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Abstract: Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysoso-
mal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease,
presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal
muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, pri-
marily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy
management several limitations remain using this therapeutic approach, including risks of immuno-
genicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The
next wave of promising single therapy interventions involves gene therapies, which are entering
into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector
(LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide
effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing
tissue-specific expression and GAA protein modifications to enhance secretion and uptake has re-
sulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy
developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially
address all components of the neuromuscular associated Pompe disease pathology.

Keywords: Pompe disease; enzyme replacement therapy; adeno-associated viral vector; hematopoietic
stem cell; lentiviral vectors

1. Introduction

Pompe disease is a rare autosomal recessive metabolic disorder caused by mutations in
the enzyme coding for acid alpha-glucosidase (GAA) protein [1]. GAA enzyme is active in
the acidic milieu of lysosomes and breaks down glycogen to glucose in cellular lysosomes.
A mutation in this enzyme causes accumulation of glycogen resulting in a broad spectrum
of clinical manifestations determined by the degree of protein dysfunction observed in
skeletal, respiratory and cardiac muscles [2]. Among the pathophysiological changes,
neuroinflammation is the hallmark of central nervous system (CNS) involvement leading
to neurodegeneration and cognitive impairment [3]. Apart from lysosomal dysfunction,
the accumulation of glycogen also results in autophagic build-up in muscle fibers that may
later result in resistance to treatment approaches [4]. Pompe disease is broadly classified
into two main categories consisting of infantile-onset Pompe disease (IOPD) and late-onset
Pompe disease (LOPD), which is largely dependent on residual GAA enzyme activity.
IOPD is diagnosed at birth and results in death by cardiorespiratory failure within the
first year of life if untreated [2]. LOPD has a slower progression of muscle deterioration
leading to motor impairment and ultimately respiratory failure [5,6]. Intravenous (IV)
enzyme replacement therapy (ERT) is the standard of care aiming to restore the intracellular
GAA enzyme activity and address the cellular pathology [7]. However, ERT has a risk of
immunological responses, has poor uptake in target tissues, and does not reach the CNS
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because of the blood–brain barrier (BBB). Novel developments- in this field predominately
include adeno-associated viral (AAV) gene therapy and lentiviral (LV) gene therapy in the
context of hematopoietic stem and progenitor cell (HSPC) transplantation (HSCT). Other
gene-modifying applications in the preclinical stage are also briefly discussed in this review,
along with the challenges associated with each method. An overview of current preclinical,
clinical stage, and marketed therapies are presented in Table 1.

Table 1. Overview of academic and company-sponsored preclinical, clinical stage and marketed
therapies to treat Pompe disease. Gene therapy applications are in the transitional development
stage to clinical application. Clinicaltrial.gov numbers are provided in bold. Ab = antibody,
AAV = adeno-associated viral, CMV = cytomegalovirus enhancer/promoter, HSPC = hematopoietic
stem and progenitor cell, LV = lentiviral vector, ERT = enzyme replacement therapy, IOPD = infantile-
onset Pompe disease, LOPD = late-onset Pompe disease. Yellow = ERT product; Gray = chaperone
therapy; Orange = AAV Gene Therapy; Blue = HSPC LV Gene Therapy.

Preclinical Program Clinical Stage Marketed Authorization

AAV2/8 Gene Therapy delivered Ab-GAA
(Regeneron)

AAV2/8 LSPhGAA liver-directed Gene Therapy
(LOPD, Phase 1)

Bayer/Actus/AskBIO (Actus-101) (NCT03533673)

Myozyme/Lumizyme (IOPD, LOPD)
Genzyme

(alglucosidase alfa)

AAV/Proprietary capsid Gene Therapy
(Amicus)

AAV9 muscle-directed Gene Therapy w/immune
modulation (LOPD, Phase 1)

University of Florida (NCT02240407)

Nexviazyme (LOPD)
Genzyme

(avalglucosidase alfa)

AAV Gene Therapy
(Sarepta-licensed from Lacerta)

AAV1/CMV-hGAA muscle-directed Gene Therapy
(LOPD, Phase 1/2)

University of Florida (NCT00976352)
AAV/Proprietary capsid Gene Therapy

(Abeona)
AAV8 liver-directed Gene Therapy (LOPD, Phase 1/2)

