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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), manifests as mild
respiratory symptoms to severe respiratory failure and is associated with inflammation and other physiological changes.Of note, substantial increases
in plasma concentrations of α1-acid-glycoprotein and interleukin-6 have been observed among patients admitted to the hospital with advanced
SARS-CoV-2 infection. A physiologically based pharmacokinetic (PBPK) approach is a useful tool to evaluate and predict disease-related changes on
drug pharmacokinetics. A PBPK model of imatinib has previously been developed and verified in healthy people and patients with cancer. In this
study, the PBPK model of imatinib was successfully extrapolated to patients with SARS-CoV-2 infection by accounting for disease-related changes in
plasma α1-acid-glycoprotein concentrations and the potential drug interaction between imatinib and dexamethasone.The model demonstrated a good
predictive performance in describing total and unbound imatinib concentrations in patients with SARS-CoV-2 infection. PBPK simulations highlight
that an equivalent dose of imatinib may lead to substantially higher total drug concentrations in patients with SARS-CoV-2 infection compared to
that in patients with cancer, while the unbound concentrations remain comparable between the 2 patient populations. This supports the notion that
unbound trough concentration is a better exposure metric for dose adjustment of imatinib in patients with SARS-CoV-2 infection, compared to the
corresponding total drug concentration.Potential strategies for refinement and generalization of the PBPK modeling approach in the patient population
with SARS-CoV-2 are also provided in this article, which could be used to guide study design and inform dose adjustment in the future.
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Patients with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection often present
with dyspnea and pneumonitis, which may progress to
an acute respiratory distress syndrome.1 In addition to
the pulmonary manifestations, acute renal impairment
has been recognized as a prevalent complication of the
disease.2–4 Patients with SARS-CoV-2 infection and
preexisting chronic hepatic impairment, particularly
severe liver cirrhosis, tended to have a poor prognosis.5

SARS-CoV-2 infection has also been associated with
acute liver injury (characterized by a substantial
increase in alanine aminotransferase),5 with moderate
and severe liver injury present in 21% and 6% of
patients, respectively, who tested positive for SARS-
CoV-2 infection in a large US cohort.6 Total plasma
concentrations of imatinib, a kinase inhibitor that
binds extensively to plasma α1-acid-glycoprotein
(AAG), were considerably higher in patients with severe
SARS-CoV-2 infection than those reported in patients
with cancer.7 Understanding (patho)physiological
changes in patients with SARS-CoV-2 infection is
of clinical importance to help guide optimal dosing
regimens of drugs for individual patients.

Physiologically based pharmacokinetic (PBPK)
modeling approachesmay provide valuablemechanistic
insights into disease-related changes in drug
pharmacokinetics in patients with SARS-CoV-2.
PBPK modeling and simulation is also best positioned
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to identify and predict the extent of drug interactions
in this patient population and to predict interpatient
variability in drug pharmacokinetics due to the
complex interplay between SARS-CoV-2 infection and
comorbidities. A virtual population of patients with
SARS-CoV-2 infection that accounts for key clinical
features of the disease pertinent to drug disposition
is pivotal for reliable PBPK model–based predictions.
This study aimed to extend the use of a PBPKmodeling
approach to predict drug pharmacokinetics in patients
with SARS-CoV-2 infection, using imatinib as an
illustrative example.

Methods
All population-based PBPK modeling and simulations
were performed using the Simcyp Simulator (version
20 release 1, Certara UK Limited, Simcyp Division,
Sheffield, UK) with the default “general North Eu-
ropean Caucasian” as the base virtual population.
The mean plasma concentrations of AAG were mod-
ified from the Simcyp default value in healthy adult
males of 0.79 g/L (coefficient of variation [CV] 23%)
to 0.90 g/L (CV 30%) for the gastrointestinal stro-
mal tumor (GIST) cohort8 and 1.93 g/L (CV 30%)
for the SARS-CoV-2 patient cohort.7 The default
female-to-male ratio in AAG concentrations of 0.9
was maintained throughout the simulations. An ac-
curate representation of plasma AAG concentrations
is critical for PBPK model predictions of imatinib
concentrations due to its extensive binding to this
protein.9,10

Drug-related input parameters and key assumptions
underpinning the PBPK model of imatinib have been
detailed previously, as summarized in Table S1.11 As a
basic compound, imatinib binds extensively to AAG.9

