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ABSTRACT

Objectives: Observational work sampling is often used in occupational studies to assess categori-
cal biomechanical exposures and occurrence of specific work tasks. The statistical performance of data
obtained by work sampling is, however, not well understood, impeding informed measurement strategy
design. The purpose of this study was to develop a procedure for assessing the statistical properties of
work sampling strategies evaluating categorical exposure variables and to illustrate the usefulness of this
procedure to examine bias and precision of exposure estimates from samples of different sizes.

Methods: From a parent data set of observations on 10 construction workers performing a sin-
gle operation, the probabilities were determined for each worker of performing four component tasks
and working in four mutually exclusive trunk posture categories (neutral, mild flexion, severe flexion,
twisted). Using these probabilities, SO00 simulated data sets were created via probability-based resam-
pling for each of six sampling strategies, ranging from 300 to 4500 observations. For each strategy, mean
exposure and exposure variability metrics were calculated at both the operation level and task level and
for each metric, bias and precision were assessed across the 5000 simulations.

Results: Estimates of exposure variability were substantially more uncertain at all sample sizes
than estimates of mean exposures and task proportions. Estimates at small sample sizes were also
biased. With only 600 samples, proportions of the different tasks and of working with a neutral trunk
posture (the most common) were within 10% of the true target value in at least 80% of all the simulated
data sets; rarer exposures required at least 1500 samples. For most task-level mean exposure variables
and for all operation-level and task-level estimates of exposure variability, performance was low, even
with 4500 samples. In general, the precision of mean exposure estimates did not depend on the expo-
sure variability between workers.

Conclusions: The suggested probability-based simulation approach proved to be versatile and
generally suitable for assessing bias and precision of data collection strategies using work sampling to
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estimate categorical data. The approach can be used in both real and hypothetical scenarios, in ergo-
nomics, as well as in other areas of occupational epidemiology and intervention research. The reported
statistical properties associated with sample size are likely widely relevant to studies using work sam-

pling to assess categorical variables.

KEYWORDS: epidemiology; ergonomics; exposure assessment methodology; precision; statistical

efficiency; working postures

INTRODUCTION

Field assessments to quantify biomechanical exposures
(physical loads) at work frequently employ observational
methods to determine body postures, type of materials
handling, and other ergonomic characteristics relevant for
risk of musculoskeletal disorders (Li and Buckle, 1999;
Denis et al,, 2000; Takala et al,, 2010). Many observation
methods, such as the Ovako Working posture Assessment
System (OWAS) (Karhu et al,, 1977), the Task Recording
and Analysis on Computer method (TRAC) (van der Beek
etal, 1992), the Back-Exposure Sampling Tool (Back-EST)
(Village et al, 2009), and several more (e.g. Hoogendoorn
etal,2000; Neumnann et al,, 2001; Bao et al,, 2009), are based
onwork sampling, with momentary observations, collected
at either fixed or random time intervals. The resulting series
of individual observations is then typically summarized in
terms of proportions of time in predetermined categories,
such as posture intervals or specific tasks. Time-based work
sampling hasbeen used for decadesin industrial engineering
(Richardson and Pape, 1982) and ergonomics (Dempsey
and Mathiassen, 2006) as a tool to simultaneously assess
the occurrence of tasks and work-related risk factors to mus-
culoskeletal disorders. While observational methods based
on continuous, event-based observation of biomechanical
exposure are available (e.g. Punnett et al,, 1991; Christensen
et al., 1995; Fransson-Hall et al,, 1995; Fallentin ef al., 2001;
Dartt et al., 2009; Hooftman et al., 2009; Mathiassen and
Paquet, 2010), work sampling was recently shown to be the
more cost-efficient approach for observing working pos-
tures (Rezagholi et al, 2012).

Other types of occupational exposures may also be
described with categorical variables, in particular the
presence of workers in various chemical or acoustic
environments and/or tasks (e.g. Preller ef al.,, 1995; Susi
et al.,, 2000; Neitzel et al., 2011). In both ergonomics and
occupational hygiene, operations are often analyzed by
task to identify sources of exposure as targets for inter-
vention (Dempsey and Mathiassen, 2006). At the level
of individual workers, the proportion of time in tasks
can be used together with information on task-specific

exposures to estimate job exposures. Such task-based
exposure modeling has been used for both biomechani-
cal (e.g. Burdorfet al., 1997; Chen et al., 2004; Mathiassen
et al, 2005; Svendsen et al.,, 2005; Bovenzi, 2009) and
other occupational exposures (e.g. Benke et al,, 2000;
Harrison et al., 2002; Semple et al., 2003; Neitzel et al.,
2011). Correct information on task proportions is a
prerequisite for these models to operate as intended, i.e.
produce an unbiased estimate of the modeled exposure
(Mathiassen et al., 2003a; Burstyn, 2009).

In general, guidance is scarce on how to design
an appropriate data collection strategy for estimating
exposures for operations, tasks, or jobs of individual
workers using observational methods (Takala et al,
2010). This is a serious concern, considering that
awareness and proper appreciation of the statistical
properties and performance of the data collecting
strategy used with a particular observation method is,
arguably, at least as important to the interpretation of
the resulting exposure data as is the basic validity and
reliability of that method (Takala et al.,, 2010).

For studies designed to assess mean exposures on a con-
tinuous scale, the ability of an exposure sampling strategy to
produce a correct exposure estimate, i.e. its statistical perfor-
mance, can be assessed using information on exposure vari-
ability in the target population and the size of the exposure
sample (Samuels et al,, 1985; Mathiassen et al, 2002,2003a;
Jackson et al,, 2009; Liv et al, 2011). These algorithms are
based on assumptions about the distribution of the under-
lying exposures that are likely often not met for exposures
measured on categorical scales (Mathiassen and Paquet,
2010) and for exposure variables other than the mean,
including exposure variability metrics (Liv et al, 2012).
Simulation can be a viable alternative for assessing statisti-
cal performance in such cases (Liv et al,, 2011). Simulations
can be based on expected exposure distribution parameters
(Semple et al, 2003) or on resampling of empirical data
sets, as in non-parametric bootstrapping (Burdorf and van
Riel, 1996; Hoozemans et al, 2001; Paquet et al, 2005;
Mathiassen and Paquet, 2010; Livetal, 2011,2012).
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The aim of the present study was to develop a
general procedure for assessing the statistical perfor-
mance of observational work sampling of categori-
cal exposure variables and to use that procedure in a
representative occupational scenario to gain a better
understanding of the influence of sample size on bias
and precision of estimates of variables expressing cen-
tral tendencies and variability of task occurrence and
of working postures at the level of operation and tasks.

MATERIALS AND METHODS

Parent data set

Previously collected data using the PATH—
Postures, Activities, Tools, and Handling—
observation method to assess tunnel and highway
construction (Tak et al, 2011) were utilized as the
parent data set for this methodological study. PATH
(Buchholz et al, 1996) is a work sampling tool to
estimate biomechanically relevant exposure variables.
PATH has primarily been used to provide exposure
estimates at the operation level, although exposures
can also be estimated for separate tasks and even indi-
vidual workers. The PATH method is reproducible,
given adequate training of observers (Park et al., 2009),
and valid compared with the results of direct technical
measurements (Paquet ef al., 2001; Tak et al., 2007). In
arecent review, PATH was rated as a ‘thoroughly devel-
oped’ method with a ‘systematic and well-designed
sampling approach’ (Takala et al., 2010). Thus, PATH
serves as a suitable model for observational exposure
assessment employing a work sampling approach.

