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MicroRNAs as diagnostic and therapeutic tools for 
Alzheimer’s disease: advances and limitations

Introduction
Alzheimer’s disease (AD) is the most common age-related, 
progressive neurodegenerative disease. It is characterized by 
memory loss and cognitive decline and accounts for most 
cases of dementia in the elderly. Currently more than 35 
million people globally have AD and it is forecast to affect 
1% of all people worldwide by 2050 (Brookmeyer et al., 2007; 
Querfurth and LaFerla, 2010; Thies and Bleiler, 2011). AD pa-
tients have been diagnosed as probable AD based on clinical 
examination, magnetic resonance imaging, positron emission 
tomography, cerebrospinal fluid (CSF) assays, and neuro-
psychological testing which includes cognitive performance 
(McKhann et al., 1984; McKhann et al., 2011). There are two 
major forms of AD, early-onset (familial) and late-onset 
(sporadic). Early-onset AD is rare, whereas late-onset AD ac-
counts for > 95% of cases (Bali et al., 2012). Late-onset AD is 
defined as AD with age at onset > 65 years, while early-onset 
AD is AD with age at onset from 30 years to 65 years (Piac-
eri et al., 2013). Etiology involves a combination of genetic 
(70%) and environmental factors (30%) (Dorszewska et al., 
2016). Many genes have been shown to be involved in the de-
velopment of late-onset AD including ABCA7, APOE, BIN1 
(Barber, 2012). At present there are no drugs or other ther-
apeutic agents available to prevent or delay the progression 
of AD. No biomarkers have yet been confirmed for the early 

detection of AD before the onset of irreversible neurological 
damage (Reddy et al., 2017). Multiple cellular and molecular 
changes occur in the brains of individuals with AD. These 
include neuronal and synaptic loss, mitochondrial damage, 
production and accumulation of β-amyloid peptide (Aβ) and 
hyperphosphorylated tau protein, decrease of acetylcholine 
neurotransmitter, inflammation, and oxidative stress. Aggre-
gation of Aβ peptide in extracellular plaques and the hyper-
phosphorylated tau protein in intracellular neurofibrillary 
tangles (NFTs) are characteristic of AD (Serrano-Pozo et al., 
2011). MicroRNAs are small noncoding RNAs (~22 nucle-
otides) and involved in each of the cellular changes in AD. 
They act by binding to the 3′-untranslated region (3′-UTR) of 
their target mRNAs and interfere with gene regulation and 
translation, and cause mRNA destabilization or degradation 
(Guo et al., 2010; Reddy et al., 2017). They have been detected 
in blood, CSF, saliva and urine, and also in blood cells such 
as mononuclear cells and erythrocytes.

A major challenge is identifying molecular biomarkers 
characteristic of the early-stage AD in patients as most stud-
ies have been performed with blood or brain tissue samples 
(postmortem) at late-stage AD. Towards this end, subjects 
with mild cognitive impairment (MCI) almost always have 
the neuropathologic features of AD (Morris et al., 2001; 
Morris and Cummings, 2005; Garcia-Ptacek et al., 2016) 
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and could provide important information. About 50% of 
MCI patients progress to AD (Sewell et al., 2010). Also the 
clinical-epidemiological relationship between AD and major 
depressive disorder (MDD) suggests they might have com-
mon neurobiological abnormalities (Rodrigues et al., 2014; 
Mendes-Silva et al., 2016). The pattern of microRNA regula-
tion in each disorder could help with elucidating AD path-
omechanism and also elucidate minimally or noninvasive, 
easy-to-access biomarkers. 

The currently available biomarkers of AD are detected ei-
ther by CSF analysis of Aβ and tau protein levels (Mattsson et 
al., 2009), brain imaging using positron emission tomography 
to detect Aβ deposits (Vlassenko et al., 2012), or postmortem 
gross specimen analysis and histology of brain sections (Braak 
et al., 2006). All of these are expensive, invasive, require 
skilled expertise to perform and interpret, or time-consuming 
(Lusardi et al., 2017), and only available in a small number 
of cases. The CSF levels of Aβ42 isoform and tau protein and 
particularly the ratio of tau/Aβ42 and phospho-tau/Aβ42 are 
useful for predicting the risk of progressing from MCI/very 
mild dementia to AD (Holzman, 2011; Fagan and Perrin, 
2012) and have been used to identify MCI patients diagnosed 
with probable early AD (Najaraj et al., 2017). However, blood 
contamination occurs in up to 20% of CSF samples collected 
by lumbar puncture (Aasebø et al., 2014) and may be a con-
founding factor affecting Aβ42 levels (Bjerke et al., 2010). 
Also CSF collection by lumbar puncture may not be easily 
accomplished in elderly patients due to lumbar disc degener-
ation with narrowing of the intervertebral spaces. 