The unbound fraction in plasma (fup) of 0.05 for
AAG binding was assigned to the PBPK model of
imatinib based on the reported value in healthy Euro-
pean populations.12,13 The corresponding dissociation
constant was fixed and assumed to be independent of
plasma AAG concentrations. Therefore, the variability
in fup reflected interindividual variability and disease-
related changes in AAG concentrations. The intrinsic
clearances of imatinib to N-desmethyl imatinib and
other metabolites were estimated from in vitro kinetic
data using recombinant cytochrome P450 (CYP) 3A4
and human liver microsomes (in the presence of aza-
mulin) as detailed in Table S1. The latter represented the
CYP2C8 metabolism pathway, assuming very minor
contribution (≈3%) of the other CYP enzymes to ima-
tinib metabolism.14 The mechanism based inhibition
(MBI) of CYP3A4 following chronic administration
of imatinib was modeled by an increase in degrada-

tion of the active enzyme and, thus, a decrease in
enzyme activity over time, based on a turnover model
as detailed elsewhere.15 PBPK model predictions that
incorporated a CYP3A4 MBI of imatinib were con-
sistent with the clinically observed interactions with
a range of CYP3A modulators; however, apparent
clearance of imatinib was underestimated. Hence, a
non–pathway-specific additional clearance (additional
intrinsic clearance) was assigned to the PBPKmodel of
imatinib at steady state to correct this underprediction.
The PBPK model of imatinib has been verified exten-
sively using clinical pharmacokinetic data from healthy
and disease populations (GIST and chronic myeloid
leukemia [CML]).11,16 The PBPK model was reverified
using clinically observed total and unbound imatinib
concentrations in patients with GIST,8 given that the
model was developed using a previous version of the
Simcyp Simulator (version 17).

Previously published clinical pharmacokinetic data
of imatinib in patients with reverse transcription
polymerase chain reaction test-confirmed SARS-
CoV-2 infection7,17 was retrieved from the original
publication using the WebPlotDigitizer version 4.2
(www.automeris.io/WebPlotDigitizer). Reported
unbound imatinib concentration in the patient
population with SARS-CoV-2 that were below half
of the lowest limit of quantitation (50 μg/L)7 were
excluded (2 sampling points). Sincemost of the patients
in this cohort (≈70%) also received dexamethasone,17

PBPK simulations were performed with and without
coadministration of dexamethasone (6mg daily orally).
Dexamethasone 6mg/day intravenously or orally for up
to 10 days or until hospital discharge is recommended
for treatment of hospitalized adults with severe SARS-
CoV-2 infection who require supplemental oxygen
or mechanical ventilation.18 PBPK input parameters
for dexamethasone are summarized in Table S1.
The PBPK model of dexamethasone was verified
using clinical pharmacokinetic data in patients with
community-acquired pneumonia and in the patient
population with SARS-CoV-2 (Table 1), the latter
of which implemented a sparse sampling strategy.
The patient cohort with SARS-CoV-2 also received
remdesivir (200 mg loading dose on day 1, followed
by 100 mg daily given as a short-term intravenous
infusion) as part of the treatment regimen. Hence, the
potential CYP3A inhibitory effect by remdesivir on
dexamethasone metabolism (dexamethasone may act
as both a substrate and inducer of CYP3A enzymes)
was accounted for in the simulation. A previously
published PBPK model of remdesivir19 was employed
with additional parameter of CYP3A inhibitory
constant (Ki) of 0.8 μmol/L,20 assuming a competitive
inhibition of the isoenzymes.

http://www.automeris.io/WebPlotDigitizer
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Table 1. Summary of Clinical Studies Used to Verify the PBPK Models of Imatinib and Dexamethasone and Comparison Between Clinically Reported
Values and PBPK Model Predictions of Key Pharmacokinetics Parameters of the Drugs

Drug Patient Characteristics
Pharmacokinetic

Parameter
Clinically

Reported Value
PBPK Model
Prediction

PBPK Model

Prediction
(With

Modulator)a

Prediction Fold Differenceb

Monotherapy
With

Modulator

Imatinib7,17 Patients being hospitalized with
SARS-CoV-2 infection (n =
134, 30 women), with median
age of 64 years (IQR, 57-73)
and plasma AAG level of
1.93 g/L (IQR, 1.64-2.28),
receiving imatinib (400 mg
daily with an 800-mg loading
dose). Comedications
included dexamethasone
(88 patients), remdesivir
(30 patients), chloroquine
(14 patients), and PPI
(49 patients). Plasma samples
were collected up to 9 days
after commencement of
treatment. Unbound plasma
concentrations of imatinib
were measured in plasma
samples from 38 patients
receiving at least 3 doses of
imatinib.