From the nine operations represented in the parent
data set, we selected ‘jacking pit construction’ by labor-
ers as a model of an operation performed by several
workers over an extended period of time. Four com-
ponent tasks occurred during the days observed: top
work, pit wall construction, manual excavation, and
other miscellaneous work (Paquet et al., 2005). The
PATH observations of jacking pit construction were
collected over 12 days spanning one calendar month.
Observation periods ranged from 120 to 460min
day'. The same two analysts observed this operation
on each day; on one day, a third observer was present.

After excluding one worker with fewer than 40 obser-
vations, the resulting data set comprised a total of 3103
observations distributed among 10 workers (Table 1). For
the present paper, the primary biomechanical exposure
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ofinterest was trunk posture, which was recorded as a cat-
egorical variable with four divisions: neutral (<20° flex-
ion), mild flexion (between 20° and 45°), severe flexion
(>45°), and twist (with or without flexion). Trunk pos-
ture was selected because it is an important risk factor for
back disorders (Punnett et al, 1991) and because non-
neutral postures of the trunk were frequently observed in
all of the operations represented in the large construction
data set (Taket al, 2011).

Simulated sampling strategies

Six data collection strategies were simulated to reflect
different durations of sampling, ranging from S to
75h, with observations ‘collected” at 1-min intervals.
The six strategies included 300, 600, 900, 1500, 3000,
and 4500 observations, roughly corresponding to 1, 2,
3 full days and 1, 2, 3 full weeks of sampling. For each
of the six strategies, simulated observations were gen-
erated using a probability-based procedure with the
following stepwise algorithm:

i. Aworker was randomly selected from the
group of all 10 workers, all workers having
equal probabilities of being selected.

ii. A task was randomly determined for that
worker based on the probabilities in the par-
ent data set of that worker performing each
of the four possible tasks.

iii. An exposure for that worker performing that
task was randomly determined based on the
probabilities in the parent data set of that
worker experiencing each of the four possible
exposure levels when performing that specific
task.

This simulation procedure reflects and reproduces
the multinomial structure of categorical PATH obser-
vations at the three hierarchical levels of subjects (10
categories), tasks within subject (four categories), and
exposures within task and subject (four categories). Any
individual observation will result in a positive (‘yes’)
answer in exactly one of the possible categories at each
of these levels, and the probabilities of obtaining a ‘yes’in
any category within the level naturally add up to 100%.
Thus, samples of (independent) multiple observations
are categorically distributed, with properties determined
by the true outcome probabilities in the set of categories
within the same level (cf. Appendix).
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Table 1. PATH parent data by individual worker showing the total number of observations ( 7, ),
job-level trunk posture ( Hes, % total time)?®, proportional task occurrence (WS , % total time)®, and
task-level trunk posture ( Mers, % task time)® for each worker

Variable Posture Worker
1 2 3 4 S 6 7 8 9 10
Job level Mas — 294 68 272 245 273 315 248 289 393 706
Lo Neutral 74.8 73.5 83.1 739 689 600 544 758 779 67.1
Mild 126 132 74 13.5 143 178 17.7 135 13.7  20.7
Severe 10.2 8.8 3.7 102 121 19.7 242 6.6 69 11.1
Twisted 2.4 4.4 5.9 2.5 4.8 2.5 3.6 4.2 1.5 1.1
Top work Wrs — 19.1 8.8 17.7 269 75.5 0.0 0.0 325 50.4 0.0
task Wers Neutral 89.3 500 729 69.7 694 — — 62.8 70.1 —
Mild 7.1 16.7 125 13.6 151 — — 28.7 15.7 —
Severe 1.8 16.7 125 13.6 121 — — 7.5 11.6 —
Twisted 1.8 16.7 2.1 3.0 34 — — 1.1 20 —
Pit wall wrs — 30.6 S1.5 129 16.7 3.7 33.0 214 2.8 0.0 228
construction Wers Neutral 544 714 743 75.6 500 433 472 625 — 54.0
task Mild 17.8 143 86 122 300 269 245 125 — 24.8
Severe 222 114 0.0 122 200 289 283 125 — 20.5
Twisted 5.6 2.9 17.1 0.0 0.0 1.0 00 125 — 0.6
Manual wrs — 40.8 22.1 427 274 0.0 286 653 55.7 374 69.6
excavation Wers Neutral 842 66.7 84.5 672 — 37.8 50.6 80.1 84.4 703
task Mild 12.5  20.0 7.8 224 — 244 179 6.8 129 19.1
Severe 2.5 6.7 3.5 6.0 — 322 272 6.8 2.0 9.2
Twisted 0.8 6.7 4.3 4S5 — 5.6 4.3 6.2 0.7 1.4
Miscellaneous W78 — 9.5 17.7 268 29.0 209 384 133 9.0 12.2 7.7
work tasks Wers Neutral 71.4 100.0 91.8 83.1 702 90.9 849 100.0 87.5 77.8
Mild 7.1 0.0 2.7 5.6 8.8 5.0 6.1 0.0 83 222
Severe 21.4 0.0 0.0 9.9 10.5 2.5 3.0 0.0 2.1 0.0
Twisted 0.0 0.0 S.5 14 105 1.7 6.1 0.0 2.1 0.0
Mhes
Job exposure: K pes= s (% total time).
*Task proportion: wrs= n:TS (% total time).
o
“Task exposure: W grs= :}TS (9% task time).

oTS

1,5, total number of samples from subject s, across all tasks and exposure categories; n, 5, number of samples from subject s performing task T, irrespective
s
of exposure category; fy,s , number of samples from subject s within exposure category E, irrespective of task; and "£rs, number of samples from subject s

within exposure category E, while performing task T

Resampling at the level of individual observations
as described above was repeated until a complete set
of simulated data had been created, as dictated by
the number of observations—from 300 to 4500—
required for each of the six specific data collec-
tion strategies. For each strategy, 5000 such data
sets were generated. Simulations were performed

using a custom software program written in MatLab
(MathWorks, Natick, MA, USA; code provided
as Supplementary material, available at Annals of
Occupational Hygiene online). Five thousand repeats
have been considered a sufficient basis for analyz-
ing distributions in previous simulation studies (e.g.
Semple et al., 2003; Liv et al., 2012).
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We selected this probabilistic resampling pro-
cedure as opposed to non-parametric resampling
with replacement from the parent data set (conven-
tional bootstrapping; Burdorf and van Riel, 1996;
Hoozemans et al, 2001; Mathiassen and Paquet,
2010) because it allows the probabilities assigned to
the occurrence of workers, tasks, and exposures to be
manipulated. This, in turn, allows scenarios differing
from the one represented by the parent data set to be
investigated, as illustrated by the assignment of equal
selection probabilities for all workers in this study
(step i’ in the algorithm above) even though they
were, in fact, represented to different extents in the
parent data (cf. Table 1, n',, ¢ ).