Increasing evidence suggests that microRNAs are dysreg-
ulated in neurodegenerative diseases such as AD, Parkin-
son’s disease, and stroke. Circulating microRNAs within 
blood may be characterized and used as minimally invasive 

diagnostic biomarkers. They may facilitate the early detec-
tion of the disease and potentially the continual monitoring 
of disease progression and allow therapeutic interventions 
to be evaluated. Four recent reviews have been published 
on studies of microRNAs in AD. They were by Batistela et al. 
(2017), Mendez-Silva et al. (2016), Van Giau and An (2016), 
Wu et al. (2016) and, where reported, included studies up to 
June 2015 and September 2015. Each of the reviews identified 
areas of weakness or limitations in the reported studies (Table 
1) and the findings were often conflicting. The limitations in-
cluded small size and heterogeneity of study populations, no 
postmortem confirmation of AD diagnosis or assay of other 
biomarkers, variations in analytical methods and platforms 
used and validation of findings, different methods of normal-
ization, statistical testing and data processing, selection of 
cognitively normal controls (NC) and no confirmation that 
they did not develop clinical cognitive impairment. Also Ren 
et al. (2016) indicated that in many of the previous studies on 
microRNAs in brain, CSF, and blood from AD patients, most 
samples were from patients being treated with acetylcholin-
esterase inhibitor, which could have a confounding effect on 
analysis, rather than de novo drug-naïve patients. Interesting-
ly, differential correlation analysis using paired microRNAs 
detected different and more sensitive plasma microRNA bio-
markers for MCI than were found by single molecule analysis 
using a t-test (Kayano et al., 2016). Plasma paired microRNA 
sets were shown to have high sensitivity and specificity for 
differentiating MCI from age-matched control, and also dif-
ferentiated AD from age-matched control. In addition, the 
paired microRNA sets detected MCI in 7 of 10 elderly pa-
tients at asymptomatic stage 0.5–5 years preceding the clinical 
diagnosis (Sheinerman et al., 2012).

There is range of disease states from mild dementia to se-

Table 1 Limitations of previous studies of microRNAs in Alzheimer’s disease (AD) as indicated in four recent reviews

Limitation
Batistela et al. 
(2017)

Mendez-Silva et al. 
(2016)

Van Giau and An 
(2016)

Wu et al. 
(2016)

A lack of reproducibility of findings can be attributable to many variables such as 
the size and homogeneity of study population, including age, sex, ethnicity, and 
the stage of disease; selection of adequate controls; analytical methods i.e., next 
generation sequencing (NGS), microarray or real-time quantitative polymerase 
chain reaction (RT-qPCR); different methods of normalization; statistical testing 
and data processing 

√ √ √ √

There are few studies profiling microRNAs in more than one neurodegenerative 
disease

√ √

MicroRNAs and results need to be validated in large independent longitidinal 
studies including subjects acroos the lifespsan trajectory with a comprehensive 
cognitive assessment to ascertain the development of AD or other 
neurodegenerative diseases

√ √

Studies evaluated young and middle-aged adults limiting the generalization of 
findings to older adults

√

There is no current active clinical trial on microRNA-based therapeutics in AD √
Whether microRNAs can be used in AD diagnosis alone or in combination with 
other AD biomarkers (amyloid and tau, Aβ42) warrants further investigation

√ √

The studies in the review had no postmortem confirmation of diagnosis, 
therefore cannot confidently ascertain if changes in microRNA expression were 
due to AD pathology

√

No follow-up was performed to ensure the cognitively normal controls did not 
develop clinical cognitive impairment

√

√ indicates that the parameter was mentioned as a limitation in the review article. Aβ: β-Amyloid peptide.
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vere impairment within AD patients. The extent of cognitive 
decline is commonly estimated by the Mini-Mental State 
Examination (MMSE) and scores range from 0–30. Prob-
able AD patients can be classified as having mild (MMSE 
scores 21–24), moderate (MMSE scores 10–20), or severe 
dementia (MMSE scores 0–9), while normal subjects have 
MMSE scores 25–30 (Galasko, 1998). The MMSE does not 
have sufficient sensitivity to detect cognitive decline at the 
MCI stage (MMSE mean score 27.0, reported by Nasreddine 
et al., 2005), and other cognitive assessment examinations 
have to be used. In the Montreal Cognitive Assessment 
(MoCA) examination, scores range from 0–30 and a score 
of ≥ 27 is considered normal. In a study by Nasreddine et 
al. (2005) normal subjects had a mean MoCA score of 27.4, 
MCI individuals a mean MoCA score 22.1 (range 17–23), 
and probable AD patients a mean MoCA score 16.2 (range 
0–24). Identifying biomarkers capable of distinguishing 
MCI from the normal elderly and probable AD cases, as well 
the transition between the stages of mild, moderate, and 
severe cognitive impairment in AD, is an important need in 
indicating dysregulated signaling pathways and suggesting 
possible potential treatment strategies.

The goal is to identify microRNA biomarkers of high sensi-
tivity and specificity in early-stage AD, and paired microRNA 
analysis or using a panel of microRNAs may be an important 
method to accomplish this. We have performed a PubMed 
literature search of articles published in the period January 
2016–June 2018 on microRNAs in AD and also MCI when 
included as prodomal or early-stage AD. This is to provide 
further information on microRNA dysregulation in AD and 
to assess whether the weaknesses or limitations identified in 
previous studies have been taken into account or overcome.