Css,max (μg/L)c 7157 (IQR,
4358-11 761)d

4668 4374 0.65 0.61

5983 (IQR,
2504-8346)d

0.78 0.73

Css,min (μg/L)c 2156 (IQR,
738-4179)d

2266 2036 1.05 0.94

1791 (IQR,
928-3204)d

1.27 1.14

Css,max,u (μg/L) 80.7 (IQR,
44.7-158.6)d

102.1 101.7 1.27 1.26

Css,min,u (μg/L) 38.0 (IQR,
31.5-56.9)d

49.4 49.2 1.30 1.29

Dexamethasone21 Patients with
community-acquired
pneumonia (n = 15,
2 women), aged 68.5 ±
13.3 years, with a median
BMI of 27.5 kg/m2 (IQR,
25.2-30.4), being treated
with dexamethasone (6 mg
per oral daily). Plasma
samples were taken at day 1
of treatment.

AUC0-∞ (μg·h/L) 774 (IQR, 146)d 651.1 NA 0.84 NA
CL/F (L/h) 7.7 (IQR,

5.2-9.7)d
9.2 N.A. 1.19 NA

Dexamethasone22 2 male patients admitted to
hospital with SARS-CoV-2
infection (41 and 52 years of
age), receiving both
dexamethasone (6 mg) and
remdesivir (100 mg) as part
of the treatment regimen.
Plasma samples were
collected for up to 6 days.e

Cmax,ss (μg/L) 64.17- 76.58 70.73 71.21
C20h (μg/L) 2.73-8.34 16.46 16.59

AAG, α1-acid-glycoprotein; AUC0-∞, area under the plasma concentration–time curve from time 0 to infinity; C20h, plasma concentration at 20 hours after
dosing; CL/F, apparent clearance; Cmax,ss, peak plasma concentration at steady state; Cmax,ss,u, unbound peak plasma concentration at steady state; Cmin,ss, trough
plasma concentration at steady state; Cmin,ss,u, unbound trough plasma concentration at steady state; IQR, interquartile range; NA, not applicable; PPI, proton
pump inhibitor.
a
PBPK model predicted values in the presence of coadministration with either dexamethasone (for imatinib) or remdesivir (for dexamethasone).

b
Prediction fold differences expressed as the ratio of PBPK prediction to clinically observed values.

c
Two different clinically reported values each correspond to the subsets of patient cohort used for development and verification of the population
pharmacokinetic model of imatinib, respectively.7
d
Reported as median values with the corresponding IQR.

e
For comparison with the PBPK simulations, all the samples were assumed to be collected at day 4 after initiation of treatment.

PBPK simulations of imatinib and dexametha-
sone pharmacokinetics were performed with trial de-
signs (number of patients, age range, proportion of
male/female patients, and dosing regimens) matched

to the corresponding clinical studies (Table 1). A total
of 10 virtual trials for each simulation were carried
out. Clinically observed concentrations of imatinib
and dexamethasone were superimposed to simulated
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Figure 1. Physiologically based pharmacokinetic (PBPK) model predictions of total and unbound plasma concentrations of imatinib in patients with
gastrointestinal stromal tumor (a, b) and in a patient cohort with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (c, d). Comparison
of PBPK simulations and clinically observed concentrations of dexamethasone (6 mg) given as a single oral dose in patients with community-acquired
pneumonia (e) and as multiple oral doses in patients with SARS-CoV-2 infection (f). Mean simulated concentrations (blue lines) and the prediction
interval (5th to 95th percentile as gray area) are depicted in linear scale with the corresponding semilogarithmic plots as insets. Clinically observed
individual (a-d, f) and median plasma concentrations (e) are represented by the black circles.

profiles for a visual inspection of predictive perfor-
mance. Prism version 9.3.0 (GraphPad Software, San
Diego, California) was used to generate the simulated
plots. The ratios of predicted to observed pharmacoki-
netic parameters of the drugs were also calculated.

Results
Clinically observed concentrations of imatinib in pa-
tients with GIST were well predicted by the PBPK
model. More than 90% of the total and 85% of the
unbound (free) drug concentrations fell within the
prediction interval (5th to 95th percentile of PBPK
model predictions), as shown in Figure 1A and B.
Similarly, PBPK simulations were able to describe phar-
macokinetic profiles of imatinib in patients with SARS-

CoV-2 infection, evaluated by a visual inspection of
the simulated pharmacokinetic profiles of both total
and free (unbound) imatinib (Figure 1C and D, respec-
tively). However, total peak concentrations of imatinib
at steady state (Css,max) appeared to be underestimated
with prediction fold differences (ratios of predicted to
observed pharmacokinetic parameters) of 0.6 to 0.8
(Table 1).