Task and exposure variables
For each simulated data set, eight summary expo-
sure variables were then calculated. As defined and
explained in Table 2, we examined the following:

« Two operation-level variables: average opera-
tion exposure in the group of workers (M £ o0 )
calculated using a mean-of-means approach
(Samuels et al., 1985), and variance between
subjects in job exposure ( spg ;4 g )-

« Four task-level variables (calculated for each of
the tasks in the operation): the relative occur-
rence of the task in the operation (wy, ),
the variance between subjects in task occur-
rence ( SéS-WTs ), the group mean task exposure
(M grs), and the variance between subjects in
task exposure ( S;HTS ).

« Two variables summarizing differences
between the four tasks in the operation: task
diversity ( MSA ; ) and task contrast within
the operation (Cy ).

Since a complete set of variables was obtained for
each simulated data set, 5000 sets of all eight expo-
sure variables (some of them quadrupled, since the
operation contained four tasks) were available for
each of the six investigated sampling strategies.

Sampling performance
The mean and S5th-9Sth percentile range of the
cumulative probability plots of the 5000 simulated
values for each task and posture variable, category,
and sampling strategy were calculated as summary
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measures of statistical performance, reflecting the
precision of the resulting exposure estimate. As an
additional measure of performance, the proportion of
the 5000 values falling between 90 and 110% of the
value in the parent set, i.e. a £10% level of ‘coverage
probability’ (Landon and Singpurwalla, 2008), was
determined for all variables, categories, and sampling
strategies. This metric reflects the ability of the sam-
pling strategy to produce a result in close proximity
to the ‘true’ target value, capturing the combined
effects of bias and imprecision. The distributional
properties of the cumulative probability plots were
also examined visually. A custom software program
was written in MatLab to calculate the eight task and
posture variables and to assess statistical performance
from the cumulative distributions, using the metrics
described above.

For the variables Wpes Wres and W, , the cov-
erage probabilities reflect results in each individual
category, independent of other categories in the
same set (e.g. in each posture category at the opera-
tion level). However, they do not capture corre-
lations—negative or positive—between results
within a category set, which will be present due to
the ‘compositional’ nature of data (Aitchison, 1986;
Reimann et al., 2012), ie. that results inherently
add up to 100%. Thus, in order to measure the abil-
ity of our sampling strategies to deliver results close
to the truth in several categories (tasks or postures)
simultaneously, we calculated ‘compositional cover-
age probabilities’, i.e. the proportions of the 5000
data sets under each strategy that returned a result
between 90 and 110% of the parent data set value in
0, 1,2, 3, or all four categories.

RESULTS

Parent data set
Exposures in the parent data set are summarized
in the column ‘Target’ in Tables 3a (operation
level), Table 4a (task level, miscellaneous work),
and Supplementary Table Sla, available at Annals
of Occupational Hygiene online (task level, other
tasks). The 10 jacking pit construction workers
spent, on average, 70.9% of their job time in neu-
tral postures, 14.4% in mild flexion, 11.3% in severe
flexion, and 3.3% in twisted trunk postures (Lp..;
Table 3a). The four component tasks, i.e. top work, pit
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wall construction, manual excavation, and miscellane-
ous work, comprised, on average, 23.1, 19.5, 38.9, and
18.4% of the operation, respectively (w,,; Table 4a
and Supplementary Table Sla, available at Annals of
Occupational Hygiene online). The mean time across
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workers spent within a certain exposure posture cat-
egory in each task ( U zr,; Table 4a and Supplementary
Table Sla, available at Annals of Occupational Hygiene
online) ranged from 59.2 to 85.8% (neutral), 6.6 to
19.1% (mild flexion), 4.9 to 17.3% (severe flexion),

Table 3. (a) Operation-level and job-level exposure variables for all simulation strategies and
the parent data set (column ‘Target’). All cells but ‘Target’ show the mean value with Sth-95th
percentile values from the simulated distributions located in square brackets below. For
explanation of exposure variables see Table 2. (b) Coverage probabilities for operation and job-
level exposure variables: percentage of simulations (n = 5000 for each strategy) in which the
estimated exposure value was between 90 and 110% of the true target exposure value in the parent
data set. Cells with 90% coverage or more highlighted in dark gray; cells with 80-89.9% coverage

highlighted in light gray

Variable Posture Simulated sampling strategy, number of samples Target
300 600 9200 1500 3000 4500
(a)
n Neutral  70.9 71.0 71.0 70.9 70.9 70.9 70.9
Eee
[66.6-75.3] [67.9-74.1] [68.4-73.4] [69.0-72.8] [69.5-72.3] [69.8-72.0]
Mild 14.5 14.4 14.4 14.4 14.4 14.4 14.4
[11.2-17.8] [12.1-16.8] [12.5-16.4] [13.0-15.9] [13.4-15.5] [13.6-15.3]
Severe 11.3 11.3 11.3 114 114 11.3 11.3
[8.4-14.4] [9.3-13.5] [9.6-13.0] [10.0-12.7] [10.4-12.3] [10.6-12.1]
Twisted 3.3 3.3 33 3.3 33 33 3.3
[1.7-5.1] [2.1-4.5] [2.3-4.3] [2.5-4.1] [2.8-3.8] [2.9-3.8]
g pes  Neutral 140.6 106.4 94.6 86.1 79.7 77.7 73.4
[59.9-243.8] [52.7-173.7] [51.6-146.5] [52.3-124.6] [55.5-107.7] [58.0-99.1]
Mild 55.0 33.8 26.9 21.3 17.2 15.8 132
[20.3-102.8] [14.1-60.8] [11.7-47.1] [10.0-35.3] [9.6-26.3]  [9.6-22.9]
Severe  70.5 54.3 48.9 44.6 41.5 40.5 38.4
[27.0-131.3] [24.9-93.9] [24.5-79.7] [25.7-67.3] [27.7-57.0] [29.1-53.1]
Twisted 13.0 7.7 5.8 4.5 3.4 3.0 2.3
[3.8-27.5] [2.7-15.5] [2.2-11.3] [1.8-8.2] [1.6-5.7] [1.6-4.9]
MSA, Neutral 124.7 109.5 103.7 98.1 94.9 93.4 90.9
[26.9-255.2] [34.4-208.6] [40-188.2] [50.0-160.2] [60.1-134.9] [65.7-125.1]
Mild 42.9 33.5 30.1 26.7 24.0 23.2 21.7
[6.4-104.6] [6.3-78.7] [7.4-66.0] [9.4-51.8] [12.6-39.0] [13.7-34.6]
Severe 374 29.3 26.1 23.1 21.4 20.7 19.3
[5.1-97.8] [4.7-76.5] [5.8-64.9] [7.0-49.9] [9.6-37.6] [11.3-32.5]
Twisted 8.4 4.9 3.5 2.3 1.4 1.0 0.5
[0.7-30.0] [0.4-17.7] [0.3-11.7]  [0.2-6.6] [0.2-3.7] [0.1-2.7]
Cy Neutral  0.21 0.24 0.27 0.30 0.34 0.35 0.35
[0.05-0.40] [0.09-0.42] [0.12-0.43] [0.17-0.44] [0.23-0.45] [0.26-0.44]
Mild 0.15 0.18 0.20 0.24 0.28 0.30 0.32
[0.02-0.32] [0.04-0.34] [0.06-0.37] [0.09-0.40] [0.15-0.42] [0.18-0.43]
Severe 0.14 0.15 0.16 0.18 0.21 0.22 0.22
[0.02-0.30] [0.03-0.30] [0.05-0.31] [0.07-0.32] [0.10-0.32] [0.12-0.32]
Twisted  0.09 0.07 0.07 0.06 0.04 0.04 0.02
[0.02-0.19] [0.01-0.17] [0.01-0.15] [0.01-0.12] [0.01-0.09] [0.01-0.08]
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Table 3. Continued
Variable Posture Simulated sampling strategy, number of samples Target
300 600 900 1500 3000 4500