Braak NFT staging of AD pathology 
Histomicroscopic evaluation of AD-related pathology is 
based on the deposition of hyperphosphorylated tau pro-
tein within select neuronal types in specific nuclei or areas. 
The staging of AD-related neurofibrillary pathology using 
silver-stained sections 100 µm thickness has been described 
(Braak and Braak, 1991). A more recent description em-
ploys sections 5–15 µm thickness and immunostained for 
hyperphosphorylated tau protein with monoclonal antibody 
AT8 (Braak et al., 2006). Six stages can be recognized in the 
progression of AD and they are usually grouped under stag-
es I–II, III–IV, V–VI with the major characteristics being 
as follows. In stage I, lesions develop in the transentorhinal 
region. Subcortical nuclei (viz. locus coeruleus, magnocel-
lular nuclei of the basal forebrain) occasionally exhibit the 
earliest changes in the absence of cortical involvement. The 
transentorhinal region is the first site in the cerebral cortex 
to be involved. The entorhinal region proper is not or mini-
mally involved. In stage II, lesions extend into the entorhinal 
region, while in stage III, lesions extend from the transen-
torhinal region to the neocortex of the fusiform and lingual 
gyri and then diminish markedy beyond this region. In stage 
IV, lesions progress more widely into neocortical associa-
tion areas. Stage V is characterized by lesions appearing in 
previously uninvolved areas and extending widely into the 

first temporal convolution, and into high order association 
areas of frontal, parietal, and occipital neocortex (peristriate 
region). For stage VI, lesions reach the secondary and pri-
mary neocortical areas and extend into the striate region of 
the occipital lobe. 

MicroRNAs in AD and MCI  
A total of nineteen research articles were found in the 
PubMed search of which two had used blood, one PBMNs, 
four serum, four plasma, five CSF, two brain tissue, and one 
olfactory mucosa samples (Table 2). While most had used a 
validation method, which was usually real-time quantitative 
polymerase chain reaction (RT-qPCR), there were several 
studies where this was not performed. This is especially im-
portant as in many cases the validation findings were not in 
complete agrement with the screening results. Also when 
reported, all the studies had included both male and female 
subjects for AD, MCI and NC, but often there was a dis-
parity in the proportions of the two genders in the different 
groups and also in their mean ages. In nearly all the studies 
there was no follow-up of MCI and NC individuals. More-
over, while several of the studies had involved quite large co-
horts of AD and NC patients, the majority were performed 
with much smaller cohorts. Only a few studies had reported 
on ethnicity or medications being used by the patients. In-
clusion and exclusion criteria were not reported in many of 
the studies. These are all important limitations as identified 
in the earlier reviews (Table 1) and many of these constitute 
confounding factors. Not all of the studies had used receiver 
operating characteristics (ROC) analysis with area under 
curve (AUC) values to establish which microRNAs are good 
or fair tests to distinguish AD from NC or MCI from NC 
patients. 

The imporant findings from the research articles in the 
PubMed search are summarized as follows.

Blood samples 
Chang et al. (2017) employed integrated analysis of microar-
ray datasets of blood of AD and NC subjects and identified 
differentially expressed genes in AD that were regulated by 
miR-26b-5p, -103a-3p, -107, -26a-5p. However, using bloods 
from 3 AD and 3 NC patients, the upregulated expression of 
miR-26b-5p and miR-26a-5p by RT-qPCR was inconsistent 
with the integrated analysis results. In a study with large-sized 
groups, Keller et al. (2016) combined a screening/discovery 
set (USA) and a next-generation sequencing (NGS) validation 
study set (Germany, with 49 AD and 55 NC) to show upreg-
ulated expression of miR-151a-3p and downregulated ex-
pression of miR-17-3p for AD compared with NC subjects. 
ROC analysis indicated miR-151a-3p was a fair test to dis-
tinguish AD from NC (AUC 0.74). A marked upregulation 
of microRNAs was found for AD compared with MCI with 
miR-30c-5p having the lowest P value. This study had included 
Aβ42, t-tau and p-tau markers to aid confirmation of AD.

PBMN samples 
By qPCR validation, Ren et al. (2016) showed miR-339 and 
miR-425 were upregulated and miR-639 was downregulated 
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in AD PBMNs compared with NC PBMNs. ROC indicated 
miR-339 as a fair test to distinguish AD PBMNs from NC 
PBMNs (AUC 0.768), and miR-425 to be a good test to distin-
guish AD PBMNs from NC PBMNs (AUC 0.868). MiR-639 
was a poor test to distinguish AD PBMNs from NC PBMNs 
(AUC 0.287). The β-amyloid precursor protein β-secretase 
BACE1 might be a target of miR-339 and miR-425.