Incorporation of CYP3A induction by concomi-
tantly administered dexamethasone in the PBPK sim-
ulation slightly improved the prediction fold difference
of trough concentrations of imatinib (Css,min), but not
Css,max (Table 1), where the prediction fold differences
for imatinib Css,min were reduced from 1.05 to 0.94
and from 1.27 to 1.14 for the first and second subset
of the clinical data set, respectively.7 Verification of
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Figure 2. Summary of physiological changes and interacting factors that may explain interindividual variability in pharmacokinetics and response to
drugs in patients with SARS-CoV-2 infection.All the illustrations were taken from the Servier Medical Art (SMART, https://smart.servier.com). a,71 b,72

c,73 d,2 e,45 f,74 g,7 h,43 i,60 j,61 k,75 l,36 m,76 n.77 AAG, α1-acid-glycoprotein; ARDS, acute respiratory distress syndrome; CVD, cardiovascular disease;
CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; ELF, epithelial lining fluid; GFR, glomerular filtration rate; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2.

the PBPK model was limited by a paucity of clinical
pharmacokinetic data for dexamethasone in patients
with SARS-CoV-2. The model was first verified us-
ing clinically observed plasma concentrations from
patients with community-acquired pneumonia21 given
some similarities in clinical features and respiratory-
related symptoms (eg, dyspnea and lung inflamma-
tions) compared to those of SARS-CoV-2 infection.
The PBPK model of dexamethasone was also verified
using sparsely sampled plasma concentrations from a
patient cohort with SARS-CoV-2,22 with a reasonable
predictive performance (Figure 1F).

Physiological changes observed in patients with
SARS-CoV-2 infection that are relevant for further
improvement and generalization of the PBPK model-
ing approach in this patient population are outlined in
Figure 2. It is noteworthy that this was by no means
an exhaustive summary of clinical information collated
from the literature.

Discussion
The current study successfully implements a PBPK
modeling approach to simulate total and unbound con-
centrations of imatinib in patients with SARS-CoV-
2 infection. This finding supports the use of a PBPK
modeling approach for prediction of pharmacokinetics

of new and repurposed drugs for potential treatment of
SARS-CoV-2 infection and may help inform or predict
previously unstudied drug interactions in this patient
population.

Therewas good agreement between the PBPKmodel
prediction and clinically observed concentrations of
imatinib at steady state in patients with GIST (Fig-
ure 1A and B). This illustrates the capability of a PBPK
modeling approach to predict interpatient variability
in imatinib pharmacokinetics by accounting for the
variability in plasma AAG concentration and other
physiological characteristics underlying pharmacoki-
netic variability (eg, protein level of CYP3A4 and
CYP2C8, which together account for the majority
of imatinib metabolism).9 Population distributions of
AAG concentrations reflect the variability in fup and
contribute to interindividual variability in total hep-
atic clearance, as accounted for in the PBPK simu-
lations. Similarly, considering the substantial increase
in plasma AAG concentrations observed in patients
with SARS-CoV-2 infection (up to 2.4-fold increase
compared to that in healthy individuals and patients
with CML or GIST) is predictive of disease-related
changes in imatinib pharmacokinetics in this patient
population.

PBPKmodel predictions of both total and unbound
concentrations of imatinib were in concordance with

https://smart.servier.com
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the corresponding clinical pharmacokinetic data in
patients with SARS-CoV-2 (Figure 1C and D), despite
slight underpredictions of imatinib Css,max. This dis-
parity was likely due to the disease-related alteration
in drug distribution, which was not accounted for
in the current PBPK model. Indeed, a population
pharmacokinetic analysis hinted at a 60% lower ap-
parent volume of distribution of imatinib in a SARS-
CoV-2 population compared to that of patients with
CML/GIST.7 The currently available in silico methods
within the PBPK platforms for prediction of tissue-
to-plasma partition coefficients lack the capability to
account for disease-associated changes of fup on the es-
timated tissue-to-plasma partition coefficient values.23

This emphasizes the necessity to refine the in silico pre-
diction methods using a more mechanistic approach.
This is also the case for transporter-mediated alteration
in apparent volume of distribution due to drug interac-
tions or disease-related changes in abundance of drug
transporters, which the current PBPKplatforms cannot
predict.24 Despite a trend for underprediction of ima-
tinibCss,max in patients with SARS-CoV-2 infection, the
model has a potential to predict responses to imatinib
(efficacy and treatment-related adverse effects), which
are likely driven by the unbound drug concentrations,
as seen with GIST and CML.25–27

