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Transcriptional synergy as an emergent property
defining cell subpopulation identity enables
population shift
Satoshi Okawa1, Carmen Saltó2, Srikanth Ravichandran1, Shanzheng Yang 2, Enrique M. Toledo 2,4,

Ernest Arenas 2 & Antonio del Sol1,3

Single-cell RNA sequencing allows defining molecularly distinct cell subpopulations. How-

ever, the identification of specific sets of transcription factors (TFs) that define the identity of

these subpopulations remains a challenge. Here we propose that subpopulation identity

emerges from the synergistic activity of multiple TFs. Based on this concept, we develop a

computational platform (TransSyn) for identifying synergistic transcriptional cores that

determine cell subpopulation identities. TransSyn leverages single-cell RNA-seq data, and

performs a dynamic search for an optimal synergistic transcriptional core using an infor-

mation theoretic measure of synergy. A large-scale TransSyn analysis identifies transcrip-

tional cores for 186 subpopulations, and predicts identity conversion TFs between 3786 pairs

of cell subpopulations. Finally, TransSyn predictions enable experimental conversion of

human hindbrain neuroepithelial cells into medial floor plate midbrain progenitors, capable of

rapidly differentiating into dopaminergic neurons. Thus, TransSyn can facilitate designing

strategies for conversion of cell subpopulation identities with potential applications in

regenerative medicine.
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Recent advances in single-cell RNA-seq technologies have
allowed to classify cells into distinct cell subpopulations
based on their gene expression profiles. The identity of

these cell subpopulations can range from well-defined cell types,
subtypes of a same cell type to cells with unclear characters. It has
been observed that a handful of specific TFs is sufficient to
maintain cell subpopulation identity1. Identification of such core
TFs can facilitate the characterization and conversion of any cell
subpopulation, including rare and previously unknown ones,
opening thus novel functional applications2. However, this is a
challenge since the core TFs that determine the identity of such
novel cell subpopulations are largely unknown. Importantly, the
definition of identity TFs is dependent on the cellular context in
which it is employed3. In the context of cell/tissue types, for
example between neurons and hepatocytes, the identity TFs are
defined by the comparison between these largely different cell
types. However, in the context of cell subpopulations within a cell
type, such as different subtypes of dopaminergic neurons4, the
definition of identity TFs becomes subtler due to the increased
commonality between them.

Existing methods for identifying TFs for cell identity or cellular
conversions5–7 rely on a set of gene expression profiles of bulk
cell/tissue types. Consequently, the application of these methods
is limited to those bulk cell/tissue types, and cannot be applied to
novel subpopulations of cells identified in a newly generated
single-cell dataset. In addition, these methods detect potential
identity TFs by focusing on properties of individual TFs, such as
gene expression levels or the number of their unique target genes,
rather than emergent properties of potential identity TFs them-
selves, such as transcriptional synergy among them.

Combinatorial binding of specific TFs to enhancers is known
to result in a synergistic activity essential for robust and specific
transcriptional programmes during development8. The func-
tionality of several TFs operating together to achieve a common
output has been studied in detail in embryonic stem cells (ESCs),
where a transcriptional core involving Pou5f1, Sox2, and Nanog
controls pluripotency9. Furthermore, it has been observed in
different systems that multiple TFs are required to function
cooperatively to sustain the overall cellular phenotype10.

Here, we propose the general concept that cell subpopulation
identity is an emergent property arising from a synergistic activity of
multiple TFs that stabilizes their gene expression levels. Based on this
concept, we develop a computational platform, TransSyn, for the
identification of synergistic transcriptional cores defining cell sub-
population identities. TransSyn does not depend on the inference of
gene regulatory networks (GRNs), which are often incomplete and
their topological characteristics not always capture the multiple
direct and indirect interactions between genes. In addition, it only
requires a single-cell RNA-seq data of distinct subpopulations as
input (Fig. 1a), and does not depend on pre-compiled gene
expression datasets or any other prior knowledge. Consequently,
TransSyn infers subpopulation identities within a cell population,
and aids in designing strategies to convert cell subpopulation iden-
tities, especially in cases of closely related subpopulations in func-
tionally different states. Finally, as a direct application of TransSyn,
we show that the knowledge of cell subpopulation-specific syner-
gistic transcriptional cores enables experimental conversion of
human hindbrain neuroepithelial cells into medial floor plate mid-
brain progenitors, which rapidly differentiate into DA neurons.
Thus, TransSyn can facilitate conversion of cell subpopulation
identities with potential applications in regenerative medicine.

Results
Rationale and outline of the method. TransSyn identifies a
specific combination of TFs that are most frequently expressed

and exhibit high transcriptional synergy computed by multi-
variate mutual information (MMI)11. MMI measures the infor-
mation (i.e., predictability) gained by an additional variable (TF),
which cannot be explained by the simple summation of the
information given by the subsets of variables. For example, MMI
among three TFs, X, Y, and Z, is defined as:

MMI X;Y;Zð Þ ¼ I X;Zð Þ þ I Y;Zð Þ � I X;Y;Zð Þ;

This indicates that when MMI is negative, the three TFs are
synergistically interacting with each other, because the knowledge
of both X and Y together (i.e., I(X, Y; Z)) provides more infor-
mation about Z than the sum of the knowledges given by X and Y
separately (i.e., I(X; Z)+I(Y; Z)) (Fig. 1b). The same principle
applies to MMI with higher numbers of variables. In this way,
TransSyn considers all possible direct and indirect regulatory
interactions that can be measured by gene expression. Therefore,
it can account for the disparate nature of synergistic transcrip-
tional regulation, including combinatorial/cooperative binding of
TFs to target gene promoter/enhancer regions8, and protein-
protein interactions among transcriptional co-factors.