(b)

MEee Neutral | 99.4 100.0 100.0 100.0 100.0 100.0
Mild S51.2 68.3 77.8 89.0 97.4 99.2
Severe 46.8 63.1 72.3 83.1 94.9 98.1
Twisted 24.6 33.6 41.5 52.2 68.5 78.6

51235—15.5 Neutral 6.9 12.5 184 25.0 35.3 42.4
Mild 0.6 3.0 54 9.2 18.0 22.7
Severe 8.3 154 18.0 23.5 33.2 40.3
Twisted 0.5 1.9 4.1 7.3 14.3 18.5

MsA, Neutral 9.8 14.5 17.2 217 314 38.7
Mild 7.4 104 11.3 154 22.4 27.3
Severe 8.0 104 12.3 13.9 20.6 24.4
Twisted 0.8 1.6 2.3 3.2 5.5 6.3

C, Neutral 9.4 14.4 18.9 26.2 40.4 472
Mild 5.8 8.4 11.0 16.3 25.1 28.6
Severe 10.5 13.5 14.6 18.2 24.6 272
Twisted 1.7 2.9 3.7 4.5 6.1 6.9

and 2.7 to 4.4% (twisted). Tasks differed most with
respect to neutral postures ( MSA , ; Table 3a). It
should be noted that the values of MSA ; are some-
what inflated due to exposure variability within each
of the four tasks. Task contrasts within the operation
corroborated that the tasks differed most consistently
in the occurrence of neutral and mild trunk postures
(Cg; Table 3a).
Individual workers differed considerably in
how often they were observed in each of the
four posture categories, particularly for neu-
tral and severe trunk flexion (si ;.s; Table 3a),
as well as in the relative proportion of time they
spent performing each of the four tasks (51235—WTS ;
Table 3a). Even within a task, postures differed con-
siderably between subjects ( s5s_,rs; Table 4a and
Supplementary Table Sla, available at Annals of
Occupational Hygiene online), with the caveat that
these variabilities include contributions from within-
subject variability (between and within measurement
days), which could not be isolated and adjusted for.

Statistical performance: operation level
For all sampling strategies, operation exposure,lp,,,
was estimated without bias relative to the ‘true’

target (Table 3a). This is illustrated by the alignment
of the inflection points of the simulated data disper-
sion curves and the line indicating the target value in
Fig. 1a. As expected, the Sth-95th prediction interval
decreased with increasing sample size ([g,,; Table 3a,
values in square brackets). This narrowing is illustrated
in Fig. 1a by the decreased dispersion of the 5000 sim-
ulated data sets at larger sample sizes.

Coverage probability depended on the true occur-
rence of the postural exposure in the parent data set
(Table 3b). For example, for neutral trunk posture,
which was the most frequently observed, a high level
of coverage probability (99.3%) was shown even for a
sampling strategy with only 300 observations. In con-
trast, for the most rarely observed posture, twisting,
even a sampling strategy containing 4500 observa-
tions led only to a 78.6% probability of producing an
operation exposure estimate within +10% of the target
value. Compositional coverage probabilities for pos-
tures at the operation level increased with sample size
(Fig. 2a). With 300 observations, about one of every
five data sets contained values deviating more than
10% from the target value in three or all four posture
categories. Even with 4500 observations, fewer than
80% of all data sets showed values within £10% of
the target in all four categories. These compositional
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?o coverage probabilities deviated by *S percentage
5 points or less from the probabilities predicted under
the assumption that the coverage in each category was
independent of that in the other categories in the same
set. As an example, the predicted compositional cov-
erage probability under the 300 observation strategy

o S a4 © NN O Mm®m© of getting a value close to the truth in all four posture

§ § A § 238222 categories at the operation level was (cf. Table 3b)
0.994.0.512.0.468.0.246-100%, i.e. 5.9%, whereas the
actual compositional coverage was 5.7% (Fig. 2a).

In contrast to the unbiased mean exposure, esti-
mates of between-subject variability were upwardly

o N N Ot NN MmO o biased for all sampling strategies; shorter duration

=3 [\ N S A= S — % o .

2 S T S mH oA~ samples were more severely bzlased and also showed
wider prediction intervals (Sps_zes; Table 3a). This
is illustrated by the horizontal curve shifts for smaller
sampling strategies in Fig. 1b. The effect of sample
size on bias may result primarily from the fact that

o S T N N S RV R N e the variance of the individual exposure mean values

S f 8 A NG AdRSA . . ) 2 .

e A BN NQQ = included in the estimate of sy¢ r,¢ is larger for smaller

. . 2
sample sizes and thus inflates the value of sgg p,¢ to
a larger extent. Coverage probability was much lower
for estimates of between-subject variability than that
m for mean exposures. In the best case, i.e. for neutral
% T N S e N N = trunk postures, coverage probability for SIZ;S,E.S never
=)
g S $ & q2=ExrnHaw exceeded 42.4%, even with 4500 samples (Table 3b).
% In the worst case, that of twisted postures assessed by
) the 300 observations strategy, only 0.5% of the 5000
) . o
g simulated data sets fell within £10% of the target
5 . .
g Ste pes value, due to the combined effect of bias and
gé - TN W <+ 0N~ AN Q imprecision.
k 2 g 2 g ew A similar pattern of larger bias and wider prediction
P od
o intervals at smaller sample sizes was also observed for
i MSA, (Table 3a, Fig. 1c). Again, increased bias was
o
g likely due to the effect of within-subject variability on
- task exposure estimates. Notably, this means that with
< small sample sizes, task exposures appear to be more
E - o 2 @ eLzs2zgaz different from each other than they really are. Even
AL MR  Ealaie at the largest sample size (here 4500 observations),
MSA, did not converge completely to the target value.
o - - By definition (cf. Table 2), the effect of sample
TI|E g v 8 E L 8 size on contrast, C, will be a trade-off between
3|8 | | B =g2s53 9232 L .
2|8 © 5§ 3 2,05 5 2 the effects on MSA ; and on within-task vari-
S [~ Z 2 aBEHZE o B . > ]
g ability, szgprs. In the present material, both
O S . . 2
decreased with increasing sample size (for sgg pro
:lj _%’ © “ see below). In most cases, the net effect was that
=
2 |8 e 3 2 i) C; was underestimated at small sample sizes but
< - o o . .
=S £ =z = - increased toward the target value with larger sample
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1 Simulated cumulative distributions of variables describing exposure to severe trunk flexion at the operation level:

(a) group mean exposure, Mg es; (b) variance between workers, Spg_pqs ; (¢) task diversity (mean squared deviation
between task exposures), MSA | ; (d) exposure contrast between tasks, C;; . Each panel shows the distribution of the
5000 simulated results obtained by each of the six investigated observation strategies, from left to right as indicated by the
legend in the upper right corner (colored online). Dashed vertical lines indicate the target value read from the parent data

set (Table 3a, column ‘“Target’).

sizes (Table 3a, Fig. 1d). For twisted postures, how-
ever, the opposite was seen: C; was overestimated
at small sample sizes and decreased toward the tar-
get with larger sample sizes. In general, the effect of
an increasing sample size on the prediction inter-
val was not as pronounced for Cj as for the other
exposure variables, so coverage probability did not
improve as markedly with larger sample sizes. For
example, coverage probability for C; in severe flex-
ion only increased from 10.5 to 27.2% as the number
of samples increased from 300 to 4500 (Table 3b).