Systemic exposures to imatinib following a multiple-
dosing regimen were significantly affected by coad-
ministration of carbamazepine (a relatively potent
CYP3A inducer),28 but not ritonavir (a strong CYP3A
inhibitor).29 This suggests that at steady state, imatinib
is more susceptible to induction compared to inhibi-
tion of CYP3A enzymes. Meanwhile, dexamethasone
has been reported as a substrate and dose-dependent
inducer of CYP3A, with evidence for interactions with
probe drugs of the isoenzymes.30 Hence, the potential
drug interaction between imatinib and dexamethasone
was accounted for in the PBPK simulations. Despite
only slight improvement of the model predictions (Ta-
ble 1), it is important to account for drug interactions
with dexamethasone to increase the mechanistic inter-
pretability and representation of the PBPK model in
patients with SARS-CoV-2 infection, particularly to
predict complex drug interaction scenarios (eg,multiple
comedications with CYP3A substrates and/or modu-
lators). Importantly, as the extent of in vivo CYP3A
induction by dexamethasone varies greatly between
CYP3A substrates (victim drugs) and dosing regimens
of dexamethasone,30 the current case study with ima-
tinib may help streamline future endeavors to refine the
PBPK modeling approaches in patients with SARS-
CoV-2 infection.

It is worth mentioning that dexamethasone has been
reported to increase the accumulation of substrates of
breast cancer resistance protein (BCRP) in cell lines

overexpressing BCRP, either through direct inhibition
or downregulation of the transporter.31,32 However,
coadministration of dexamethasone is unlikely to affect
imatinib absorption. Imatinib is almost completely
bioavailable33 despite being a substrate of both (P-
glycoprotein [P-gp] or multidrug resistance protein 1)
and BCRP transporters and highly ionized at gas-
trointestinal pH.9 This highlights the importance of
uptake transporter(s) in the enterocytes that outweighs
the intestinal efflux of imatinib mediated by P-gp and
BCRP. However, available clinical evidence has been
conflicting as to which transporter is primarily respon-
sible for the uptake of imatinib, as has been summarized
previously.16 Hence, the potential effect of intestinal
BCRP suppression by concomitant oral administration
of dexamethasone on imatinib pharmacokinetics in
patients with SARS-CoV-2 infection is unlikely to be
of clinical importance.

Potential clinical relevance of CYP3A inhibition by
remdesivir on dexamethasone pharmacokinetics has
also been explored, since the patient cohort received
both drugs. Dexamethasone is a substrate and inducer
of CYP3A4, with fraction metabolized of ≈0.9.34,35

Remdesivir was predicted to have little to no impact on
dexamethasone clearance due to a relatively short half-
life (≈1 hour) following a 30-minute intravenous infu-
sion. Meanwhile, the longer-circulating metabolites of
remdesivir (GS-704277 and GS-441524) have not been
identified as CYP3A inhibitors. Nevertheless, peak
concentrations of the metabolites were lower by 1 order
of magnitude compared to the parent drug.19 Further
verification of the PBPK model of dexamethasone
using larger clinical pharmacokinetic data in patients
with SARS-CoV-2 is warranted as the data become
available (eg, the ongoing clinical trial NCT04996784;
https://clinicaltrials.gov).

Serum levels of interleukin-6 (IL-6), a proinflam-
matory cytokine able to suppress CYP3A activity,
were markedly elevated in severe and nonsevere (mild)
SARS-CoV-2 infections with typical mean values of
56.8 (range, 41.4-72.3) and 17.3 (range, 13.5-21.1)
pg/mL, respectively,36 compared to an average value
of 5.2 pg/mL in healthy populations.37 Serum IL-
6 concentration of at least 80 pg/mL has also been
proposed as a predictive cutoff for respiratory failure
(acute respiratory distress syndrome) and the need for
mechanical ventilation.38 However, CYP3A suppres-
sion by IL-6 is unlikely to influence systemic expo-
sures of imatinib. Imatinib inhibits its own CYP3A4-
mediated metabolism through an MBI,14 rendering
limited residual CYP3A4 activity, which can further
be inhibited (suppressed) by IL-6. Interestingly, the
CYP3A-mediated hydroxylation of midazolam in pa-
tients with moderate to severe SARS-CoV-2 infections
was reduced only to a minor extent (22%) compared to

https://clinicaltrials.gov
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the baseline value (after recovery from the infection).39