TransSyn requires single-cell RNA-seq data for MMI compu-
tation. Ideally, MMI for all possible combinations of TFs should
be calculated to identify the most synergistic TF combination.
However, such computation is infeasible (for example, the
number of all combinations of 3, 4, 5, and 6 TFs among 100
TFs already adds up to 1, 271, 422, 845). Therefore, we
implemented a dynamic search algorithm, in which an initial
set of most synergistic 3-TF combinations (seed combinations)
are progressively extended by adding TFs one by one as long as
MMI calculated for the new combination exceeds the MMI of the
previous seed combination (Fig. 1c; Supplementary Fig. 1) (see
Methods). The search is terminated when the addition of a new
TF results in no further decrease in MMI, and the current TF
combination exhibiting the least MMI (i.e., most synergistic) is
considered the synergistic transcriptional core. Upon termination,
if more than one TF combination exhibits the highest synergy,
they are ranked by another information theoretic measurement,
total correlation (TC), which, unlike MMI, incorporates interac-
tions between all possible combinations of TFs within each core
providing a measure of interaction strength12.

TransSyn captures known synergistic transcriptional cores. By
applying TransSyn to a large compilation of published single-cell
RNA-seq data, we created a catalog of synergistic transcriptional
cores specific to 186 cell subpopulations (Supplementary Data 1).
Here, by subpopulations we mean distinct groups of cells within a
heterogeneous cell population identified based on their gene
expression profiles, and do not discriminate between well-defined
cell types, subtypes of a same cell type and cells with unclear
identity. The predicted synergistic transcriptional cores, when
evidence is available, consistently contained TFs known to
maintain the respective cell subpopulation identities. For exam-
ple, the key pluripotency factors POU5F1, NANOG, and SOX2
that maintain the ESC phenotype were found as the most
synergistic transcriptional core in hESCs (Table 1; Supplementary
Data 1). Notably, these TFs have been speculated to act syner-
gistically via large clusters of enhancers13. Another example is the
blood progenitor subpopulation14 that contained Tal1, Gata2,
Runx1, and Fli1 in its synergistic transcriptional core (Table 1;
Supplementary Data 1). These TFs have been shown to form
complexes via protein-protein interactions that stabilize their co-
operative binding to DNA and synergistically control the sub-
population identity15. Therefore, this represents another known
example where a synergistic interaction of TFs defines a cell
subpopulation identity. Finally, the synergistic core of human
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fetal oculomotor and trochlear nucleus (hOMTN) subpopulation
consisted of ISL1 and PHOX2A (Supplementary Data 1), which
have been shown to synergistically specify cranial motor neurons
from mESCs16.

TransSyn predictions also contained several TFs known to
interact with each other to control cell subpopulation identities.
For example, Gata1, Gfi1b Klf1, and Ikzf1, known to maintain
embryonic blood cells17, 18 were found in the synergistic
transcriptional core of the embryonic primitive erythrocyte
subpopulation14 (Supplementary Data 1). Gata1 and Ikzf1 are
known to functionally regulate each other. In addition, the
synergistic transcriptional core of the embryonic visceral

endoderm subpopulation14 included Eomes, Otx2, Zic3, Foxa2,
and Hnf4a (Table 1; Supplementary Data 1), which are known to
regulate each other and other downstream targets specific to this
cell subpopulation19, 20. Id3, Klf13, Klf6, and Klf4 are known for
their roles in the acquisition of vascular endothelial cell fate,
whose synergistic transcriptional core contained these TFs21, 22.
The synergistic core of the mouse enteroendocrine cell contained
Neurog3, Neurog1, Insm1, Nkx2-2, Foxa1, Foxa2, Pax4, and
Lmx1a, all of which are known to be essential for the functioning
of the cell23–29. We also examined the synergistic transcriptional
core of the human subpopulations for which only mouse
functional data is available, such as hProgFPM and hDA2

Stat3 Myc

Foxo3

–0.2680

Synergistic core

<

Foxo3

Myc

Stat3

Myc

+

0.6951 0.4467

Myc

Stat3 Foxo3

1.4099

<

Stat3

Foxo3

Myc

Foxo3

+

0.4432 0.6951

Stat3 Myc

Foxo3

1.4064

<

Myc

Stat3

Foxo3

Stat3

+

0.4467 0.4432

Myc Foxo3

Stat3

1.1580

S
yn

er
gi

st
ic

T
ra

ns
cr

ip
tio

na
l

C
or

e

a

Order of interaction

S
yn

er
gy

3 4 5 6 7 N

Most frequently
expressed TFs

within the
subpopulation ...