Blood serum 
Wu et al. (2017) using RT-qPCR validation with serum 
samples from 65 AD and 50 NC patients showed that ex-
pression levels of miR-146a-5p, -106b-3p, -195-5p, -20b-
5p, -497-5p were higher, while those of miR-125b-3p, -29c-
3p, -93-5p, -19b-3p were lower in AD than in NC subjects. 
Computational analysis predicted that 3’-UTR of STAT 3 
mRNA was a target of both miR-29c-3p and miR-19b-3p. 
A large-scale study by Jia et al. (2016) with serum from 84 
AD and 62 NC individuals used PCR screening to show a 
significant decrease in miR-29, -125b, -223 and an increase 
in miR-519 in AD compared with NC. Serum miR-223 
was positively correlated with MMSE scores and might be 
a biomarker of AD severity. ROC indicated miR-223 to be 
a fair test to distinguish AD from NC (AUC 0.786). Also 
the combination miR-223 and miR-125b gave improved 
sensitivity/specificity (AUC 0.879) than miR-223 or miR-
125b alone. Hara et al. (2017) found using a NGS validation 
set of serum samples from 35 AD and 22 NC patients that 
miR-501-3p was decreased in AD compared with NC and 
correlated with MMSE scores. In brains of patients in the 
screening/discovery set, miR-501-3p was markedly upreg-
ulated in AD compared with NC and positively correlated 
with disease progression as indicated by Braak staging. ROC 
showed serum miR-501-3p was a good test to distinguish 
AD from NC (AUC 0.82, sensitivity 0.53, specificity 1.00). A 
smaller-scale study by Kumar et al. (2017) with serum from 
12 AD, 20 MCI and 18 NC subjects using RT-qPCR valida-
tion showed a significant upregulation of miR-455-3p in AD 
compared with MCI and NC. Upregulation of miR-4668-
5p occurred for MCI compared with NC but not AD. Using 
frontal cortex of brain postmortem samples, a significant 
upregulation of miR-455-3p and miR-3613-3p was observed 
for AD Braak stage V compared with NC, and also of miR-
4674 in AD Braak stage VI compared with NC. ROC indi-
cated serum miR-455-3p to be a fair test to distinguish AD 
from NC (AUC 0.79), and miR-455-3p in postmortem brain 
to be a good test to distinguish AD from NC (AUC 0.86).

Blood plasma 
Zirnheld et al. (2016) analysed blood plasma from 20 mod-
erate-severe AD, 16 mild AD, 34 MCI and 37 NC subjects 
by RT-qPCR validation and found miR-34c was more highly 
expressed in moderate-severe and mild AD than in MCI or 
NC, but with no significant difference beween moderate-se-
vere and mild AD or between MCI and NC. In addition, 
miR-181c was more abundant in moderate-severe and mild 
AD than MCI or NC, but no difference between moder-
ate-severe and mild AD or between MCI and NC. MiR-411 
was more highly expressed in moderate-severe and mild AD 

than in MCI or NC, but no difference between moderate-se-
vere and mild AD or between MCI and NC. ROC indicated 
miR-34c to be a fair test to differentiate moderate-severe 
AD from MCI (AUC 0.78), a good test to distinguish mod-
erate-severe AD from NC (AUC 0.82), and a poor test to 
distingush MCI from NC (AUC 0.68). Similarly, miR-181c 
differentiated moderate-severe AD from both MCI and 
NC (AUC 0.86, 0.79, respectively) but was a poor test to 
distingiush between mild AD and MCI or NC (AUC 0.63, 
0.60, respectively). MiR-411 was a good test to distinguish 
moderate-severe AD from MCI and NC (AUC 0.92, 0.99, 
respectively, and sensitivity 0.77, 0.77 respectively) and for 
distinguishing mild AD from MCI and NC (AUC 0.93, 0.98, 
respectively, and sensitivity 0.79, 0.93, respectively). Hence 
miR-411 was a more powerful biomarker than miR-34c 
or miR-181c to distinguish MCI from mild, moderate and 
severe AD. Kayano et al. (2016) used RT-qPCR screening 
of microRNAs in blood plasma of 23 MCI and 30 NC sub-
jects. Differential corelation analysis identified 20 pairs of 
microRNAs that distinguish MCI from NC. ROC showed 
that two pairs miR-191/miR-101 and miR-103/miR-222 had 
the highest AUC 0.962, and were good tests to distinguish 
MCI from NC. Other microRNA pairs that included miR-
191 and miR-125b and miR-590-5p also had high AUC > 
0.95. Differential correlation analysis detected much dif-
ferent and more sensitive biomarkers for MCI than t-test 
(mean AUC 0.800). Nagaraj et al. (2017) performed RT-qP-
CR validation with blood plasma from 20 AD, 15 MCI and 
15 NC and found that increased levels of miR-486-5p and 
miR-483-5p were the most significant indicators of MCI 
and AD. In addition, there was upregulation of miR-502-3p 
and miR-200a-3p in MCI and AD compared with NC. ROC 
indicated that miR-483-5p and miR-502-3p were good tests 
to distinguish AD from NC, and MCI from NC (AUC > 0.9, 
specificity and sensitivity > 0.80). A set of 6 microRNAs was 
selected for distingushing MCI from NC and comprised 
4 upregulated microRNAs (483-5p, 486-5p, 200a-3p, 502-
3p) and 2 downregulated microRNAs (30b-5p, 142-3p). 
For MCI and AD patients, diagnoses were confirmed by CSF 
biomarkers. Mendes-Silva et al. (2017) performed microRNA 
screening of blood plasma from 13 MDD, 11 MDD with 
MCI and 19 NC individuals using ion proton sequencing. 
Ten microRNAs were differentially expressed between 
MDD and NC, among which miR-184 and miR-1-3p were 
differentially expressed between MDD and MDD with MCI.

