients. Kayano et al. (2016) using differential corelation anal-
ysis identified 20 pairs of microRNAs in blood plasma that
distinguish MCI from NC, and these included the two pairs
miR-191/miR-101 and miR-103/miR-222. Differential cor-
relation analysis detected much different and more sensitive
MCI biomarkers compared to t-test. Also the highest AUC
value of any four microRNAs was less than the highest in
the two-pair approach. Nagaraj et al. (2017) reported a set of
6 microRNAs in blood plasma that distingushed MCI from NC,
and which was comprised of 4 upregulated microRNAs (483-
5p, 486-5p, 200a-3p, 502-3p) and 2 downregulated microRNAs
(30b-5p, 142-3p). Liu et al. (2018) showed that let-7b ex-
pression in CD4" lymphocytes isolated from CSF cell pellets

252

of AD and MCI individuals was significantly higher than for
SMC (subjective memory complaints) patients.

It is recognized that MCI patients are the most promising
group of patients for whom therapy could be initiated to
delay the onset of AD (Michael-Titus et al., 2010). Identifi-
cation of microRNAs that differentiate MCI or AD from NC
with high sensitivity and specificity also provides a feasible
therapeutic strategy. MicroRNA mimics or agomirs could
be administered to increase the levels of specific microRNAs
that are downregulated, while microRNA inhibitors or antag-
omirs could be given to lower the levels of those microRNAs
that are upregulated, in MCI or AD compared to NC. These
agents should be tested in future clinical trials. An increased
risk of developing AD has been reported for females com-
pared with males at age of 65-75 years (Neu et al., 2017).
Many of the studies presented in this review had considerable
disparity in the numbers and proportions of male and female
subjects in the AD, MCI and NC groups, as well as significant
variation in age and extent of disease progression.

A panel of microRNAs has a higher AUC value than a
single microRNA for distinguishing AD from NC (Jia et al.,
2016). Nagaraj et al. (2017) reported a 6 microRNA panel in
blood plasma which distinguished non-demented control
subjects from MCI patients diagnosed with probable early
AD by CSF assay of AB42, total tau and phosphorylated tau.
These 6 microRNAs were functionally mapped to proteins
involved in AD pathology by searches in databases contain-
ing predictive and validated microRNA targets including
B-secretase 1 (BACEL), BACE2, microtubule-associated
protein/tau, and presenilin 2 (PSEN2). It was suggested that
the 6 microRNA panel might serve as a possible replacement
of invasive CSF biomarkers to identify early AD (Najaraj et
al,, 2017). Such a microRNA panel together with correlation
analysis of specific paired microRNAs would provide a very
good test for differentiaing early AD from NC. The amyloid
precursor protein (APP) cleavage enzyme BACE1 was also a
possible direct target of miR-425-5p and miR-339-5p which
were upregulated in PBMNs from AD compared to NC
group. Overexpression of miR-425-5p decreased BACE1
protein levels (Ren et al. 2016).

A number of differentially expressed genes were found to
be regulated by microRNAs. These included PLCB2, CD-
K5R1, LRP1, NDUFA4, DLG4 which were regulated by miR-
26b-5p, -103a-3p, -107. -26a-5p and these microRNAs had
increased expression levels in blood samples of AD com-
pared with NC (Chang et al., 2017). Also 14 validated target
genes were found of at least 5 of 33 microRNAs overalap-
ping in screening and validation studies of blood samples of
AD compared with NC and were VEGFA, DICER1, AGO1,
PTEN, CDKNIA, APP, RBI, CCND1, CCND2, WEEI, IL13,
HMGA2, TNFRSFIOB, MYC (Keller et al., 2016). Many of
these have key roles in AD and microRNAs might regulate
the genes involved in signaling pathways. For example, low
serum levels of vascular endothelial growth factor (VEGF)
were associated with AD (Mateo et al., 2007) and VEGF was
found to be expressed in the brains of AD patients and to
increase with AD severity (Thomas et al., 2015). Also the tu-
mor-suppressor phosphatase and tensin homolog (PTEN)
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was found to accumulate in NFTs (Sonoda et al., 2010).
PTEN affects tau phosphorylation, binding to microtubules
and formation of aggregates and neurite outgrowth (Zhang
et al., 2006). PTEN is a negative regulator of PI3 kinase and
the predominant effects on tau appeared to be medited by
reducing ERK1/2 activity (Kerr et al., 2006). Furthermore,
the expression of miR-455-3p was upregulated in blood se-
rum of AD compared to NC and shown to have a relation-
ship with 11 biological pathways and associated genes. The
most important signaling pathways were extracellular ma-
trix (ECM)-receptor interaction, adherence junction, trans-
forming growth factor-p (TGF-f) signaling pathway, hippo
signaling pathway, cell cycle pathway, and the regulation of
the actin cytoskeleton. The upregulation of miR-455-3p in
AD development might be associated with these signaling
pathways and through altered expression of HSPG2, THBSI,
COL3A1, COL6A1, TNC, MYC, Smad2, RAN, PLK1, TP73,
ACTNI and IQGAPI genes (Kumar et al., 2017). Computa-
tional analysis predicted that the 3°-UTR of signal transduc-
tion and activator of transcription 3 (STAT3) mRNA to be a
target of miR-29¢-3p and miR-19b-3p, both of which had
lower serum expression levels in AD than in NC subjects. A
regulatory network of microRNAs and target genes was
identified and contained miR-29¢-3p and miR-19b-3p, 4 AD
virulence genes, and STAT3 (Wu et al., 2017). Several stud-
ies have suggested that STAT3 activation can promote glial
differentiation from neural progenitor cells and inhibit neu-
ronal differentiation of neural progenitor cells (Choi et al.,
2003; Sriram et al., 2004; Okada et al., 2006). STAT3 can
cause excessive gliosis (Kwak et al., 2010; Tsuda et al., 2011)
which is often found in AD patients. Interestingly, miR-501-
3p had lower serum expression level in AD compared to NC
but was upregulated in the brains of AD patients (Hara et
al., 2017). It is possible that miR-501-3p upregulation could
cause alterations in the cell cyle of AD brains. Inappropriate
cell cycle re-entry in postmitotic neurons, which leads to
apoptotic death, is an early sign that preceeds the formation
of amyloid plaques and NFT's (Kruman et al., 2004; Borda et
al., 2010; Swerdlow, 2012). Alternatively, miR-501-3p could
mediate the activity-dependent regulation of the AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) re-
ceptor subunit GluAl in dendrites, suggesting that it con-
tributes to synaptic plasticity related to cognitive functions,
including learning and memory (Hu et al., 2015). In the dif-
ferential correlation analysis study, miR-125b was one of the
plasma microRNAs found in several pairs having a high
AUC value (= 0.95) for MCI detection (Keller et al., 2016).
Also miR-125b was dowregulated in serum of AD compared
to NC (Wu et al., 2017). MiR-125b was shown to bind to 3'-
UTR of p53 mRNA and worked as a negative regulator of
p53 (Le et al., 2009). p53 has been explored as a tumor su-
pressor but other aspects have been reported including to
control diseases, aging and metabolism (Vousden and Lane,
2007). p53 promotes apoptosis and has important implica-
tions for the brain during neurodegeneration in AD (Perlui-
gi et al., 2016). MAPK, TGF-f and neurotrophin signaling
pathways were indicated as characteristic in MCI. Similarly
to p53 signaling, these pathways have common biological