c

1

1 10

2 30

3 26

4 4

…

X 44

Cells

G
en

es

b

2 3 … N

42 0 4

27 56 78

5 37 54

66 20 0

0 114 63

Fig. 1 Principle of transcriptional synergy and method overview. a The method requires single-cell RNA-seq data classified into distinct subpopulations as
input and identifies most synergistic transcriptional cores for each subpopulation. b Comparison of pair-wise MI between individual TF pairs with joint MI
between two TFs together and a third one. For a combination of TFs to be synergistic, the sum of pair-wise MIs has to be less than the joint MI (i.e.,
negative MMI). Any permutation of same set of TFs results in the same MMI value. c Dynamic search for identifying the most synergistic transcriptional
cores, in which the “seed” 3-TF combinations are progressively expanded by an addition of another TF one by one. The search is terminated when there is
no more increase in synergy when adding a new TF to the current best combination and the current combination is considered the most synergistic
transcriptional core
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neurons thought to give rise to substantia nigra DA neurons
postnatally4. The synergistic transcriptional core of hDA2
neurons identified NR4A2, a nuclear receptor that controls
mDA neuron identity and survival in mice30, and FOXA1, a TF
that together with FOXA2 contros mDA identity and neurogen-
esis in mice31. Finally, the hProgFPM synergistic core included
TFs previously identified in the mouse midbrain floor plate and
important for mDA neuron development in mice, such as
FOXA2, OTX2, LMX1A10, 32–34 which have not been previously
recognized as the core of hProgFPM (Table 1; Supplementary
Data 1). Overall, these examples demonstrate that synergistic
transcriptional cores identified by TransSyn recapitulated known
TFs controlling cell type/subpopulation identities along with their
known functional, potentially synergistic interactions.

Evaluation of TransSyn performance. For an unbiased assess-
ment of TransSyn performance, we calculated the percentage of
cell subpopulations where at least one predicted TF has pre-
viously been experimentally validated to define the identity of that
cell subpopulation. This showed that TransSyn could predict at
least one such TF for 85 % of the cell subpopulations, for which at
least one experimentally validated TF is known. We followed this
criterion since the current knowledge of experimentally validated
TFs is not complete (i.e., previously not tested) and includes TFs
which are not classified as identity TFs according to our defini-
tion. The compiled list of TFs known to maintain cell sub-
population identities is shown in (Supplementary Data 2).

Importantly, we observed that pair-wise mutual information
(MI) was not able to capture all the interactions among TFs in
synergistic cores, supporting that these TFs interact synergistically
rather than pair-wise (Supplementary Data 3). For example, this
was observed in the case of interaction between the three
plutipotency TFs (NANOG, POU5F1, and SOX2) in hESC, and
Runx1, Fli1, Gata2, and Tal1 in the blood progenitor subpopula-
tion described above, due to the multifactorial nature of the
transcriptional regulatory mechanism. On the contrary, a set of
TFs exhibiting pair-wise interactions among themselves does not
necessarily display a multiple synergistic interaction, and therefore
will not represent a synergistic transcriptional core. To show this,
we performed a topological analysis of subpopulation specific
GRNs inferred from pair-wise co-expression to identify top 10
subpopulation-specific hubs that could potentially be TFs that
define subpopulation identities. Results showed that only a few
known TFs were recovered as unique hubs (Table 2; Supplemen-
tary Data 4), indicating that transcriptional synergy is more suited
for unraveling TFs that define subpopulation identities.

Next, we compared the performance of TransSyn to a method
for identifying candidate identity TFs for bulk cell/tissue types
using Jensen-Shannon Divergence (JSD)7. Since JSD was
computed from bulk microarray data in this earlier study, we
computed JSD using the average single-cell gene expression in
each cell subpopulation. Results showed that in general, JSD
predicted at least one TF in 33 % cell subpopulations in contrast
to 85% achieved by TransSyn (Table 1A; Supplementary Data 5).

Table 1 Most synergistic transcriptional cores predicted by TransSyn and top 10 JSD TFs in example subpopulations, where
known identity TFs are in bold

Data set Cell subpopulation Synergistic transcriptional core Top 10 JSD TFs (incl. ties)

Treutlein et al.
2014

Lung surfactant-secreting
cuboidal alveolar type 2 cell

Atf4, Fos, Sox9, Sp3, Irx1 Gfi1, Hes7, Insm1, Mesp2, Nr2e1, Phox2a,
Sp5, Tox2, Zbtb12, Zfp251, Zfp398,
Zkscan16

Grün et al. 2015 Intestinal organoid enterocyte
precursor

Gata4, Rxra, Ovol1 Alx4, Ar, Ebf2, Esx1, Foxp2, Gm14393,
Lhx2, Pou3f2, Rarb, Snai2, Sox8, Tead4,
Tlx1, Zfhx4, Zfp52, Zfp532

Grün et al. 2015 Intesitinal organoid
enteroendocrine cell

Neurog3, Fev, Neurod1, Insm1, Nkx2-2, Foxa1,
Ets1, Pax4, Lmx1a, Pbx1, Foxa2, Hoxb2, Creb3l3,
Msx1, Nfe2l2

Evx1, Hsf5, Ikzf2, Irx3, Lef1, Obox3, Peg3,
Sall2, Sp8, Zfp14, Zfp867

Chu et al. 2016 H9 ESC NANOG, POU5F1, SOX2 DMRTB1, EGR4, HES3, INSM1, NKX2-6,
OLIG3, PAX9, PITX3, SIX6, TFAP2B

Scialdone et al.14 Embryonic blood progenitor Id3, Hes1, Gata2, Peg3, Runx1, Fli1, Tal1, Gfi1b,
Klf6, Sox7, Ikzf1, Zfp367, Litaf, Gmeb1, Sr

Dbx2, Emx2, Gfi1, Gfi1b, Hsf3, Ikzf3,
Myog, Nr5a1, Prdm13, Zfp541

Scialdone et al.14 Embryonic visceral endoderm Peg3, Ybx1, Otx2, Eomes, Arid1a, Arid3b, Foxq1,
Zic3, Foxa2, Hnf4a, Zfp948, Hes1, Klf6, Hsf2,
Elf2