CSF 
Lusardi et al. (2017) performed RT-qPCR validation of 
microRNAs in CSF from 50 AD and 49 NC subjects and 
found that replicated microRNAs increased in AD were 
miR-378a-3p, -1291, -597-5p, and those decreased in AD 
were miR-143-3p, -142-3p, -328-3p,-193a-5p, -30a-3p, -19b-
3p, -30d-5p, -340-5p, -140-5p, -125b-5p, -26b-5p, -16-5p, 
-146a-5p, -29a-3p, -195-5p, -15b-5p, -223-3p. Candidate 
miRNAs not retested increased in AD were miR-520b, -603, 
-202-3p, -519b-3p, -484, while those decreased in AD were 
miR-584-5p, -145-3p, -24-3p, -532-5p, -28-3p, -146b-5p, 
-27b-3p, -331-3p, -145-5p, 590-5p, -365a-3p. ROC indicat-
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ed that the top performing linear combinations of 3 or 4 
microRNAs were a fair test to distinguish AD from NC (AUC 
0.80–0.82). Muller et al. (2016b) also used large group sizes 
of 57 AD, 37 MCI and 40 NC individuals to perform qPCR 
screening of microRNAs in CSF samples collected at three 
different centers. Importantly, no differences in microRNAs 
levels were found between AD, MCI and NC after correcting 
for confounding factors that included age, gender, sample 
storage time, centrifugation status. In a separate study, Muller 
et al. (2016a) showed using qPCR screening of microRNAs 
in CSF samples from 18 AD and 20 NC subjects with low 
concentrations of erythrocytes and leukocytes that miR-29a 
was upregulated in AD compared with NC and differentiat-
ed AD from NC with a sensitivity of 0.78 and specificity of 
0.60. Riancho et al. (2017) performed RT-qPCR validation 
of microRNAs in raw and exosome-enriched CSF sam-
ples from 28 AD and 28 NC individuals. AD patients had 
clinical presentation consistent with AD and positive CSF 
biomarkers Aβ and tau for AD. NC subjects had no mem-
ory impairments and negative CSF biomarkers Aβ and tau 
for AD. MiR-9-5p was not detected in AD but was present 
in 50% of NC samples. Similarly, miR-598 was absent in 
all AD but present in 72% of NC samples. Liu et al. (2018) 
collected CSF from 17 AD, 36 MCI and 41 SMC (subjective 
memory complaints) patients and which was centrifuged 
and cell pellet sorted into lymphocyte populations by flow 
cytometry. RT-PCR screening of microRNAs showed the 
relative expression of let-7b in CSF cells was significantly 
increased in AD and MCI compared with SMC. Total num-
ber of CSF lymphocytes and ratio of CD4+ lymphocytes in 
AD and MCI were significantly higher than in SMC. Let-
7b expression in CD4+ lymphocytes from AD and MCI was 
significantly higher than SMC, while let-7b expression in 
CD8+ T lymphocytes, B lymphocytes and NK cells were not 
significantly different. Adding let-7b to Aβ40 and Aβ42 as 
predictive parameters increased the probability of predicting 
AD to 89.7% (AUC 0.93).

Brain tissue and olfactory mucosa 
Kumar and Reddy (2018) using RT-PCR screening of 
microRNAs in frontal cortex Broadmann’s Area 10 of post-
mortem brains of 27 AD and 15 NC individuals found that 
the expression of miR-455-3p was significantly increased in 
AD compared with NC. Also using banked skin fibroblasts 
and lymphocytes from AD and NC individuals, expression 
of miR-455-3p was significantly higher for AD compared 
with NC. ROC indicated that frontal cortex miR-455-3p was 
a fair test to distinguish AD from NC (AUC 0.792, sensitivi-
ty 0.889, specificity 0.667). Weinberg et al. (2015) performed 
qPCR validation of microRNAs in frontal and inferior tem-
poral cortex of postmortem brains of 10 AD, 10 MCI and 12 
NC subjects. In frontal cortex, miR-498 and miR-150 were 
significantly upregulated in AD, and miR-150 was upregulat-
ed in MCI, compared with NC. Several microRNAs were sig-
nificantly downregulated in AD including miR-886-3p, -132, 
-21, -23a, -140-3p, -212, -23b, let-7d, -181a, -498, -150. Two 
distinct clusters miR-212/miR-132 and miR-23a/miR-23b 
were significantly downregulated in MCI. For temporal cor-

tex, miR-212 and miR-132 expression levels were decreased 
only in AD, with miR-23a and miR-23b being unchanged 
across the groups. Moon et al. (2016) used RT-PCR screening 
of microRNAs in olfactory mucosa of subjects categorized 
on clinical dementia rating (CDR) score, ADAS-Cog-K score 
and Beck Depression Inventory II score. The groupings were 
11 CDR 1, 13 CDR 0.5, and 9 CDR 0. Olfactory mucosa miR-
206 was increased in CDR 0.5 and CDR 1 compared with 
CDR 0 and increased with progression of dementia. ROC in-
dicated miR-206 was a good test to distinguish CDR 0.5 from 
CDR 0 (AUC 0.942, sensitivity 0.875, specificity 0.942). Also 
it was a good test to distinguish CDR 1 from CDR 0 (AUC 
0.976, sensitivity 0.909, specificity 0.933).