Audentes (AT845) (NCT04174105)

HSPC LV Gene Therapy
(Erasmus MC)

AAV/Proprietary Rh74-derived capsid,
liver-directed Gene Therapy (LOPD, Phase 1/2)

Spark/Roche (SPK-3006) (NCT04093349)
HSPC LV Gene Therapy AVR-RD-03

(AVROBIO)
Chaperone/ERT (IOPD/LOPD, Phase 3)

Amicus (ATB200/AT2221) (NCT03729362)
JR-162; IV (JCR Pharma)

J-Brain Cargo platform to cross blood–brain barrier
Nexviazyme (IOPD, Phase 2)

Genzyme (avalglucosidase alfa) (NCT03019406)

2. Current Standard of Care for Pompe Disease
Enzyme Replacement Therapy

The current standard of care for Pompe disease is ERT, which requires lifelong
IV administration of recombinant human GAA (rhGAA). Presently, alglucosidase alfa
(Myozyme® or Lumizyme®) is the only rhGAA approved treatment for both IOPD and
LOPD. The dosing regimen of 20 mg/kg biweekly is relatively high compared to other
lysosomal storage disease (LSD) ERTs (Table 2), and although this dosing regimen achieves
effective glycogen clearance in the heart and resolution of cardiomyopathy [8], it is less
effective at glycogen resolution in skeletal muscle and does not resolve respiratory or
neurological decline [9].

Table 2. Approved doses for LSDs. Information retrieved from accessdata.fda.gov. Burrow and
Grabowski reported the U/kg to mg/kg * [10], MPS = mucopolysaccharidosis.

Disease Product Recommended Dosage (mg/kg) Frequency

Fabry FABRAZYME® (agalsidase beta) 1 Every two weeks

Gaucher VPRIV® (velaglucerase alfa) 60 U/kg (~1.5 mg/kg) * Every two weeks

MPS I ALDURAZYME® (laronidase) 0.58 Once a week

MPS II ELAPRASE® (idursulfase) 0.5 Once a week

MPS VI NAGLAZYME® (galsulfase) 1 Once a week

Pompe MYOZYME® (alglucosidase alfa) 20 Every two weeks
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One of the main challenges of providing long-term symptom-free survival using
ERT alone is the limited efficiency in delivering rhGAA to affected tissues [11], which is
due to a combination of factors including low concentrations of rhGAA in the interstitial
space, a small percentage of rhGAA containing the necessary mannose-6-phosphate (M6P)
modifications needed for binding the cation-independent mannose 6-phosphate receptor
(CI-M6PR), a low abundance of CI-M6PR on skeletal muscle cells, abnormal M6P trafficking
in lysosomal storage diseases [12] and a preferential uptake of rhGAA in the liver leading
to non-productive clearance of the enzyme.

GAA protein maturation proceeds through a precursor form with a molecular weight
of 110kDa [13], which after intracellular proteolytic maturation and glycosylation in the
Golgi network leads to the active mature form of 70–76 kDa found in the lysosome [14]. In
healthy individuals, lysosomal GAA breaks down glycogen into glucose. However, efficient
lysosomal targeting of rhGAA requires binding of M6P moieties to CI-M6PR expressed
on the cell surface [15,16]. CI-M6PR, also known as insulin-like growth factor receptor
(IGF2R), is a polyfunctional transmembrane protein with high affinity for M6P [15].

Because of the inherent limitations of rhGAA delivery to affected tissues, protein
modifications for improving cellular uptake and bioavailability of rhGAA have been de-
veloped. Two approaches to increase rhGAA binding to CI-M6PR include the addition of
phosphorylated oligosaccharide moieties [17,18], which is the strategy employed in the
second-generation ERT avalglucosidase alfa (Nexviazyme®) recently approved for LOPD
with ongoing clinical trials for IOPD [NCT03019406]), and the addition of a glycosylation-
independent lysosomal targeting (GILT) peptide tag that consists of a portion of insulin-like
growth factor 2 (IGF2) to increase the binding affinity of rhGAA to the IGF2 binding
site of IGF2R/CI-M6PR (BioMarin Pharmaceutical). An investigational study was per-
formed on safety, tolerability, pharmacokinetics, and pharmacodynamics of GILT-tagged
rhGAA (NCT01230801) and a phase 3 study in LOPD patients was initiated (NCT01924845).
Although the study demonstrated improvements in respiratory muscle strength, lung
function, and walking endurance in subjects with LOPD, the sponsor discontinued the
program for reasons unrelated to concerns for patients’ safety or drug effectiveness.