Statistical performance: task level
The mean proportion of time spent performing each
individual task (wy,; Table 4a and Supplementary
Table S1a, available at Annals of Occupational Hygiene

online) was estimated without bias, even when
using the smallest sampling strategy. The prediction
interval decreased with increased sample size, as
expected. Compositional coverage probability was
better for the set of task proportions (Fig. 2b) than
for postures (Fig. 2a), as might be expected from the
larger coverage probabilities for each individual task
proportion (Table 4b, Supplementary Table S1b,
available at Annals of Occupational Hygiene online).
Already with only 300 observations, <1 of every 10
data sets contained task proportions deviating more
than 10% from the true target value for three or
all four tasks (Fig. 2b), and essentially all data sets
containing 4500 observations resulted in task pro-
portions within 10% from the target value for all
four tasks.
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2 Effect of sample size on compositional coverage probabilities for (a) operation-level mean exposure; (b) task
proportions; and (c) task-level mean exposure in miscellaneous work. Curves show proportions of the S000 simulated
data sets at each sample size that included values within 10% from the true target in at least 1, at least 2, at least 3, or

all 4 categories as indicated by the legend in the upper right corner of each panel (colored online). Posture categories:
neutral, mild, severe, twisted; tasks: top work, pit wall construction, manual excavation, miscellaneous work. Diagrams
corresponding to panel (c) for the other three tasks are shown in Supplementary Figure S1 (available at Annals of

Occupational Hygiene online).

In general, even the mean exposure value for indi-
vidual tasks ([ zr,; Table 4a, Supplementary Table
Sla, available at Annals of Occupational Hygiene
online) was unbiased for all six sampling strate-
gies and also demonstrated a decreasing predic-
tion interval with increasing sample size. Coverage
probability for task mean exposure estimates, [y,
(Table 4b, Supplementary Table S1b, available at
Annals of Occupational Hygiene online), was, in gen-
eral, considerably lower than for the corresponding
operation level mean exposures, g, (Table 3b),
mainly because task exposure estimates were based
on fewer samples and thus were less precise. This
also led to compositional coverage being consid-
erably lower for task mean exposures (Fig. 2c,

Supplementary Figure S1, available at Annals of
Occupational Hygiene online) than for operation
mean exposure (Fig. 2a). For instance, with 4500
samples, exposures were within £10% of the tar-
get value in all four posture categories for 76.8% of
the assessments of operational exposure (Fig. 2a),
whereas only 7.5% of the compositional exposure
estimates in miscellaneous work were within +10%
(Fig. 2c). For between-subject variability in task
occurrence (sg,,) and task exposure (s prs
), pronounced bias and wide prediction intervals
were present at smaller sample sizes, in particular
for 5}235—ETS in the three ‘rarer’ tasks. Thus, the cov-
erage probability for 51235_WTS and sy zrs was low in
these three cases (Table 4b, Supplementary Table
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3 Simulated cumulative distributions of variables describing exposure to severe trunk flexion in the task miscellaneous work:
(a) group mean exposure, W .; (b) variance between workers, S 1 . Each panel shows the distribution of the 5000

simulated results obtained by each of the six investigated observation strategies, from left to right as indicated by the legend in
the upper right corner (colored online). Dashed vertical lines indicate the target value read from the parent data set (Table 4a,

column ‘Target’).

S1b, available at Annals of Occupational Hygiene
online).

Distributional properties of exposure estimates
For some exposure estimates in rare tasks at shorter
sampling strategies, the shape of the cumulative distri-
bution across the 5000 simulated values differed from
that found for the same exposure variable with larger
strategies. For example, in the miscellaneous work
task for the 300-sample strategy, the median estimated
exposure to severe flexion was smaller than the median
obtained with larger sample sizes (Fig. 3a), and severe
flexion did not even occur in approximately 8% of
the 5000 data sets, as shown by the positive y-inter-
cept value in Fig. 3a. Under the 300-sample strategy,
an average of 55 samples (18.4%; wy, , Table 4a) are
expected to come from miscellaneous work. Since
only 4.9% (Mgr,, Table 4a) of these SS samples are
expected to show severe trunk flexion, a data set with
300 samples will, occasionally, contain no observa-
tions of severe flexion from any of the workers per-
forming the task. In this case, task exposure to severe
flexion at the group level will be zero and so contribute
to the observed positive y-intercept.

With the 300-sample strategy, the cumulative
distribution of severe trunk flexion in miscellane-
ous work also appeared slightly jagged (Fig. 3a).
This discrete graphical pattern is even more appar-
ent in Fig. 3b, which shows the task-specific,

s 2
between-worker  exposure  variability, Sk prs,

for severe trunk flexion during miscellaneous work.
Under the 300-sample strategy, five to six simulated
observations on average from each individual worker
(i.e.,, 55/10) will be in miscellaneous work. Thus, each
observation (sample) will account for ~20% of the
time in the task and influence the task exposure of that
worker accordingly. The jagged distribution in Fig. 3b
indicates that the presence or absence of single sam-
ples for each particular worker changes the size of the
exposure variability in a stepwise fashion. This pattern
is also visible at sample sizes larger than 300, albeit to
a lesser extent.

DISCUSSION

Statistical performance of work sampling for
categorical variables
The primary aim of this study was to develop a pro-
cedure for investigating the statistical properties of
selected task and exposure variables, estimated from
data obtained by different observational work sam-
pling strategies. The proposed probabilistic simulation
approach proved useful for disclosing sampling per-
formance when assessing variables that are difficult to
access using analytical methods, and resembles in this
respect previous simulation studies of precision and
bias associated with exposure estimation (e.g. Semple
et al., 2003; Liv et al., 2011). Although the empirical
illustration based on a large parent data set of PATH
observations served primarily to demonstrate the abil-
ity of the probabilistic simulation to produce results
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of generic relevance to the design of data collection
strategies, we also believe the exposure structure of
the parent data set to be representative of many cat-
egorical data sets of occupational postures obtained
using work sampling because all workers performed
all tasks and experienced all exposures at least occa-
sionally. Thus, essential results, such as the statistical
properties of variability metrics compared with those
of mean values, or of variables at the level of tasks com-
pared with at the level of operation, may be generally
applicable to most occupational exposure assessment
efforts. Therefore, we discuss these results more in
detail below, even if numerical values may be specific
to the present parent data.