The microRNAs indicated to have upregulated or down-
regulated expression in blood serum, blood plasma, CSF of 
AD and MCI patients are shown in Figure 1.

Future Perspectives 
The development of reliable, minimally or non-invasive 
methods for diagnosing early AD in MCI patients is imper-
ative for increased efficiency of existing therapies, as well 
as for recruiting patients for clinical trials of new drugs, 
monitoring disease progression and response to treatment. 
At present the most reliable validation of blood or CSF 
microRNAs as biomarkers for AD is by histopathologic ex-
amination of postmortem brain sections. No methods are 
available to evaluate the expression of a specific microRNA 
in the brain of a living person. The olfactory epithelium has 
been shown to reflect brain Aβ and tau pathology in the ma-
jority of cases with pathologically verified AD (Arnold et al., 

Figure 1 Changes in microRNA expression in blood serum, blood 
plasma, and cerebrospinal fluid (CSF) of Alzheimer’s disease (AD) and 
mild cognitive impairment (MCI) patients compared to normal controls 
as indicated by polymerase chain reaction/real-time polymerase chain 
reaction (PCR/RT-PCR) screening and validation assays in the articles 
reviewed. 
Increased or decreased expression is indicated by arrows pointing upwards 
or downwards, respectively. Color code is AD (red) and MCI (blue).
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2010). Measurement of microRNAs in olfactory epithelium 
could be performed in patients with CSF levels of Aβ and 
tau indicative of AD as a possible way of validating chang-
es in blood microRNA levels. In this regard, the olfactory 
epithelium miR-206 level was significantly correlated with 
cognitive assessment score in non-depressed subjects with 
cognitive impairment and could serve as a diagnostic mark-
er of early AD (Moon et al., 2016).

Histomicroscopic examination of brain tissue specimens 
enables classification into early-, mid- and late-stages of AD. 
Brains stored in brain banks could be used for this purpose 
and blood collected from patients shortly before their death 
could be examined at early-stage AD (Braak NFT stages I 
and II) for diagnostic biomarkers. In addition progression of 
the disease could be monitored through biomarker analysis 
using blood samples from patients at mid-stage AD (Braak 
NFT stages III and IV) and late-stage AD (Braak NFT stages 
V and VI). Kumar et al. (2017) showed a gradual increase or 
decrease in several chosen serum microRNAs for controls, 
MCI and AD patients and could be used to monitor disease 
progression to AD. Also Hara et al. (2017) found in brains 
of patients in the screening/discovery set, miR-501-3p was 
markedly upregulated in AD compared with NC and pos-
itively correlated with disease progression as indicated by 
Braak staging. Keller et al. (2016) replicated and validated 
previous findings in a US study of blood microRNAs in AD 
patients compared to controls with a new cohort of subjects 
in Germany using next-generation sequencing. Included 
in the validation cohort were MCI patients and a substan-
tial dysregulation of microRNAs in AD patients was found 
compared to MCI with 119 being upregulated and 29 down-
regulated in AD compared to MCI. Upregulated expression 
of miR-151a-3p and downregulated expression of miR-
17-3p was found for AD compared with NC. In addition, 
blood samples of AD patients with disease duration < 2 
years (early-stage) were compared to those of patients with 
longer disease duration (mid-/late-stage) and no significant 
differences in microRNAs were observed. (For time frame 
of the stages in AD progression see Ellis and Higuera, 2016). 
These findings warant further replication using larger-sized 
cohorts and RT-qPCR validation.

Several of the reviewed studies showed that microRNAs 
could distinguish MCI from NC subjects. For example, Ku-
mar et al. (2017) observed an upregulation of miR-4668-5p 
in blood serum for MCI compared with NC but not AD pa-
tients. Kayano et al. (2016) using differential corelation anal-
ysis identified 20 pairs of microRNAs in blood plasma that 
distinguish MCI from NC, and these included the two pairs 
miR-191/miR-101 and miR-103/miR-222. Differential cor-
relation analysis detected much different and more sensitive 
MCI biomarkers compared to t-test. Also the highest AUC 
value of any four microRNAs was less than the highest in 
the two-pair approach. Nagaraj et al. (2017) reported a set of 
6 microRNAs in blood plasma that distingushed MCI from NC, 
and which was comprised of 4 upregulated microRNAs (483-
5p, 486-5p, 200a-3p, 502-3p) and 2 downregulated microRNAs 
(30b-5p, 142-3p). Liu et al. (2018) showed that let-7b ex-
pression in CD4+ lymphocytes isolated from CSF cell pellets 

of AD and MCI individuals was significantly higher than for 
SMC (subjective memory complaints) patients.
It is recognized that MCI patients are the most promising 
group of patients for whom therapy could be initiated to 
delay the onset of AD (Michael-Titus et al., 2010). Identifi-
cation of microRNAs that differentiate MCI or AD from NC 
with high sensitivity and specificity also provides a feasible 
therapeutic strategy. MicroRNA mimics or agomirs could 
be administered to increase the levels of specific microRNAs 
that are downregulated, while microRNA inhibitors or antag-
omirs could be given to lower the levels of those microRNAs 
that are upregulated, in MCI or AD compared to NC. These 
agents should be tested in future clinical trials. An increased 
risk of developing AD has been reported for females com-
pared with males at age of 65–75 years (Neu et al., 2017). 
Many of the studies presented in this review had considerable 
disparity in the numbers and proportions of male and female 
subjects in the AD, MCI and NC groups, as well as significant 
variation in age and extent of disease progression.