In preclinical studies, Pompe mice treated with neo-rhGAA, engineered to include
an increased number of M6P residues, showed a significantly higher reduction of glyco-
gen in skeletal muscle compared to mice treated with rhGAA. These mice also showed a
comparable reduction of glycogen in the heart and diaphragm at a 4-fold lower dose [17].
Furthermore, mice treated with neo-rhGAA showed improvement in motor function in
both rotarod and wire hang tests, although this improvement was not seen in older Pompe
mice. In a randomized double-blind phase 3 trial (NCT02782741) comparing the glycoengi-
neered avalglucosidase with the existing standard of care, alglucosidase, patients treated
with avalglucosidase showed a clinically relevant improvement in respiratory function
compared to patients treated with alglucosidase, as well as additional improvement in
functional endurance and muscle strength [19].

Yet another innovative approach to increase the bioavailability and improve the phar-
macokinetics and pharmacodynamics of rhGAA is the use of small molecule chaperones to
stabilize and enhance the GAA enzymatic activity. Chaperones accomplish this by aiding
in the proper folding of GAA protein which allows it to retain its catalytic activity and
prevent premature degradation in the endoplasmic reticulum. These chaperones can be
given in tandem with conventional ERT [20], or in the context of a novel rhGAA with
higher M6P levels [21]. In addition to the correction of the glycogen buildup in skele-
tal muscle in a preclinical Pompe mouse model, the combination of the novel rhGAA
(ATB200) co-administered with the small molecule chaperone AT2221 (miglustat, N-butyl-
deoxynojirimycin [NB-DNJ]) was able to decrease autophagic accumulation in skeletal
muscle and improve both wire hang and grip test function in a preclinical mouse model,
however, clinical trial results failed to show superiority over the existing standard of care
and suggest further long-term studies are needed (NCT03729362) [22].
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Other novel rhGAA delivery approaches have been evaluated for safety and efficacy,
including VAL-1221 (Valerion Therapeutics) which is a fusion protein of monoclonal lupus
anti DNA-antibody 3E10 with rhGAA, allowing the modified rhGAA to enter the cell via
the equilibrative nucleoside transporter 2 (ENT2), independent of the CI-M6PR. ENT2
is expressed at high levels in skeletal muscles and heart [23]. However, this trial was
terminated by the sponsor in 2020 due to a lack of funding.

rhGAA does not efficiently cross the BBB. In order to achieve this, strategies exploiting
receptor-mediated endocytosis and transcytosis pathways via receptors endogenously
expressed at the brain capillary endothelium have been explored [24]. Targeting the
transferrin receptor (TfR) by fusing rhGAA to an anti-human transferrin receptor antibody
enables transcytosis across the BBB and delivery into the CNS compartment [25]. In
addition to the limited ability of current ERT regimens to penetrate into the CNS, another
limitation of ERT is the risk of immunological response. A higher dosage of ERT was
beneficial for glycogen clearance from skeletal muscle but resulted in the formation of
high-titer anti-rhGAA IgG antibodies in cross-reacting immunological material (CRIM)
negative Pompe patients [26]. This poor response in CRIM negative Pompe patients is
likely due to the complete absence of GAA protein, which would therefore not develop
immune tolerance. Mice lacking Gaa expression also develop severe immune responses to
rhGAA infusions [27].