The precision of mean exposure estimates at both
the operation and task levels (L, and W;;,, Tables
3a and 4a) improved with increasing sample sizes
from 300 to 4500 observations. This result is consistent
with several other studies addressing the relationship
between sample size and uncertainty in estimating mean
exposures (Burdorf and van Riel, 1996; Hoozemans
et al., 2001; Mathiassen et al., 2002; Fethke et al., 2007),
as well as a previous analysis of PATH performance in
different operations (Paquet et al, 2005). Thus, our
study corroborates that highly prevalent exposures
may be determined reasonably correctly even with
relatively small sample sizes, in casu, 300 observations
(Table 3a), but that less common exposures, in particu-
lar if measured at the task level, may be estimated with
considerable uncertainty even with very large total sam-
ple sizes, in casu 4500 observations (Tables 3a and4a,
and Supplementary Table Sla, available at Annals of
Occupational Hygiene online). PATH is unlikely to differ
much in this respect from other observational methods
for assessing categorical variables by work sampling,
such as Back-EST (Village et al., 2009), TRAC (van der
Beek et al., 1992; Frings-Dresen and Kuijer, 1995; van
der Beek et al,, 1995), or OWAS (Karhu et al., 1977;
Kivi and Mattila, 1991).

The finding that increased sample size improved
statistical performance was, of course, expected. The
variance of an estimated mean value of a continuous
variable will decrease in inverse proportion to the
number of samples, provided that the data are ran-
domly distributed (Samuels et al,, 1985). In the pre-
sent case, each basic unit of measurement, i.e. each
single PATH observation, is an array of multinomial
sets of ‘yes’ or ‘no” answers to whether any particular

worker is observed at that very instant, whether he
is performing each specific task, and whether the
exposure is within each specific posture category.
Thus, data in any particular category are binomially dis-
tributed, with the probability of the answer ‘yes’ being
defined by the overall proportion of samples in that
category in the parent data set. With large sample sizes,
mean values of binomial variables approach normal
distributions and so behave statistically as a continu-
ous variable, with properties that can be approximated
using analytical methods (cf. Appendix). In the present
case, binomial theory led to an expectation that mean
values of task proportions and postures would be unbi-
ased and normally distributed with a variance directly
computable from the workers’ individual exposures
and the total number of samples (Appendix).

This theoretical prediction, however, is condi-
tional on collected data sets being large and bal-
anced. In the present case, theoretical expectations,
such as the size of prediction intervals (cf. Tables 3a
and4a, and Supplementary Table Sla, available at
Annals of Occupational Hygiene online), were, indeed,
met for most sampling strategies at the operation
level and for both task proportions and posture vari-
ables. However, at the task level, several deviations
from expected performance were observed. For
instance, using the 300-sample strategy, the Sth-
95th prediction interval for severe flexion in miscel-
laneous work (L pz,; Table 4a) was larger (12.0%)
than predicted by theory (9.1%) and also somewhat
skewed (0.0-12.0%) around the mean value of 5.0%.
In this case, only about three observations of severe
flexion in miscellaneous work will be available in a
complete 300-sample data set (4.9 of 18.4% of 300;
cf. Table 4a), and they are not likely to always be
equally distributed among different workers. Thus,
the data available for estimating exposure to severe
flexion in this task are neither ‘many’ nor balanced.
Other examples of irregular distributions were
shown in Fig. 2. The occasional discrepancy between
theoretical and empirical (simulated) performance
illustrates an important use of the probabilistic simu-
lation approach, i.e. to show when assumptions are
no longer met in analytical models. In extension,
simulations are also very attractive when address-
ing distributions of variables that cannot be readily
addressed by theoretical models, such as exposure
variability metrics (Liv et al., 2012).
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Both theoretical equations (Appendix) and
simulation results draw attention to the fact that
the uncertainty of mean exposure estimates did
not relate directly to the size of between-subject
variability in the exposure. As an illustration, the
variability between workers in task proportions
(855 vy Table 4a) was much larger for most tasks than
the variability in job exposures (s3_ s, Table 3a) and
the Sth—95th prediction intervals for task proportions
and operation exposures were of the same order of
magnitude. This counter-intuitive property of the pre-
sent work sampling is a result of the sampling being
performed in a finite population, which—in large
data sets—eliminates the contribution of between-
worker variability to the variance of group mean val-
ues (cf. Appendix), and of the fact that the average
within-subject variability will be less if workers differ
substantially in mean exposure than if they are more
homogeneous.

Consistent with previous simulations examin-
ing continuous exposure variables (Liv ef al,, 2012),
uncertainty (i.e. the Sth-9Sth prediction intervals)
was considerably larger for variables describing vari-
ability than for mean values at the same sample size.
Prediction intervals for variance estimates were also
upwardly skewed with respect to the mean, particu-
larly at small sample sizes (Tables 3a and4a). As a
combined effect of bias and low precision, coverage
probabilities for variability metrics were, in general,
poor; in some cases with small sample sizes, they were
<5%, even at the operation level (Table 3b).

The effect of increased sample size on metrics
expressing aspects of exposure variability (Sgs_E. S,
MSA, 5123s-wT5 ,Spsprs,Cp) is more difficult to
predict than the effect on mean values (W g0, Uprer
wr,), and considerably less literature has been
devoted to the statistical performance of such variabil-
ity metrics (Mathiassen et al., 2002, 2003b; Liv ef al,,
2012). In the present material, most of these variables
(51233—5 s MSA, slzss-wTs ) SLZBS—ETS ) were upwardly
biased at all sample sizes and particularly at smaller
sample sizes (Tables 3a and4a, and Supplementary
Table Sla, available at Annals of Occupational Hygiene
online). We believe this to result mainly from the larger
uncertainty at smaller sample sizes of both within-
subject and within-task variability. Within-subject
variability was present to different extents for all 10
observed workers, as suggested by their individual
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exposure profiles (Table 1), but again within-days and
between-days contributions could not be separated.

As noted above, exhaustive sets of mutually
exclusive categories lead to compositional results,
i.e. constrained data that inevitably add up to a cer-
tain number, in casu, 100%. This constrained nature
of categorical data was reflected and reproduced by
the resampling procedure employed for simulating
new data sets. Comprehensive use of compositional
data, for instance in hypothesis testing or regression
analysis, requires specific procedures differing from
conventional Euclidian algebra (e.g. Fry et al., 2000;
Filzmoser et al., 2009; Filzmoser et al., 2010; Reimann
et al.,, 2012), which fall outside the scope of this study.
However, the reported compositional coverage prob-
abilities, measuring the ability of a sample estimate to
show values ‘close’ to the truth in an entire category set,
revealed that probabilities within a category set, such
as the four posture categories in operation exposure,
were, indeed, correlated. However, discrepancies were
small between empirical compositional coverage prob-
abilities (Fig. 2, Supplementary Figure S1, available at
Annals of Occupational Hygiene online) and values pre-
dicted with the assumption of independence among
categories. This suggests that compositional coverage
can be fairly well estimated on the basis of binomial
theory (cf. Appendix).