Creb3l3, En1, Foxa1, Foxa2, Foxa3, Foxq1,
Gsc, Hnf1b, Hnf4a, Six3

Gokce et al. 2016 Striatal neuron Myt1l, Meis2, Bcl11b, Peg3, Rarb, Rxrg, Aff4,
Foxp2, Hivep2, Bcl11a, Arid4a, Six3, Dnajc2

Ar, Atoh7, Barhl1, Cebpe, Foxa3, Gbx1,
Glis1, Gm14139, Gn5294, Bhlha9 (and
more)

Gokce et al. 2016 Striatal microglia Egr1, Fos, Zfhx3, Maf, Csde1, Mafb, Nfia, Junb,
Hmgb1, Mef2c, Sall1, Atf4, Foxn3, Arid1a, Sub1

Arid3c, Atoh1, Batf3, Ebf3, Hoxd10, Mlxipl,
Pax7, Pitx2, Sox15, Zfp69

Gokce et al. 2016 Striatal vascular endothelial cell Csde1, Hmgb1, Nfia, Id3, Klf13, Tcf4, Fos, Klf6,
Jun, Gatad1, Tsc22d3, Fosb, Klf4, Arid1b, Zfp148

Alx1, Erg, Foxc2, Foxl2, Nfatc4, Tbx1, Tbx2,
Tbx4, Tcf21, Vsx1

Joost et al. 2016 Upper hair follicle I Jun, Klf4, Sox9 Prdm14, Tbx19, Alx1, Insm2, Gm9376,
Pou4f3, Prrx2, Rex2, Obox6, Sox3,
Rnf138rt1

Segerstolpe et al.
2016

Pancreatic alpha cell MAFB, NEUROD1, CNBP, TSC22D1, FEV, PAX6,
IRX2, ARX, MLXIPL, CDIP1, PIAS1, HIF1A,
ZNF655, TOX4, TULP4

EVX1, FOXD4L3, GBX2, HOXC11, IFNB1,
MEF2B, MYF6, POU3F3, SP9, SSX1

Segerstolpe et al.
2016

Pancreatic beta cell ENO1, CTNNB1, MAFA BHLHE23, DBX1, FERD3L, FOXR2, HOXB8,
MYF5, OTP, SOHLH2, SOX3, TFAP2B

LaManno et al.
2016

Fetal dopaminergic neuron type
2

NR4A2, BNC2, TUB, FOXA1, POU6F1 ALX4, ASCL2, ENF, FEZF1, FOXH1, NKX2-
1, PRDM12, RAX2, TBX15, TBX22

LaManno et al.
2016

Fetal progenitor medial floorplate FOXA2, OTX2, LMX1A, HMGA1 FOXB1, FOXD4L1, GFI1, HNF1A, MESP2,
NR0B1, NR5A2, TBX5, ZNF99
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This result shows that TransSyn is more suited for identifying TFs
that define closely related cell subpopulations. A systematic
comparison with other tools, such as CellNet5 and Mogrify6, was
not possible, since they do not currently consider user input
single-cell RNA-seq data. Indeed, their built-in cell/tissue types
exhibit a very limited overlap with the cell subpopulations we
collected in this study. In particular, CellNet shares no overlap,
while Mogrify shares a very limited overlap (Supplementary
Table 1). The reprogramming factors identified by the latter for
ESCs, NSCs, pancreatic mast cells and endothelial cells contained
known identity TFs, whereas the factors for neurons from NSCs
and between lung fibroblast and bronchial epithelial cells did not
contain any known TF.

Experimental validation of predicted identity TFs. Finally, to
demonstrate the usefulness of TransSyn, we carried out an
experiment to shift the identity of hidbrain hNES cell line (SAI2)
35 to that of midbrain hProgFPM cells4. We first generated single-
cell RNA-seq data of hNES cells, and found that its synergistic
transcriptional core is quite different from that of hProgFPM cells
(Fig. 2a). Analysis of the TFs required to convert hNES cells into
hProgFPM cells identified OTX2, LMX1A, and FOXA2 (Fig. 2a).
Since OTX2 is known to induce LMX1A36, the conversion was
performed by inducing the expression of the other two TFs,
OTX2, and FOXA2. This was achieved by treating hNES cells
during proliferation (FGF2+EGF) with two factors: (i) The small
molecule smoothened agonist (SAG, 500 nM), which directly
activates Shh signaling37 and induces FOXA238. (ii) The Wnt
antagonist Dickoppf1 (Dkk1, 150 ng/ml), to reduce Wnt/β-cate-
nin signaling to the levels required to induce OTX210 and mid-
brain dopamine neuron development39 (Fig. 2b). Our expectation
was that SAG would ventralize hNES cells and change their baso-
lateral identity35 into floor plate cells expressing FOXA2; and
Dkk1 would anteriorize hindbrain cells expressing GBX2 into
midbrain cells expressing OTX240. Our results show that treat-
ment of proliferating hNES cells with SAG and Dkk1 did not
change the levels of the common midbrain-hindbrain TFs
engrailed1 (EN1) and PAX2 (Fig. 2c, d), but increased the ratio of
OTX2:GBX2 expression (Fig. 2e), indicating efficient ante-
riorization and acquisition of midbrain identity. In addition, we
also observed increased levels of FOXA2 (Fig. 2f) and decreased
levels of lateral genes, such as PAX6 and IRX3 (Fig. 2g, h),

indicative of efficient ventralization. These results were also
confirmed by immunohistochemistry, which showed increased
numbers of OTX2-positive cells (Fig. 2i).