The advancement of second-generation ERT is likely to improve the efficacy in Pompe
patients; however, the inherent challenges and limitations such as repeated life-long in-
fusions, immunological reactions and the inability of rhGAA to cross the BBB in Pompe
patients with CNS pathologies remain. Nevertheless, some GAA protein modifications that
improve secretion and cellular uptake may be incorporated into single treatment modalities
such as gene therapy, which would provide constant expression levels above the critical
threshold needed to prevent or correct muscle and CNS pathology directly or through
cross-correction (Figure 1).
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Figure 1. Anticipated pharmacokinetics of enzyme replacement therapy (ERT) using recombinant
human GAA (rhGAA) protein and single intervention gene therapy. Left: ERT requires intermittent
bolus infusions of doses of rhGAA protein to reach above the critical threshold. It has been reported
that above 30% GAA enzyme activity present in unaffected individuals is the critical threshold [1].
Peak plasma rhGAA protein levels are present directly after infusion, subsequently taken up by
muscles, and degraded over time. Right: Gene therapy applied as a single intervention therapy
for curative potential. After transduction of cells of interest, continuous production of therapeutic
transgene product provides sustained levels in transduced cells and/or secreted levels in plasma
for cross-correction in key tissues. Application of gene therapy may impact the bioavailability of
therapeutic enzymes to enhance uptake and correction in key tissues compared to ERT as shown by
Costa-Verdera and colleagues [28]. Horizontal dotted line represents the critical threshold to prevent
Pompe disease phenotype.
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3. Gene Therapy for Pompe Disease

The predominant gene-transfer delivery systems investigated in preclinical and clinical
settings are viral-based vectors designed to be utilized in in vivo and ex vivo gene therapies,
which in the case of Pompe disease, is mainly centered around adeno-associated viral (AAV)
vectors for in vivo applications and lentiviral (LV) vectors for ex vivo hematopoietic stem
cell gene therapy. An overview of current gene therapy modalities for Pompe disease are
presented in Figure 2.
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Figure 2. Overview schema of Pompe disease gene therapy modalities. Left panel represents the
process of autologous ex vivo lentiviral gene therapy. Briefly, CD34+ cells are isolated in a closed
manufacturing system from mobilized peripheral blood. These isolated cells are transduced with
a lentiviral vector containing the functional gene of interest, and the genetically modified cells are
infused back into a patient who has typically been conditioned with alkylating agents, such as
busulfan, to create space in the bone marrow. Long-term repopulating stem cells engraft into the bone
marrow niche and repopulate the hematopoietic system with cells capable of secreting functional
enzyme, leading to uptake and cross-correction of affected peripheral tissues. The conditioning
agent, busulfan not only makes space in the bone marrow for CD34+ to permanently engraft, but
also enables the microglia in the CNS to be exchanged for gene-modified microglia derived from the
infused cells. The right panel depicts in vivo AAV gene therapy approaches. Utilization of different
AAV vector capsid proteins and routes of administration are used to target distinct tissue niches.
Transduced cells secrete functional enzyme locally, or systemically depending on targeted tissue.
ICV = intracerebroventricular, IT = intrathecal, IV = intravenous, IM = intramuscular, IP = intraperitoneal.
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3.1. AAV Vector-Mediated Gene Therapy in Pompe Disease

Gene therapy treatments for Pompe disease have been mostly tested in Gaa−/− mice,
a commonly used mouse model of Pompe disease [29,30]. One of the first gene therapy
approaches to treat Gaa−/− mice was using an adenoviral vector containing the CMV
enhancer/promoter driving GAA cDNA expression, which resulted in systemic reduction
of accumulated glycogen levels. In this experiment, one single IV administration was used
to harness the capacity of the liver to secrete functional human GAA precursor enzyme,
leading to high levels of GAA activity in the plasma, with subsequent cross correction and
glycogen reduction in heart, skeletal muscle and smooth muscle [31]. Another approach
used hybrid adenoviral-AAV vectors in preclinical studies, in which the properties of
adenoviral (Ad) helper virus and AAV packaging were combined. These Ad-AAV-hGAA
vectors produced detectable GAA protein after liver-directed targeting and were able to
clear glycogen in the skeletal muscle of GAA KO mice [32,33]. Since then, the focus has
primarily been on using AAV gene therapy for treating Pompe disease. AAV vectors contain
an icosahedral capsid, and to date, multiple capsid serotypes have been characterized,
each providing distinct tropism to cells found in the liver, muscle and CNS tissues. The
receptors or coreceptors utilized by AAV for cellular entry are capsid serotype-specific and
vary in abundance based on the cell type, which can be exploited to target disease-specific
tissues [34]. These capsid serotypes can also be further modified to target novel tissues
of interest. AAV contains a linear single-stranded DNA genome of about 4.7 Kb [35], and
by removing the rep/cap genes, enough space is created to incorporate the human GAA
cDNA (CCDS database: CCDS32760.1) of 2859 nt (952 amino acids) flanked by the inverted
terminal repeats (ITRs). This GAA cDNA sequence can be driven by promoter elements
to provide tissue-specific expression. Natural infection of AAV will not cause any human
illness but the timing of the infection determines the immunogenicity [36]. The advantage
of AAV vectors is the efficient transduction of terminally differentiated cells driving long-
term expression, while remaining predominantly episomal, reducing the risk of insertional
mutagenesis. However, AAV vectors have been reported to have the ability to integrate into
the host genome, with the most common genomic integration site of AAV2 wild-type virus
being AAVS1 [37]. This capability is thought to be lost when modifying AAV into gene
therapy vectors, since the AAV Rep proteins essential for AAVS1 integration are absent [38].
More recently, clonal expansion of transduced cells was observed in hemophilia A dogs
that were followed for about 10 years [39]. There were AAV integrations found in the
genomic DNA of clonal dominant cells, thus emphasizing the need for long term follow up
for potential genotoxicity associated with AAV vectors.