How many observations are sufficient?
Although we have demonstrated that larger observa-
tion samples lead to better statistical performance,
if in different ways and at different rates for different
posture variables, we have deliberately avoided using
the term ‘sufficient’ for any particular level of perfor-
mance. A number of previous studies have, indeed,
identified certain sample sizes as ‘sufficient’, ‘enough),
‘adequate, or leading to ‘reliable’ results (Burdorf and
van Riel, 1996; Allread et al., 2000; Hoozemans et al.,
2001; Paquet et al, 200S; Fethke et al.,, 2007; Trask
et al, 2008). The criterion has, however, often been
largely arbitrary and based on the premise that preci-
sion will not improve to any notable extent beyond
this ‘sufficient’ sample size. Other studies have, on
more formal grounds, identified the necessary sample
size to obtain a specific precision of a mean exposure
estimate (Mathiassen et al, 2003b), the necessary
study size to obtain ‘acceptable’ power in studies com-
paring independent groups (Mathiassen et al., 2002),
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or the necessary number of subjects or samples when
testing interventions using individuals as their own
control (Mathiassen et al, 2003b; Mathiassen and
Paquet, 2010).

Design requirements for an exposure data collec-
tion will also differ profoundly depending on whether
the study is, e.g. devoted to documenting exposures in
a specific occupational setting (as the present study),
comparing mean exposures between groups or condi-
tions (Mathiassen et al., 2002; Mathiassen and Paquet,
2010), comparing exposures to threshold limit values
(Lyles and Kupper, 1996), determining exposure-out-
come relationships using either an individual-based or
a group-based approach (Burdorf, 1995; Seixas and
Sheppard, 1996; Tielemans et al, 1998; Nordander
et al., 2004) or estimating sources and sizes of expo-
sure variability (Eliasziw and Donner, 1987; Liv
et al., 2012). For each of these study types, the neces-
sary sample size will further differ depending on the
choice of summary statistics and the distribution of
the selected exposures, as demonstrated in the present
study (Tables 3b and 4b) and numerous other studies
showing that variability within and between subjects
differs among exposure variables (e.g. for working pos-
tures: van der Beek ef al., 1995; Burdorf and van Riel,
1996; Mathiassen et al., 2003b; Hansson et al., 2006;
Bao et al, 2009; Dartt et al., 2009; Wahlstrom et al.,
2010).

Thus, the required statistical performance in any
exposure data collection strategy, and hence the nec-
essary sample size, is specific to the purpose, context,
variables, and desired sensitivity of that particular
study for which the sampling is carried out. In the pre-
sent study, which focused on a descriptive documenta-
tion of exposures in a specific construction operation,
300 PATH observations would be sufficient for obtain-
ing an 80% probability that the resulting estimate of
the occurrence of neutral trunk postures is within 10%
from the correct value (Table 3b). The same cover-
age probability for operation exposures to mild and
severe trunk flexion would require 1200 and 1500
samples, respectively, while an assessment of twisted
postures would not reach 80% coverage probability
even with 4500 samples. All variables describing expo-
sure variability between subjects and tasks (Table 3b)
showed coverage probabilities below 80% even with
4500 samples, so even larger samples—probably in
excess of what can be practiced in many occupational
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studies—would be needed to reach a satisfying per-
formance. For all four tasks, proportions could be
determined with sufficient coverage probability by
900 samples (Table 4b), whereas only few task expo-
sures and no task exposure variabilities reached suf-
ficient coverage probability even with 4500 samples.

Although tentatively providing these guidelines for
sampling in occupational settings and for metrics sim-
ilar to those represented here, we wish to emphasize
that prediction intervals will, for mathematical rea-
sons, reach a width of zero (i.e. perfect precision) only
at an infinite number of samples. Thus, ‘saturation’ or
convergence to the ‘true’ value will never occur in a
pure statistical sense. From a practical point of view,
however, the return, in terms of improved precision
with an increased number of samples, may, at some
point, decrease below what is considered reasonable
from a resource consumption perspective. A certain
level of imprecision may even be deemed acceptable,
and additional sampling beyond what is needed to
achieve this statistical performance is then of limited
value.

Understanding categorical work sampling and
probabilistic simulation

A number of studies have addressed aspects of sam-
pling performance for exposure variables measured
on a continuous scale, using analytical expressions
based on variance components (e.g. Mathiassen et al.,
2003a, 2003b; Kazmierczak et al., 2006; Lampa et al.,
2006; Chen et al., 2009; Jackson et al.,, 2009). A large
majority of these studies have been devoted to under-
standing the precision of mean exposure estimates. To
our knowledge, very few attempts have been made to
analyze statistical sampling performance for variables
describing exposure variability, let alone task diver-
sity or task contrasts. Standard analytical methods
are applicable only for normally distributed and inde-
pendent data, including data that can, via a suitable
transformation, reach normality, which is standard
practice for most exposure assessments in the field of
occupational hygiene (Loomis and Kromhout, 2004).
Although some violations of assumptions in standard
analysis methods can be handled by modified statisti-
cal models, any analytical approach is limited to expo-
sure variables for which sampling performance can be
expressed in a closed-form equation, typically expres-
sions of central tendencies (mean values).



We chose to investigate sampling performance for
variables expressing exposure variability on the basis
of virtual data sets obtained by a simulation procedure,
rather than developing an analytical approximation.
Our approach of using the probabilities of task and
exposure occurrence for each worker as observed in
the original PATH observation data set is an example
of parametric simulation where data units are assumed
to follow a known distribution, and virtual data sets
are created by randomly selecting values from that dis-
tribution with a predetermined setup of parameters
(Semple et al., 2003). In the case of multinomial data,
this parametric simulation may be particularly appeal-
ing since the distribution is fully characterized by the
set of probabilities of ‘positive’ (‘yes’) outcomes in
the categories within a set. As an alternative, we could
have used non-parametric bootstrap resampling with
replacement among the 3103 observations in the
parent data set (Efron and Tibshirani, 1986; Burdorf
and van Riel, 1996; Mathiassen and Paquet, 2010;
Liv et al., 2011). We chose not to do so because of its
highly unbalanced structure: the 10 workers were rep-
resented to highly different extents, ranging from 68 to
706 data points (Table 1). To mimic a scenario where
all workers worked full time and were equally avail-
able for observation, we assigned all workers an equal
probability of being selected on any single occasion.

This decision also illustrates an attractive property
of probabilistic simulation compared with straightfor-
ward bootstrap resampling with replacement, namely,
that the probabilities assigned to the occurrence of
different subjects and exposures can be manipulated
so as to explore hypothetical scenarios that differ
from the one represented by the parent data set. For
instance, in a reorganization of an operation, work-
ers may be assigned new proportions of constituent
tasks, even if the overall occurrence of each task in the
job does not change. Virtual redistributions of tasks
among workers can easily be simulated by changing
individual values of task proportions while maintain-
ing the original values of overall task occurrence, Wre
, and the overall mean job and task exposures [lg,,
and Wz, . Additional scenarios accessible to proba-
bilistic simulation are the introduction of new tasks
and changes in individual exposures, e.g. following
from an ergonomic intervention. Even alternative
scenarios referring to the logistics of exposure assess-
ment may be considered by probabilistic simulation.
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For instance, some workers may not be accessible
for observation during the whole period of data col-
lection because they occasionally work in a location
where observations are not feasible. This situation
can be simulated by manipulating the probabilities
of individual workers being selected for observation.
Also the number of accessible workers sharing the
tasks in the operation can be changed. We encourage
more studies of data collection strategies using proba-
bilistic simulation, especially for categorical data with
binomial or multinomial distributions.