To further confirm that the identity of the hNES cells had
become that of hProgFPM cells, we tested their function, as
assessed by their capacity to induce the expression of LMX1A at a
later time-point and differentiate into midbrain DA neurons,
reasoning that cells with the correct identity will be more efficient
at generating DA neurons than the parental cells. Differentiation
involved the removal of mitogens (FGF2 and EGF), as well as
treatment with well-know midbrain patterning and differentia-
tion factors such as Shh, Wnt5a, BDNF, GDNF, TGFβ3, and
Wnt5a (reviewed in ref.40). In addition, we tested whether
treatment with FGF8, a factor that was recently found to improve
midbrain patterning and differentiation in human ES cells41 was
capable of further improving our protocol (Fig. 3a). We found
that while both protocols strongly increased OTX2 and decreased
GBX2 expression, only the protocol without FGF8 significantly
increased LMX1A expression at day 8, as assessed by RT-qPCR
(Fig. 3b). Similarly, both protocols increased the levels of NR4A2
and SLC6A3, but TH expression was only significantly increased
by the SAG and Dkk1 protocol (Fig. 3c). Accordingly, while
control unconverted cells were only capable of giving rise to rare
and weak TH+ cells, cells differentiated after SAG and Dkk1
treatment gave rise to abundant TH+ neurons (Fig. 3d), and
significant increased in the number of OTX2+ cells (Fig. 3e) and
of TH+ cells (Fig. 3f). Moreover, TH+ cells were also LMX1A+,
NR4A2+, and PBX1+ (Fig. 3g–i), confirming their midbrain
identity30, 33, 46. In addition, TH+ cells expressed the mature
neuronal marker MAP2 (Fig. 3j) and some of them were found to
acquire a mature neuronal morphology with long processes and
varicosities and bipolar morphology, typical of mDA neurons
(Fig. 3k). Thus, our results show that by switching the identity
of hNES to hProgFPM prior to differentiation, it is possible to
rapidly differentiate hNES into DA neurons.

Discussion
In this study we postulated that cell subpopulation identity is
determined by TFs that exhibit transcriptional synergy. Based on
this proposition, we developed a computational method that
dynamically searches for optimal synegistic transcriptional cores
using an information theoretic measure of synergy computed

Table 2 Unique top 10 hub TFs in GRNs for the example subpopulations in Table 1. Known identity TFs are in bold.

Data set Cell subpopulation Unique top 10 hub TFs

Treutlein et al. 2014 Lung surfactant-secreting cuboidal alveolar type 2
cell

2610008e11rik, Bcl11b, Crem, E2f3, Elf2, Foxq1, Gfi1, Hsf1, Ikzf2, Ikzf4

Grün et al. 2015 Intestinal organoid enterocyte precursor Arx, Esrrg, Foxd2, Hoxa1, Hoxa4, Neurod2, Sox7, St18, Tox3, Zfp532
Grün et al. 2015 Intesitinal organoid enteroendocrine cell 2700081O15rik, 5730507C01rik, Arntl, Atf6b, Dnajc2, Ehf, Erf, Etv5, Fiz1
Chu et al. 2016 H9 ESC AEBP2, ARID1A, HIF1A, MIER1, TCF4, TSC22D2, ZNF146, ZNF286A,

ZNF441, ZNF814
Scialdone et al.14 Embryonic blood progenitor Dnajc2, E2f3, Tal1
Scialdone et al.14 Embryonic visceral endoderm Dmrta2, Elf4, Fosl1, Foxl1, Foxp1, Glis3, Klf14, Klf4, Smad9, Vdr
Gokce et al. 2016 Striatal neuron Csde1, Dbp, Erf, Gatad1, Hmgb1, Hsf2, Jund, Mier3, Thrb, Zfhx3
Gokce et al. 2016 Striatal microglia Bhlha15, Lef1, Prox2, Tbx3, Zbtb17, Zfp113, Zfp184, Zfp82
Gokce et al. 2016 Striatal vascular endothelial cell Arx, Sox21, Sp4, Tfap4, Tox3, Tshz2, Vsx1, Zfp433, Zfp579, Zfp709
Joost et al. 2016 Upper hair follicle I Creb3l3, Lhx9, Rhox3f, Tal1, Zscan20
Segerstolpe et al. 2016 Pancreatic alpha cell CARM1, DEAF1, JUNB
Segerstolpe et al. 2016 Pancreatic beta cell LDB1, NKX6-1, REPIN1, SREBF1
LaManno et al. 2016 Fetal dopaminergic neuron type 2 AFF2, DACH2, FOXJ2, MAF, MEF2D, ZBTB48, ZNF354B, ZNF555,

ZNF771
LaManno et al. 2016 Fetal progenitor medial floorplate AHR, ARID3A, BARHL2, CEBPD, FOXF2, PRDM13, SCRT1, ZNF497,

ZNF557
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from single-cell RNA-seq data. The predicted transcriptional
cores recapitulatd known identity TFs in 85% of the tested cases
and known synergistic TF interactions that relate to cell identity.
Thus, the concept of transcriptional synergy employed in
TransSyn represents a novel approach to specifically identifying
transcriptional cores defining cell subpopulation identities. Fol-
lowing the experimental validation of the predicted identity
transcriptional core of hProgFPM cells, we compiled a list of TFs
whose up-/down-regulation may convert one cell subpopulation
into another for 3786 pairs of initial and target cell subpopula-
tions (Supplementary Data 6). Further validation of these tran-
scriptional cores will reinforce the generality of the method.
Importantly, unlike previously introduced methods, TransSyn
does not require pre-compiled reference single-cell datasets,

which are unavailable for newly identified cell subpopulations. In
addition, TransSyn does not rely on GRN inference and analysis,
which could be a bottleneck for accurate predictions of identity
transcriptional cores. In summary, such unbiased identification of
synergistic transcriptional cores may facilitate the development of
general strategies for cell subpopulation conversions, opening up
novel functional applications in regenerative medicine, such as
the generation of DA neurons for Parkinson’s disease.