3.1.1. Muscle Directed Delivery

Gene therapy targeting muscle could directly correct the affected tissue pathology
involved in Pompe disease, and to that end, several AAV vectors with muscle tropism
have been tested in preclinical and clinical studies. A recombinant AAV vector coding for
mouse Gaa cDNA and packaged with recombinant AAV1 (rAAV1) serotype (AAV1/2) was
effective in providing higher enzyme levels and improved reduction of glycogen deposits
through intramyocardial and intramuscular injection into Gaa−/− mice [40]. These results
demonstrated the first attempts to resolve the cardiomyopathy seen in GAA knockout mice
and restore the contractile functions of skeletal muscles using rAAV1/2 vectors. In addition,
respiratory failure has been a typical hallmark in Pompe disease patients [41,42], and hence
diaphragmatic delivery has been investigated. Consequently, intramuscular diaphragm
delivery with AAV1 was attempted to improve respiratory functions. This method utilized
a glycerin-based gel to deliver the vector within the diaphragm [43], and clearly demon-
strated the tropism of AAV1 serotype in achieving uniform expression of GAA across the
diaphragm. This AAV1-CMV-GAA vector driving GAA expression by the CMV promoter
was used in preclinical studies in Gaa−/− mice [44], and biodistribution/toxicology stud-
ies performed in New Zealand rabbits, showed diffusion of the vector throughout the
diaphragm after localized injections [45]. The results showed significant improvement in
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respiratory functions when administered at an early age, but the effect declined with age.
Interestingly, they have observed attenuation of efferent phrenic nerve activity indicating a
retrograde transduction which warrants further details to study glycogen clearance from
the peripheral nervous system. It has been reported that the use of the CMV promoter
to drive transgene expression in viral vectors systems has been prone to silencing [46],
which could explain the declining effect in these studies. The rAAV1/2-CMV-GAA vector
was also administered intravenously in one-day-old mice [47]. This approach showed
correction of muscle function and improvement of respiratory and cardiac functions, but
a transient humoral response was seen 4–18 weeks following treatment. Furthermore,
the vector AAV1-CMV-GAA was assessed for safety in diaphragmatic gene delivery in
IOPD patients [48],(NCT 00976352). This clinical trial aimed to achieve higher respiratory
performance compared to baseline and also anticipated to improve phrenic neuromuscu-
lar performance. The subjects enrolled showed significant improvements until day 180
but by day 365, the respiratory parameters started declining. Although the results were
encouraging, there may still be a need for redosing to sustain GAA expression.

In addition to these studies, AAV vectors encoding human GAA expressed by the
muscle creatinine kinase promoter was investigated in GAA-KO mice [49]. In these experi-
ments, intramuscular injection of the vector was given to the mice resulting in the successful
reduction of glycogen in skeletal muscles, however CNS correction was not reported. In
this case, the presence of neutralizing antibodies to hGAA prevented the cross correction of
cardiac muscle. This report also indicated that the choice of promoter showed dependency
on AAV serotype and the muscle creatine kinase (MCK) promoter was active in heart with
AAV2/7 serotype but not with AAV2/6 serotype. The neurological manifestations still
remained a hurdle to complete normalization of the respiratory dysfunction associated
with CNS glycogen accumulation.