When the measurement method itself contrib-
utes uncertainty, which is inevitably true in observa-
tional studies (Denis et al., 2000; Takala et al., 2010),
the variance on the eventual exposure estimate will
include a methodological contribution. In our par-
ent data set, variability within and between observ-
ers could not be distinguished from other sources of
variability, and thus, it was not possible to determine
the specific effects of between-observer and within-
observer variability on the overall performance of
the investigated sampling strategies. Other studies
have, however, shown that between-observer reli-
ability is good when PATH observations are made
by trained observers (Park et al., 2009), as in the
present parent data set. With other observational
methods and/or for other variables than those
observed in PATH, observer variability has been
shown to contribute significantly to the uncertainty
of the eventual exposure estimate (Kazmierczak
et al., 2006; Dartt et al., 2009; Rezagholi et al., 2012;
Mathiassen et al., 2013). We therefore recommend
that the effects of variability between and within
observers be specifically addressed in future studies
of strategies for observing categorical variables.

Finally, a further step in optimizing study designs
would be to include considerations to the cost of dif-
ferent data collection strategies that lead to a satisfy-
ing statistical performance (Mathiassen and Bolin,
2011; Rezagholi et al., 2012; Mathiassen et al., 2013).
Methods for cost-efficiency analyses are, in general,
still in their infancy (Rezagholi and Mathiassen,
2010) and have so far been based only on analytical
estimations of sampling performance. Analyses of
cost-efficient exposure assessment using simulations,
including specific investigations of categorical posture
data obtained by work sampling, is a challenging issue
for further research.
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CONCLUSIONS

The present study proposed a novel probabilistic simu-
lation approach for categorical data and used it to reveal
the statistical performance of observations of tasks
and trunk postures obtained using a work sampling.
Performance improved with increasing numbers of
samples from 300 up to 4500. At each particular sample
size, mean exposures were, in general, estimated with
considerably better precision than variables describing
aspects of exposure variability between workers and
tasks; estimates of exposure variability were also biased
at small sample sizes. Even with 4500 samples, varia-
bles describing exposure variability were not estimated
with satisfying coverage probability, neither at the level
of individual categories nor for compositional sets of
categories. The simulation approach thus proved use-
ful for examining the performance of alternative expo-
sure assessment strategies, and we also claim that it can
be used to explore hypothetical scenarios of exposure
profiles, task occurrences, and access to workers when
collecting data.

We believe that these results have a bearing in
general on occupational exposure assessment studies
where data are recorded in a categorical form. When
planning such a study, an analysis—to the extent pos-
sible—of the performance of different design options
is key to arriving at a data collection that can effectively
provide information of the desired quality, as defined
by the purpose of the study. The probabilistic simula-
tion approach proposed in this paper is useful in this
proactive process.
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APPENDIX

Precision of Mean Exposure Estimates Based on
Categorical Data

The present calculation of group mean values of
task proportions, wy,, and postures at the opera-
tion and task levels, W,, and ., respectively,
is based on a mean-of-means approach (Samuels
et al, 1985) in which exposure estimates are first
obtained for each individual worker, and then aver-
aged across workers to give the group mean. In a
balanced data set containing an equal number of
measurements for each worker, the variance, sﬁ,
of a group mean obtained by a mean-of-means
approach in a finite (limited) group is

2
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where n, N, and N*are the number of workers rep-
resented in the data set, the total number of workers
in the finite target population, and the total number
of samples in the data set, respectively, and sz and
sy are the between-worker and within-worker vari-
ance components. If every worker in the target pop-
ulation delivers data to the mean, n_equals N, and
the contribution from between-worker variability
vanishes in a ‘finite population’ effect as discussed in
previous papers (Mathiassen et al.,, 2003a; Liv ef al,
2011; Mathiassen et al., 2013). With the present simu-
lation procedure, where one worker was randomly
selected for each data point from the 10 workers
eligible for observation as per the ‘standard’ PATH
protocol (Buchholz ef al,, 1996), this ‘saturation’ will

(1)
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more probably happen if the total number of meas-
urements is ‘large. With N_ = 10, the probability of
any one worker not being represented in the data set
is only 1.9-107"'% with a full set of 300 observations,
whereas it is approximately 5% with SO observations,
as might occur at the task level under the 300-sample
strategy. Thus, all 10 workers were likely represented
in all simulated data sets at both the operation and task
level, except for some data sets at the task level when
using the smallest sampling strategies, in particular if
some task or posture category occurred very rarely for
some worker(s).

Thus, in ‘large’ data sets, the group mean variance
expressed by equation (1) is determined entirely by
the uncertainty associated with estimating the mean
exposures of individual workers within the group.
Each basic unit of measurement in the present data,
i.e, each single PATH observation, is a multinomial
set of binary answers ‘yes’ or ‘no’ to whether posture
and task at that very instant are within a particular cat-
egory for the selected worker. If the probability of the
answer ‘yes’ in a particular category is p, the expected
variance between individual samples will, according to
multinomial theory, be p(100 — p), with p measured in
percent, and the variance of a mean exposure estimate
based on n samples is, therefore, p(100 — p)/n. For
a certain sample size n, this variance is largest when
the probability, p, of a ‘yes’ is 50% and will decrease
symmetrically toward zero at probabilities above and
below 50%.

Thus, the variance of a mean exposure estimate in
a particular category for one worker is expected to
be p(100 — p)/n, where p is the exposure probability
(in percent) and 7 is the number of samples for that
worker. When individual workers” mean exposures
are averaged to form a group mean, the contribution
from within-worker variability to the resulting vari-
ance on that mean is therefore

L ges (IOO_H E.s)} )

for operation exposures and similarly

100
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for exposures in task T, where N*is the total number of
samples at the operation level, cf. equation (1); nota-
tion otherwise as in Tables 1 and 2. Both equations
assume that the same number of samples is obtained
from all workers, at the operation level, equation (2), as
well as the task level, equation (3). For an unbalanced
data set, i.e. one with unequal numbers of observations
for different workers, the variance is larger, especially if
the data are severely unbalanced (Samuels et al.,, 1985).
The estimates of occurrence for each of the four
tasks in the jacking pit construction operation
(Wre; Table 4a and Supplementary Table Sla, avail-
able at Annals of Occupational Hygiene online) are
equivalent, from a statistical point of view, to the
estimates of operation and task postures since all are
based on observations having an answer of ‘yes’ or
no’ to whether that particular unit represents each
particular task or posture category. Thus, if all workers
are represented in the data set, the variance of the esti-
mated group mean proportion of any one of the four
tasks can—for a balanced data set—be expressed as

1
N =

Z[WTS (100—w)]

s® 5

(4)

Ifa ‘large’ number of binomially distributed samples
are averaged, the mean value will be normally distrib-
uted. Thus, prediction intervals for postures and task
proportions can be calculated by using the variances
in equations (2-4) in a standard assessment of lower
and upper limits associated with a coverage according
to choice, in casu the Sth and 95th percentile.
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