However, the potential effect of elevated serum IL-
6 level on the pharmacokinetics of other CYP3A
substrates and on the activity of other CYP enzymes
(ie, CYP1A2 and CYP2C19) in SARS-CoV-2 infection
should be considered.39 It is worth mentioning that
dexamethasone as an anti-inflammatory corticosteroid
drug may downregulate the production of IL-6, poten-
tially offsetting its CYP suppression activity. A complex
semimechanistic turnover model may provide further
insights into the dynamic interplay between IL-6 and
dexamethasone on net CYP3A activity. Coadministra-
tion of tocilizumab, a monoclonal antibody against
the IL-6 receptor, may further attenuate the CYP3A
suppression by IL-6. Tocilizumab as a single intra-
venous dose, in combination with dexamethasone, may
be recommended for treatment of severe SARS-CoV-2
infection.40 Meanwhile, monoclonal antibodies target-
ing the spike protein of SARS-CoV-2 (eg, sotrovimab),
which are recommended to treat patients with mild to
moderate SARS-CoV-2 infection who are at high risk
of clinical progression,41 have not been identified to
affect in vivo activity of CYP enzymes.

Sensitivity analyses were performed to identify po-
tentially influential parameters in the PBPK model
of imatinib to reasonably capture the clinically ob-
served concentrations in patients with SARS-CoV-2
infection, as outlined in Figure S1. Of all the ex-
plored parameters, plasma AAG concentration was
the most important determinant for total imatinib
concentrations in the patient population with SARS-
CoV-2, emphasizing the importance of accounting for
disease-related changes in protein binding of imatinib.
Conversely, the unbound concentration of imatinib was
predicted to be far less sensitive to variation in plasma
AAG concentrations, where an increase from typical
values in healthy and cancer populations of 0.8 to
0.9 g/L to 1.8 g/L observed in patients with SARS-
CoV-2 infection,7,42 led to only around 30% changes
in predicted unbound Css,max and Css,min of imatinib
(Figure S1B). Hepatic CYP2C8 was predicted to be of
more importance to systemic exposures of imatinib at
steady state, for both total (Figure S1) and unbound
concentrations of the drug (not shown), than hepatic
CYP3A4. This was mainly due to autoinhibition of the
latter following chronic administration of imatinib.14

Nevertheless, the typical population value of CYP2C8
abundance was implemented throughout the PBPK
simulations due to the lack of clinical and/or in vitro
data to support the reduction of CYP2C8 activity in
moderate to severe SARS-CoV-2 infection. Variation
in protein level of CYP3A4 in enterocytes was pre-
dicted to have a negligible impact on plasma concen-
trations of imatinib, in line with high bioavailability of
imatinib.33

A sensitivity analysis of abundances in hepatic P-gp
and BCRP from 0.1- to 10-fold of the default values
in healthy European populations suggested little to no
effect on systemic exposure of imatinib. This trend
may be explained by the limited role of P-gp– and
BCRP-mediated biliary clearance of imatinib, which
in total contributes to ≈30% to total imatinib clear-
ance. The extent of interaction between imatinib and
dexamethasone may substantially be affected by the
concentration that provides half of the maximum fold
induction of dexamethasone assigned to the model,
particularly when the value was lowered by 2 or 3
orders of magnitude (Figure S1H). However, further
verifications using a range of CYP3A substrates are
warranted.

Lack of significant differences in unbound concen-
trations of imatinib between the CML/GIST cohort
and the patient population with SARS-CoV-2 7 was
unsurprising, since imatinib has a low hepatic extrac-
tion ratio.9 Hence, changes in the extent of protein
binding of imatinib due to SARS-CoV-2 infection
affected the total but not unbound drug clearance. This
was also the case for lopinavir, which also extensively
binds to plasma AAG, in patients with SARS-CoV-2
infection.43 Therefore, unbound trough concentrations
(Css,min,u) of imatinib are likely to be a clinically rele-
vant exposure metric to predict treatment outcomes in
patients with SARS-CoV-2 and CML/GIST. However,
monitoring imatinib Css,min,u may present logistical
and analytical issues.8 More importantly, the desirable
range for imatinib Css,min,u has not been as well estab-
lished as that of Css,min.44 It is also noteworthy that the
dynamic of SARS-CoV-2–induced changes in plasma
AAG level over time (ie, the time required for the
elevated AAG to reach the baseline value after recovery
from SARS-CoV-2 infection) is yet to be determined.