Methods
Single-cell RNA-seq data. Single-cell RNA-seq data used in this study were
obtained for the following biological systems; the mouse datasets for lung, striatum,
cortex, and hippocampus, quiescent, and active NSCs, intestine, circulating pan-
creatic tumor cells, hair follicles, and gastrulating embryo, and the human datasets
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Fig. 2 Conversion of basal hNES cells into medial floor plate midbrain progenitors (hProgFPM) by treatment of proliferating hNES for 2 days with the
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for midbrain, CD127+ lymphoid cells, pancreas, ovarian cancer, germline cells,
and in vitro hESCs. The reference to each dataset is described in (Supplementary
Data 1). We used the same subpopulation classifications defined in the respective
original studies. We also analyzed other datasets not listed here, however, they did
not have an enough number of expressed TFs in the majority of cell subpopula-
tions, and were therefore discarded. In addition, synergistic transcriptional cores
for cell subpopulations that were either “undefined” or with less than three cells

were not considered. We did not reprocess each raw data and same gene expression
values that were used in the original studies were also used in this study. TFs were
considered “expressed” if their expression values were ≧1 in RNA-seq FPKM/
RPKM/TPM values, ≧10 in normalized read counts, or ≧1 in UMI counts. TFs
below these thresholds were considered “not expressed”. Exceptionally, the
expression cutoff of 10 was used for the hESC dataset, since setting it to 1 resulted
in too many expressed TFs and the subsequent computation became infeasible.
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Identification of most frequently expressed TFs. The definition of TFs was
obtained from the AnimalTF database42. The fraction of cells expressing each TF
was computed in each subpopulation and the top 10% most frequently expressed
TFs were shortlisted for further analyses. Among these TFs, we discarded those that
were not expressed in more than 30% of cells. For the La Manno et al., 2016,
dataset4, the binarized expression status estimated in the original study was used.
Since this filtering retained many TFs that were expressed at very low intensity, TFs
with mean UMI count <1 were further discarded. Since the subsequent compu-
tation becomes infeasible for standard desktop computers if the number of TFs is
more than 150, in these cases TFs with highest coefficient of variation were dis-
carded to make the number of TFs ≦150.

MMI computation. In each cell subpopulation MMI11 among the most frequently
expressed TFs was computed by:

MMI Sð Þ ¼ �
X

T�S

�1ð Þ Tj jH Tð Þ;

where S ¼ X1;X2; :::Xn

n o
, T is a subset of S, and Tj j indicates the number of

variables in this subset. In the current study these variables are discretized gene
expression values of TFs. This equation becomes MI if only two variables are
considered. In the case of three variables the equation can be written as:

MMI X;Y;Zð Þ ¼ H Xð Þ þ H Yð Þ þ H Zð Þ � H X;Yð Þ � H Y ;Zð Þ
�H Z;Xð Þ þ H X;Y ;Zð Þ

To compute Shannon’s entropy, gene expression values were first log10-
transformed. Zero gene expression values were converted into 1 prior to the
transformation. This value was then discretized within each cell subpopulation
using the Freedman–Diaconis rule implemented in the R nclass.FD function and
Shannon’s entropy of each TF was computed on these discretized values. The input
value for the nclass.FD function was set to the number of cells +1 for FPKM/
RPKM/TPM values, and normalized read counts, while the number of cells +6 was
used for UMI counts. The range of gene expression value was set between 0 and
maximum value of a given cell subpopulation. Since the bin size for each TF is
different, the entropy was normalized by the theoretical maximum entropy (i.e.,
entropy when all bins contain an equal number of variable) to enable a direct
comparison between different TF entropies. The MMI was then computed using all
cells in the entire population of a given dataset except for the ones in the sub-
population for which MMI is being computed. As described above, the joint
entropy was also normalized by the theoretical maximum entropy prior to MMI
computation.

Dynamic search for synergistic transcriptional cores. MMI was first computed
for all combinations of three TFs and the top one percent lowest MMI (i.e.,
synergistic) combinations were taken. Then, these TF combinations were ranked by
TC defined as:

TC Sð Þ ¼
X

Xi�S

H Xið Þ
 !

� H Sð Þ;

where S ¼ fX1;X2; :::Xng. TC measures the interaction strengths (MI) shared
among all subsets of the variables within a combination, and is more appropriate
for comparing interaction strengths between different combinations than MMI12,
which measures the information gain from the previous seed combination. Then,
top one percent highest TC combinations were used as initial seeds for the sub-
sequent search for higher-level synergistic combinations of TFs. To this end, new
TFs were added to each seed combination one by one and MMI for the new
combination was computed. Then, the combinations that showed lower (less than
0.05) MMI than the seed were taken to the next iteration. For example, if {A, B, C,
D, E, F, G, H} were the selected TFs in a given cell subpopulation and {A, B, C} was
a seed combination, then MMI of all 4 TF combinations, {A, B, C, D}, {A, B, C, E},
{A, B, C, F}, {A, B, C, G}, and {A, B, C, H}, were computed and if the difference in
MMI between the new combination and seed was negative, then that new com-
bination was kept. Then, these new, more synergistic TF combinations were again
ranked by TC and the top 10 combinations were used as seeds for the identification
of best 5 TF combinations next, and so on. This procedure was continued until no