In another preclinical study in Pompe mice, correction was shown in cardiac and
muscular pathology with a construct containing a desmin (DES) promoter and a codon-
optimized GAA sequence (rAAV9-DES-hGAA). This approach provided improvement in
cardiac, skeletal and respiratory neuronal functions in Pompe mice, but the expression
in Gaa−/− mice was transient [50]. The desmin promoter exhibited more tissue-specific
expression in skeletal muscles, cardiac muscle and motor neurons [51] and may reduce
immunogenicity compared to using vectors with constitutive active promoters, e.g., CMV
or chicken β-actin enhancer hybrid promoters to drive transgene expression. This study
utilized rAAV9-DES-hGAA for systemic injection into Gaa−/− mice and compared their
results with ERT. The improvement in cardiomyopathy was not immediate but was ob-
served three months post-injection. Immunogenicity modulation in response to GAA was
significantly reduced compared to ERT. In a subsequent clinical study in LOPD patients,
intramuscular delivery of AAV9-DES-hGAA in tibialis anterior muscle (NCT02240407)
along with immunomodulation strategy to ablate B cells was tested to allow redosing with
same vector to enhance the potential of the vector to correct the disease pathology in cardiac
and skeletal muscles [52].

In a recent study in Gaa−/− mice, as well as in non-human primates, systemic ad-
ministration of the drug AT845, an AAV8 serotype vector containing the murine MCK
promoter/enhancer driving codon-optimized human GAA resulted in supraphysiological
enzyme activity levels leading to significant functional improvements and glycogen clear-
ance in key target tissues in a dose-dependent manner. Although well tolerated at lower
doses, high doses in cynomolgus macaques resulted in vector-related immune responses
and inflammation, with cardiac abnormalities that necessitated the unscheduled euthanasia
of two animals from the study. It was later concluded that the immune responses were in
large part due to a xenogenic anti-GAA immune response, as an identical vector carrying
macaque-derived GAA did not lead to the same inflammatory and cardiac pathology [53].
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3.1.2. Liver Directed AAV Gene Therapy

The liver is an important organ that naturally produces serum proteins, and it is
often used as a depot for the efficient production of recombinant proteins for gene therapy
applications. It also exhibits immune tolerizing properties aiding in prevention of trans-
gene product-related immune responses if the introduced gene is specifically expressed
in hepatocytes [54]. A liver-specific promoter (LSP) derived from the thyroid hormone–
binding globulin promoter and a1 microglobulin/bikunin enhancer sequence was used in
an AAV8-hGAA vector and given at a low dose in Gaa−/− mice was effective at inducing
immune tolerance induction in immunocompetent Gaa−/− mice [55,56]. In addition, this
liver-specific promoter resulted in effective glycogen reduction in heart and diaphragm
when evaluated at 12 weeks after gene therapy. By administering low doses of the vector at
6 weeks before challenging the mice with rhGAA showed absence of antibody development,
only when a hepatocyte-specific promoter was used, and the use of AAV2/8-LSP-hGAA
could therefore enhance the efficacy of ERT in CRIM negative Pompe patients [57]. Further-
more, the efficacy of the construct AAV2/8-LSP-hGAA was tested for a medium effective
dose in Pompe mice, in which the researchers found that the vector dose was inversely pro-
portional to the production of anti-GAA antibodies [58]. These preclinical studies provided
the rationale for an ongoing prospective, open-label trial in LOPD patients (NCT 03533673).
In another approach, a hybrid tandem liver-muscle promoter (LiMP) using AAV8 and
AAV9 serotypes was used in neonatal injections in Gaa−/− mice, and this provided high
and persistent multi-systemic transgene expression in non-dividing extra-hepatic tissues,
and also aided in the prevention of anti-transgene immunity [59].