functions such as cell survival, cell cycle and apoptosis
(Kayano et al., 2016). MAPK pathway is also known to be
involved in aberrant cellular signaling in AD pathology
(Schnoder et al., 2016). Finally, animal models of AD and
MCI have been described and could be used to examine and
verify microRNA profiles in blood, blood serum, blood plas-
ma and brain tissues and to trial microRNA-based therapies.
Transgenic mice overproducing mutant APP were found to
develop extracellular AP plaques which was age-dependent,
only occurring in mid to late adulthood in most of the ani-
mals (LaFeria and Green, 2012). While these mice did not
develop NFTs, many exhibited increased tau hyperphos-
phorylation (Gotz J et al., 2007). These animals develop
marked cognitive decline and undergo subtle alterations in
tau that resemble the precursors to NFTs in the human
brain (LaFeria and Green, 2012). Transgenic mice that ex-
press further gene alterations in addition to mutated APP
such as mutated human tau (Lewis et al., 2001; Oddo et al.,,
2003) or removal of nitric oxide synthase 2 (Wilcock et al.,
2008) develop NFTs similar to those in the human AD
brain. One of the main considerations is that AD mouse
models do not show the extensive neuronal loss found in the
brains of AD patients. Most of the AD patients at clinical di-
agnosis already have reached Braak stage V or VI with
marked synaptic and neuronal loss. Moreover, the loss of
synapses is the best correlate of cognitive impairment in pa-
tients with AD (DeKosky et al., 1996). The synapse loss,
which occurs before neuronal death in humans, is present in
most of the mouse models and gives rise to the memory
deficits seen in behavioral tasks for testing memory func-
tion. The memory deficits can be associated with neuro-
pathological alterations (Pepeu, 2004). Hence, therapies for
reversing memory deficits in AD mouse models might aid in
treating the memory decline in patients with MCI (Cuadra-
do-Tejedor and Garcia-Osta, 2014). The appearance of amy-
loid plaques and synapse loss appears in some mouse AD
models even at 2 to 4 months of age. Aging is the most im-
portant risk factor for AD and despite being such an import-
ant risk factor it is often absent in studies with animal mod-
els. Therefore the use of late-plaque models for preclinical
studies (e.g., Tg2576, PDAPP, TgAPP23) could be more ap-
propriate than using early-plaque models (Lee and Han,
2013). In addition, late-plaque and early-plaque models may
provide complementary data necessary to decipher the role
of microRNAs as diagnostic and therapeutic tools for AD.
In summary, considerable advances have been made in the
recent studies included in this review with regard to distin-
guishing MCI and AD from NC by analyzing microRNAs in
blood serum, blood plasma and CSF (Figure 1), and have
included individual and combinations of microRNAs as well
as differential correlation of paired microRNA testing. Lim-
itations that were identified in previous studies (Table 1) in-
cluded small group sizes, and marked disparity of individu-
als in the AD, MCI and NC groups including age, gender,
number, ethnicity, stage of disease progression, screening
and validation methods, data processing and normalization,
statistical analysis. These have been taken into consideration
in many of these recent studies, but some concerns still re-
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main regarding recruitment of patients including numbers,
gender, inclusion and exclusion criteria, medications taken
by the patients, most appropriate validation methods, nor-
malization and statistical analysis of data. It is hoped that
future studies will continue to address these concerns in the
planning and implementing of such studies so that a sensi-
tive and specific, minimally invasive test can be developed
for identifying patients with MCI (early AD) and therapy
initiated to slow the memory decline and progression to AD.
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