A panel of microRNAs has a higher AUC value than a 
single microRNA for distinguishing AD from NC (Jia et al., 
2016). Nagaraj et al. (2017) reported a 6 microRNA panel in 
blood plasma which distinguished non-demented control 
subjects from MCI patients diagnosed with probable early 
AD by CSF assay of Aβ42, total tau and phosphorylated tau. 
These 6 microRNAs were functionally mapped to proteins 
involved in AD pathology by searches in databases contain-
ing predictive and validated microRNA targets including 
β-secretase 1 (BACE1), BACE2, microtubule-associated 
protein/tau, and presenilin 2 (PSEN2). It was suggested that 
the 6 microRNA panel might serve as a possible replacement 
of invasive CSF biomarkers to identify early AD (Najaraj et 
al., 2017). Such a microRNA panel together with correlation 
analysis of specific paired microRNAs would provide a very 
good test for differentiaing early AD from NC. The amyloid 
precursor protein (APP) cleavage enzyme BACE1 was also a 
possible direct target of miR-425-5p and miR-339-5p which 
were upregulated in PBMNs from AD compared to NC 
group. Overexpression of miR-425-5p decreased BACE1 
protein levels (Ren et al. 2016).

A number of differentially expressed genes were found to 
be regulated by microRNAs. These included PLCB2, CD-
K5R1, LRP1, NDUFA4, DLG4 which were regulated by miR-
26b-5p, -103a-3p, -107. -26a-5p and these microRNAs had 
increased expression levels in blood samples of AD com-
pared with NC (Chang et al., 2017). Also 14 validated target 
genes were found of at least 5 of 33 microRNAs overalap-
ping in screening and validation studies of blood samples of 
AD compared with NC and were VEGFA, DICER1, AGO1, 
PTEN, CDKN1A, APP, RBI, CCND1, CCND2, WEE1, IL13, 
HMGA2, TNFRSF1OB, MYC (Keller et al., 2016). Many of 
these have key roles in AD and microRNAs might regulate 
the genes involved in signaling pathways. For example, low 
serum levels of vascular endothelial growth factor (VEGF) 
were associated with AD (Mateo et al., 2007) and VEGF was 
found to be expressed in the brains of AD patients and to 
increase with AD severity (Thomas et al., 2015). Also the tu-
mor-suppressor phosphatase and tensin homolog (PTEN) 
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was found to accumulate in NFTs (Sonoda et al., 2010). 
PTEN affects tau phosphorylation, binding to microtubules 
and formation of aggregates and neurite outgrowth (Zhang 
et al., 2006). PTEN is a negative regulator of PI3 kinase and 
the predominant effects on tau appeared to be medited by 
reducing ERK1/2 activity (Kerr et al., 2006). Furthermore, 
the expression of miR-455-3p was upregulated in blood se-
rum of AD compared to NC and shown to have a relation-
ship with 11 biological pathways and associated genes. The 
most important signaling pathways were extracellular ma-
trix (ECM)-receptor interaction, adherence junction, trans-
forming growth factor-β (TGF-β) signaling pathway, hippo 
signaling pathway, cell cycle pathway, and the regulation of 
the actin cytoskeleton. The upregulation of miR-455-3p in 
AD development might be associated with these signaling 
pathways and through altered expression of HSPG2, THBS1, 
COL3A1, COL6A1, TNC, MYC, Smad2, RAN, PLK1, TP73, 
ACTN1 and IQGAP1 genes (Kumar et al., 2017). Computa-
tional analysis predicted that the 3’-UTR of signal transduc-
tion and activator of transcription 3 (STAT3) mRNA to be a 
target of miR-29c-3p and miR-19b-3p, both of which had 
lower serum expression levels in AD than in NC subjects. A 
regulatory network of microRNAs and target genes was 
identified and contained miR-29c-3p and miR-19b-3p, 4 AD 
virulence genes, and STAT3 (Wu et al., 2017). Several stud-
ies have suggested that STAT3 activation can promote glial 
differentiation from neural progenitor cells and inhibit neu-
ronal differentiation of neural progenitor cells (Choi et al., 
2003; Sriram et al., 2004; Okada et al., 2006). STAT3 can 
cause excessive gliosis (Kwak et al., 2010; Tsuda et al., 2011) 
which is often found in AD patients. Interestingly, miR-501-
3p had lower serum expression level in AD compared to NC 
but was upregulated in the brains of AD patients (Hara et 
al., 2017). It is possible that miR-501-3p upregulation could 
cause alterations in the cell cyle of AD brains. Inappropriate 
cell cycle re-entry in postmitotic neurons, which leads to 
apoptotic death, is an early sign that preceeds the formation 
of amyloid plaques and NFTs (Kruman et al., 2004; Borda et 
al., 2010; Swerdlow, 2012). Alternatively, miR-501-3p could 
mediate the activity-dependent regulation of the AMPA 
(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) re-
ceptor subunit GluA1 in dendrites, suggesting that it con-
tributes to synaptic plasticity related to cognitive functions, 
including learning and memory (Hu et al., 2015). In the dif-
ferential correlation analysis study, miR-125b was one of the 
plasma microRNAs found in several pairs having a high 
AUC value (≥ 0.95) for MCI detection (Keller et al., 2016). 
Also miR-125b was dowregulated in serum of AD compared 
to NC (Wu et al., 2017). MiR-125b was shown to bind to 3′-
UTR of p53 mRNA and worked as a negative regulator of 
p53 (Le et al., 2009). p53 has been explored as a tumor su-
pressor but other aspects have been reported including to 
control diseases, aging and metabolism (Vousden and Lane, 
2007). p53 promotes apoptosis and has important implica-
tions for the brain during neurodegeneration in AD (Perlui-
gi et al., 2016). MAPK, TGF-β and neurotrophin signaling 
pathways were indicated as characteristic in MCI. Similarly 
to p53 signaling, these pathways have common biological 