new combination is more synergistic than the seed. We also terminated the pro-
cedure when the number of TFs reached 15, since continuing with more than this
number was often computationally impractical. We think this operation is
acceptable, since usually at this point most TFs are shared among different com-
binations. Once the search is terminated, MMI for all combinations of the top 20
best TC combinations is computed and if there is more synergistic combination(s),
then those combinations are ranked by TC as the final synergistic transcriptional
cores. If more than one top combination (i.e., ties) is present, they are ranked by
the highest summed mean gene expression and the top three combinations were
kept as the final synergistic transcriptional cores. For the identification of cell
conversion TFs, TFs in the synergistic transcriptional core of a target cell sub-
population were ranked by the mean gene expression fold change between the
target cell subpopulation and starting cell subpopulation. The main part of
TransSyn was written in C++, which was wrapped in R using the Rcpp package.

MI computation between TFs. Pair-wise MI was computed for TF pairs in
transcriptional synergistic cores, in which at least two TF are known to maintain
that cell subpopulation. The gene expression values were first log2-transformed and
then discretized within each cell subpopulation using the Freedman–Diaconis rule,
as described above. Then Shannon’s entropy of each TF and joint entropies of each
pair of TFs were computed on these discretized values. MI was then computed by:

MI X;Yð Þ ¼ H Xð Þ þ H Yð Þ � H X;Yð Þ;

The statistical significance of each edge was computed by a t-test against a null
distribution formed by randomizing data 50 times and edges with the top 1%
lowest p-value were kept as the final edges.

GRN hub analysis. A GRN for each cell subpopulation was inferred using the
corresponding cell subpopulation single-cell RNA-seq data with four different
algorithms, PCC, SCC, MRNET43, and random forest-based method (GENIE344).
The default parameters were used for GENIE3. For RNA-seq FPKM/RPKM/TPM
values and RNA-seq normalized read counts, the values were log2-transformed
prior to the inference. No transformation was applied to UMI counts.

JSD computation for TFs. For each TF, JSD was computed between an ideal gene
expression vector and an observed gene expression vector, as was previously per-
formed in7. The ideal gene expression vector was formed by putting 1 to the query
cell subpopulation and 0 to all other subpopulations within a dataset. The observed
gene expression vector was formed by computing the average gene expression for
each subpopulation and normalizing each value by the sum of the average gene
expression values of all the subpopulations. The top 10 TFs were taken as the
predicted identity TFs.

Cultivation of Lt-NES SAI2 cells. In our study we used the Long-term self-
renewing neuroepithelial-like stem cells (Lt-NES) SAI2 line generated from human
hindbrain fetal tissue35. Mycoplasma-free cells have been kept in proliferation
according to previously described protocols45, in 6-well plates coated with poly-L-
ornithine (1:5 in water; Sigma) and laminin (1:500 in water, Invitrogen), using
maintenance media based on DMEM F12 Glutamax Medium (GIBCO, Life-
Technologies) supplemented with N2 (1:100, GIBCO, LifeTechnologies), B27
(1:1000, GIBCO, LifeTechnologies), and the growth factors hEGF (10 ng/ml, R&D)
and FGF2 (10 ng/ml, R&D). To modify the identity of Lt-NES, cells were treated
for 48 h with SAG (500 nM, Tocris) and Dkk1 (150 ng/ml, R&D) in the pro-
liferation media. Treated and non-treated cells were compared.

For differentiation experiments, Lt-NES cells treated as above for 48 h were
seeded at a density of 100.000 cells in 48-well plates coated with PLO and laminin.
Cells were differentiated for 6 days in following the protocol described in ref.46 with
some modifications: Cells were patterned for 2 days in media containing N2
Supplement (1:100), B27 (1:1,000), Shh (200 ng/ml, R&D) and Wnt5a (100 ng/ml)
with or without FGF8B (100 ng/ml, PeproTech). Cells were subsequently
differentiated for 4 days on media containing N2 (1:100) and B27 (1:100). During
the first 2 days in GDNF (20 ng/ml, R&D) and BDNF (20 ng/ml, R&D) and the last
2 days in GDNF (20 ng/ml, R&D), BDNF (20 ng/ml, R&D), dcAMP (0,5 mM,
Sigma), Ascorbic Acid (200 µM, Sigma), and TGFβ3 (2 ng/ml, R&D).

Fig. 3 Conversion of hNES cells into hPRogFPM and their differentiation into midbrain dopaminergic neurons. a Schematic representation of the conversion
and differentiation protocols. b, c RT-qPCR analysis at day 8, showing the expression of midbrain-hindbrain TFs, such as OTX2, GBX2, LMX1A, and FOXA2
(b), as well as the dopaminergic neuron markers, NR4A2, TH, SLC18A22, and SLC6A3 (c). d Immunocytochemistry analysis of the presence of OTX2 and TH
in control unconverted NES cultures, compared with NES cells converted with SAF+Dkk1 and differentiated until day 8. e, f Percentage of OTX2+ and TH+
cells in the conditions in d. P= 0.02673 (e), P= 0.03233 (f), n= 3. g–i Expression of the key midbrain TFs, LMX1A, NR4A2, and PBX1, in TH+cells derived
from SAI2-NES cells after conversion and differentiation. j, k TH+ cells express the mature neuronal marker, MAP2 (j), and some acquire mature neuronal
morphologies, with long processes and varicosities at day 8 (k). Scale 50μm. Box plots (b, c, e, f): Center line, median; hinges, 25% and 75% quartiles;
whiskers, 1.5 interquartile range. Statistics: (b, c) ANOVA, followed by pair-wise t-test with Bonferroni correction for multiple testing. (e, f). Two sample t-
test; *P≤ 0,05; **P≤ 0,01; ***P≤ 0,001. N= 3 (GBX2, FOXA2, TH, SLC6A3), n= 4 (LMX1A, OTX2, NR4A2, SLC18A2)
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hNES single-cell RNA-seq data. Single cell RNA-seq of undifferentiated Lt-NES
was obtained and analyzedfrom GSE114670.