Acute and chronic hepatic and renal impairments
were among the exclusion criteria for the patient
cohort with SARS-CoV-2 from which the imatinib
pharmacokinetic data was taken and, thus, no fur-
ther adjustments in blood flows to liver and kidney
tissue compartments in the PBPK simulations were
necessary. However, this needs to be accounted for in
the PBPK simulations of patients with severe SARS-
CoV-2 infection.4,6,45 While PBPK modeling strategies
to simulate pharmacokinetic profiles in patients with
chronic liver impairment (Child-Pugh A to C cirrho-
sis) has been established,46,47 physiological changes in
acute liver failure pertinent to drug pharmacokinetics
are less clear and, hence, may pose a challenge in
the implementation of PBPK modeling approaches in
patients with SARS-CoV-2 with hepatic complications.
Despite accumulating evidence of lower abundances
of many CYP and non-CYP enzymes in chronic liver
impairment,48,49 the corresponding data from patients
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Table 2. Potential Enablers and Barriers to Implementation of a PBPK Modeling Approach for Prediction of Drug Pharmacokinetics in Patients With
SARS-CoV-2 Infection

Points to Consider Enablers Barriers

Development of a
virtual SARS-CoV-2
patient population

A PBPK modeling approach enables a systematic and
comprehensive integration of different physiological
factors underpinning interpatient variability in drug
pharmacokinetics.

There is a paucity of clinical data on (patho)physiological
characteristics and protein level or in vivo activity of
drug metabolizing enzymes and transporters in patients
with SARS-CoV-2 infection.

Several dedicated PBPK platforms have been developed
with predefined validated PBPK equations and a
constantly maintained database related to system
parameters, ensuring reliability of the modeling and
simulation workflow.62,63

It is not always possible to discern the extent of changes in
physiological parameters of interest in patients with
severe SARS-CoV-2 infection from those of moderate
or mild infection due to the nature of the clinical data.

Effect of disease-related changes in fup and activity of drug
transporters on volume of distribution has not been
accounted for in the current PBPK platforms.23,24

A complex interplay
between
SARS-CoV-2
infection and
comorbidities

Established knowledge and increasingly common use of a
PBPK modeling approach to predict drug concentrations
in disease and special patient populations, particularly
patients with renal and hepatic (cirrhosis) impairments,
obese population, and older adults47,64–66

There was a trend for overestimation of systemic drug
exposures in patients with chronic kidney and liver
failures, where the prediction fold-differences of PBPK
models tended to be higher with increasing severity of
the organ impairment46

The extent of pathophysiological changes in chronic
impairment of the eliminating organs may differ from
those of acute organ impairment, the latter of which are
more frequently associated with SARS-CoV-2
infection.2,6

PBPK model
representation of
suppression of CYP
enzymes by
proinflammatory
mediators,
particularly IL-6

PBPK modeling strategies to account for CYP3A
suppression by IL-6 in general inflammatory diseases has
been proposed,67 which was recently extrapolated to
SARS-CoV-2 infection.68

Dexamethasone has become one of the staple drugs for
treatment of patients being hospitalized with
SARS-CoV-2 infection. Dexamethasone is a weak to
moderate CYP3A inducer that may as well downregulate
the synthesis of IL-6 and, thus, attenuating the CYP3A
suppression effect by the cytokine.

A more complex model may be required to physiologically
represent the dynamic interplay between
dexamethasone and IL-6 in regulating in vivo CYP3A
activity.

Further verifications of
the PBPK models for
SARS-CoV-2 patient
population

Clinical pharmacokinetic data for new and repurposed
drugs intended for treatment of SARS-CoV-2 infection
or associated comorbidities is accumulating.

Most of the reported pharmacokinetic data in this patient
population were derived from clinical studies with a
sparse sampling strategy and oftentimes did not cover
different spectrum of the disease severity.

Comorbidities and potential for drug interactions in patient
cohorts from which the pharmacokinetic data was
extracted should be accounted for during verifications of
the PBPK model.

Prediction of local drug
concentrations in
lung tissues

A permeability-limited lung model has been proposed to
predict drug disposition in lung tissues and ELF following
intrapulmonary delivery or other routes of drug
administration.69,70

Lack of robust human data for several important
physiological components of the lung model (eg,
prediction of drug permeability across each segment of
the respiratory tract and mucocilliary turnover in
inflamed lung tissues due to SARS-CoV-2 infection) may
limit the generalization of the model.