functions such as cell survival, cell cycle and apoptosis 
(Kayano et al., 2016). MAPK pathway is also known to be 
involved in aberrant cellular signaling in AD pathology 
(Schnoder et al., 2016). Finally, animal models of AD and 
MCI have been described and could be used to examine and 
verify microRNA profiles in blood, blood serum, blood plas-
ma and brain tissues and to trial microRNA-based therapies. 
Transgenic mice overproducing mutant APP were found to 
develop extracellular Aβ plaques which was age-dependent, 
only occurring in mid to late adulthood in most of the ani-
mals (LaFeria and Green, 2012). While these mice did not 
develop NFTs, many exhibited increased tau hyperphos-
phorylation (Gotz J et al., 2007). These animals develop 
marked cognitive decline and undergo subtle alterations in 
tau that resemble the precursors to NFTs in the human 
brain (LaFeria and Green, 2012). Transgenic mice that ex-
press further gene alterations in addition to mutated APP 
such as mutated human tau (Lewis et al., 2001; Oddo et al., 
2003) or removal of nitric oxide synthase 2 (Wilcock et al., 
2008) develop NFTs similar to those in the human AD 
brain. One of the main considerations is that AD mouse 
models do not show the extensive neuronal loss found in the 
brains of AD patients. Most of the AD patients at clinical di-
agnosis already have reached Braak stage V or VI with 
marked synaptic and neuronal loss. Moreover, the loss of 
synapses is the best correlate of cognitive impairment in pa-
tients with AD (DeKosky et al., 1996). The synapse loss, 
which occurs before neuronal death in humans, is present in 
most of the mouse models and gives rise to the memory 
deficits seen in behavioral tasks for testing memory func-
tion. The memory deficits can be associated with neuro-
pathological alterations (Pepeu, 2004). Hence, therapies for 
reversing memory deficits in AD mouse models might aid in 
treating the memory decline in patients with MCI (Cuadra-
do-Tejedor and Garcia-Osta, 2014). The appearance of amy-
loid plaques and synapse loss appears in some mouse AD 
models even at 2 to 4 months of age. Aging is the most im-
portant risk factor for AD and despite being such an import-
ant risk factor it is often absent in studies with animal mod-
els. Therefore the use of late-plaque models for preclinical 
studies (e.g., Tg2576, PDAPP, TgAPP23) could be more ap-
propriate than using early-plaque models (Lee and Han, 
2013). In addition, late-plaque and early-plaque models may 
provide complementary data necessary to decipher the role 
of microRNAs as diagnostic and therapeutic tools for AD. 
In summary, considerable advances have been made in the 
recent studies included in this review with regard to distin-
guishing MCI and AD from NC by analyzing microRNAs in 
blood serum, blood plasma and CSF (Figure 1), and have 
included individual and combinations of microRNAs as well 
as differential correlation of paired microRNA testing. Lim-
itations that were identified in previous studies (Table 1) in-
cluded small group sizes, and marked disparity of individu-
als in the AD, MCI and NC groups including age, gender, 
number, ethnicity, stage of disease progression, screening 
and validation methods, data processing and normalization, 
statistical analysis. These have been taken into consideration 
in many of these recent studies, but some concerns still re-
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main regarding recruitment of patients including numbers, 
gender, inclusion and exclusion criteria, medications taken 
by the patients, most appropriate validation methods, nor-
malization and statistical analysis of data. It is hoped that 
future studies will continue to address these concerns in the 
planning and implementing of such studies so that a sensi-
tive and specific, minimally invasive test can be developed 
for identifying patients with MCI (early AD) and therapy 
initiated to slow the memory decline and progression to AD.
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