RT-qPCR. RNA was extracted form Lt-NES SAI2 cells using RNeASY mRNA
isolation system (Qiagen) according to the manufacturer’s instructions and treated
with DNAse on-column protocol. 200–500 ng of total RNA were reverse-
transcribed using the Superscript II kit (Invitrogen). The reverse-transcribed cDNA
was amplified using Fast SYBRGREEN (Applied Biosystems) in a StepONE plus
real time-qPCR machine (Applied Biosystems). Outliers were detected by using the
absolute deviation from the median, statistical significance was measured with the
Welch two sample two tailed t-test and Bonferroni correction in case of multiple
testing. Stars indicate *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001.

Primers used in our analysis:
SLC6A3 Forward 5′---3′ ACCTTCCTCCTGTCCCTGTT
Reverse 3′---5′ CACCATAGAACCAGGCCACT
EN1 Forward 5′---3′ CGTGGCTTACTCCCCATTTA
Reverse 3′---5′ TCTCGCTGTCTCTCCCTCTC
FOXA2 Forward 5′---3′ TTCAGGCCCGGCTAACTCT
Reverse 3′---5′ AGTCTCGACCCCCACTTGCT
GAPDH Forward 5′---3′ TTGAGGTCAATGAAGGGGTC
Reverse 3′---5’ GAAGGTGAAGGTCGGAGTCA
GBX2 Forward 5′---3′ GTTCCCGCCGTCGCTGATGAT
Reverse 3′---5′ GCCGGTGTAGACGAAATGGCCG
IRX3Forward 5′---3′ CTGACGAGGAGGGAAACGCTTA
Reverse 3′---5′ GAGCTCCTCCTCCTCCAGCTCT
LMX1AForward 5′---3′ GATCCCTTCCGACAGGGTCTC
Reverse 3′---5′ GGTTTCCCACTCTGGACTGC
NR4A2Forward 5′---3′ AGTCTGATCAGTGCCCTC
Reverse 3′---5′ CCCCATTGCAAAAGATGAGT
OTX2 Forward 5′---3′ ACAAGTGGCCAATTCACTCC
Reverse 3′---5′ GAGGTGGACAAGGGATCTGA
PAX2Forward 5′---3′ TAGACTGCGGACTGGGGTCTTC
Reverse 3′---5′ GGTTCTTACCACCGGCAGATTG
PAX6 Forward 5′---3′ TGGTATTCTCTCCCCCTCCT
Reverse 3′---5′ TAAGGATGTTGAACGGGCAG
THForward 5′---3′ ACTGGTTCACGGTGGAGTTC
Reverse 3′---5′ TCTCAGGCTCCTCAGACAGG
SLC18A2Forward 5′---3′ CACTGCCTCCATCTCAGACA
Reverse 3′---5′ CCGGTGACCATAGTCGAGTT

Immunocytochemistry on differentiated hNES cells. For immunocytochemical
analysis, cells were fixed for 20 min at room temperature in 4% paraformaldehyde
(PFA) in PBS, permeabilized and blocked for 60 min in PBS containing 0.3%
Triton X-100, 0.1% BSA and 10% normal donkey serum (PBTA-NDS). Then they
were incubated overnight at 4 °C in PBTA-NDS with different antibodies: rabbit
TH (1:1000, Pel Freeze, P4010-0), mouse TH (1:250, Immunostar, 22941) or sheep
TH (1:250, Novus, NB300-110), mouse MAP2 (1:100, Sigma, M4403), mouse PBX1
(1:200, Santa Cruz, SC-101851), rabbit NR4A2 (1:200, Santa Cruz, SC-990), rabbit
LMX1A (1:4000, Millipore, AB10533), and goat OTX2 (1:1000, Bio-techne,
AF1979). Next day the cells were washed three times with PBS and incubated for 2
h at room temperature with Alexa Fluor secondary antibodies (1:500, Invitrogen)
647 (A31571), 555 (A31572, A21432, A21436, 488 (A11035, A21467, A21206,
A11015), and 4’,6-Diamidino-2-phenylindole dihydrochloride (DAPI, Sigma,
D8417) in PBTA-NDS. Microphotographs were taken with a Zeiss LSM800 con-
focal microscope (CLICK facility, Karolinska Institute) using the same settings. Cell
counts were performed in a blinded fashion in 3 independent experiments, and 6-9
randomly selected fields/condition. Control and experimental images were pro-
cessed linearly, in the same way, using Fiji software (ImageJ version 1.51t) and
Photoshop CS5 (Adobe System Inc.).

Code availability. TransSyn is freely available at https://sourceforge.net/projects/
transsyn/.

Data availability. The single-cell RNA seq data of undifferentiated Lt-NES is
available at GEO: GSE114670. The rest of the data supporting the conclusions of
this study are available from the correspoing author upon request.
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