CYP, cytochrome P450; ELF, epithelial lining fluid; fup, unbound fraction in plasma; IL-6, interleukin-6; PBPK, physiologically based pharmacokinetic; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2.

with acute liver failure is lacking. Interestingly, a dose-
dependent decrease in mRNA level of CYP3A11, the
murine ortholog of human CYP3A4 enzyme, was ob-
served in a mouse model of acetaminophen-induced
acute liver injury.50 It is noteworthy that changes in
abundance and/or activity of CYP enzymes related to
acute liver injury, the suppression effect of proinflam-
matory cytokines and interactions with comedications
may all contribute to the net in vivo phenotype of
the enzymes in patients with SARS-CoV-2 infection. A

meta-analysis comparing in vitro activity and/or pro-
tein level of a range of CYP enzymes between healthy
individuals and patients with cancer led to inconclu-
sive results.51 Proinflammatory mediators, particularly
IL-6 that may suppress CYP3A activity, have been
linked to disease progression in patients with advanced
cancers.52 However, systemic exposures to midazolam,
a selective and sensitive CYP3A probe drug, in patients
with advanced solid tumors (including GIST) were
similar to that in healthy populations,53 supporting
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the notion that CYP3A activity is relatively unaltered
in patients with cancer.51 Hence, no modification was
made on abundances of CYP3A4 and CYP2C8 en-
zymes throughout the PBPK simulations of imatinib in
this study. It is interesting to note that imatinib has been
reported to cause drug-induced liver injury, although
this adverse effect is relatively rare and idiosyncratic in
nature.54

Acute kidney injury (AKI) is one of the frequent
complications or comorbidities of patients hospital-
ized with moderate to severe SARS-CoV-2 infection.3,4

Cancer may also increase the likelihood of acute and
chronic renal impairment. The underlying mechanisms
are not entirely clear, but the risk of developing renal
injuries appears to be higher in patients with urological
cancers and those undergoing treatment with cytotoxic
drugs that may induce nephrotoxicity.55 Kidney dys-
function is also a relatively common presenting symp-
toms among patients with multiple myeloma, which
can be reversed in most cases as the cancer being
treated.56 Interestingly, treatment with imatinib has
been associated with a higher risk for chronic renal im-
pairment. Therewas a downward trend of the estimated
glomerular filtration rate in patients with CML over 4
years of treatment with imatinib before stabilizing.57

As is the case with chronic kidney disease, AKI may
lead to a substantial decrease in renal drug clearance
and hepatic CYP2C8 activity, the latter of which is
likely due to the accumulation of uremic toxins.58,59

However, clinical data in patients with AKI to support
this is currently limited. Renal impairment is unlikely to
affect the systemic exposure to imatinib due to very low
contribution of renal elimination to the overall drug
clearance (Table S1). Nevertheless, potential changes
in CYP2C8 activity and plasma protein concentrations
should be accounted for in the PBPK simulations
to simulate patients with SARS-CoV-2 infection and
AKI. It is also worth noting that patients with cancers
typically have lower plasma albumin concentrations
compared to healthy populations, with a more ex-
tensive decrease in albumin concentrations as disease
progresses.51,53 Similarly, hypoalbuminemia has been
associated with patients with severe SARS-CoV-2 in-
fection or in critical care.60,61 Nevertheless, the disease-
related changes in plasma albumin concentrations are
unlikely to affect imatinib pharmacokinetics as the drug
has higher affinity toward plasma AAG compared to
albumin.8

Other (patho)physiological changes observed in
patients with SARS-CoV-2 infection, along with
knowledge gaps and critical evaluations on poten-
tial barriers and enablers for successful implemen-
tation of PBPK modeling approaches in the pa-
tient population with SARS-CoV-2, are outlined in
Figure 2 and Table 2. More comprehensive clini-

cal data on (patho)physiological changes relevant for
drug disposition stratified by disease severity, and fur-
ther verification with larger clinical pharmacokinetic
data, are warranted for generalization of the PBPK
modeling approach in patients with SARS-CoV-2
infection.

Conclusion
In conclusion, a PBPK modeling approach was suc-
cessfully implemented to predict imatinib pharma-
cokinetics in patients with SARS-CoV-2 infection, by
accounting for disease-associated changes in plasma
AAG concentration and the potential drug interac-
tion between imatinib and dexamethasone. Despite
this promising finding, a refinement of the virtual
SARS-CoV-2 population model by comprehensively
accounting for physiological characteristics of the pa-
tient population and further verification using different
drugs used for treatment of SARS-CoV-2 infection or
comorbidities are desirable.
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