However, although the liver is efficient in secreting recombinant proteins, GAA protein
is generally poorly secreted from transduced cells [60]. Hence, several GAA protein modifi-
cations have been investigated to optimize transgene expression and enhance secretion of
GAA protein (Figure 3). Sun et al., studied whether the signal peptide of the GAA sequence
could be replaced by the signal peptide of a secreted protein [61]. Five signal peptides were
tested in cell lines, and replacing the GAA signal peptide with the signal peptide of human
α1- antitrypsin (hAAT) resulted in enhanced GAA protein secretion and also showed
improved efficacy in immunocompetent Gaa−/− mice. Another strategy investigated liver
tropic rAAV8 delivery resulting in low immunogenicity and partial cross correction of
CNS and muscle pathology [60,62]. In this study, different secretable signal peptides and a
deletion of eight amino acids at the N terminus fused to codon-optimized GAA, was used
to enhance GAA protein secretion and reduce immunogenicity. An AAV8 serotype with
a liver-specific apolipoprotein control region and alpha-1-antitrypsin promoter (hAAT)
that was previously used for liver-directed gene therapy of Crigler Najjar syndrome [63]
showed that the construct AAV8-hAAT-sp7-delta8-coGAA was very efficient in muscle
glycogen clearance and reduced pathology, but glycogen reduction in CNS was less promi-
nent [60]. However, brain and spinal cord sections showed the presence of lysosomal GAA
and reduction in Iba1+ cells indicating an effect on neuropathology. The high amount of
secreted GAA from the liver in non-human primates and reduced anti-GAA antibodies to
the sp7-delta8-coGAA confirmed reduced immunogenicity with increased GAA activity in
plasma and skeletal muscles. In a follow-up study, AAV8 secretable GAA was compared to
ERT in Gaa−/−Cd4−/− immune-compromised mice, and liver-directed gene therapy, and
particularly at high dose (2 × 1012 vg/kg) provided robust GAA activity in muscles and
glycogen reduction [28]. In the CNS, GAA protein and activity were significantly increased
in the spinal cord and brain, but effects on reducing glycogen in brain were less pronounced
compared to the spinal cord.

An investigational clinical trial using a rAAV with bioengineered Rh74-derived capsid
and an expression cassette to drive the expression of secretable GAA protein (SPK-3006) is
currently being sponsored by Spark Therapeutics (NCT04093349). A recently published
preclinical AAV gene therapy study by Baik and colleagues [64], the catalytic portions of
GAA were fused to a single-chain variable fragment (scFv) directed to CD63. The antigen
CD63 was selected by a screening performed to select effector proteins that traffic from the
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cell surface to the lysosome, and which are expressed on skeletal muscle but minimally
expressed in the liver. This approach was tested as an ERT, but also through AAV8
liver-specific expression, and showed superiority in reducing glycogen, and reduction in
autophagic build-up in skeletal muscles and subsequent improvement of muscle function.
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and modified model for maturation of GAA protein, previously reported by Moreland et al. [13].
Modifications to GAA transgene or protein described in literature were subject to changing the
N-terminus of the GAA protein to improve secretion and uptake in the key tissues affected in Pompe
disease without affecting proteolytic processing steps to the mature GAA protein. Signal peptides
have been modified to improve secretion, and tags have been incorporated to enhance uptake in
skeletal muscles or cellular delivery to cytoplasm to degrade glycogen more effectively. For enzyme
replacement therapy enhanced glycosylation or chaperone has been investigated as well. GT = gene
therapy, ERT = enzyme replacement therapy, Fab = antigen-binding fragment. scFv = single-chain
variable fragment, hAAT = human alpha-1-antitrypsin.

3.1.3. CNS Directed AAV Gene Therapy

CNS manifestations in Pompe disease are prominent and are an important compo-
nent that needs to be addressed in a gene therapy approach for both IOPD and LOPD
patients [65,66]. In order to prevent, halt or potentially reverse the CNS pathology several
attempts with recombinant AAV vectors were carried out. An AAV5 serotyped AAV vector
encoding GAA protein, AAV5-GAA was injected at the C3-C4 spinal level of adult GAA
KO mice resulting in attenuation of glycogen in the cervical ventral horn along with the
spinal cord, and subsequently showed potential respiratory function improvement [67].
This emphasizes that the therapy needs to be targeted to both the CNS and skeletal muscles
to effectively treat Pompe disease. Several preclinical studies were later performed with
different AAV serotypes attempting to evade the immune response and improve efficacy.

The AAV9 serotype has shown effective CNS tropism in neonatal and adult mice [68],
but also targets liver and skeletal muscle [69]. The neuronal tropism of AAV9 has been
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exploited for gene therapy application of spinal muscular dystrophy expressing the sur-
vival motor neuron (SMN) gene by the CMV enhancer/chicken β-actin hybrid (CAG)
promoter (NCT02122952) [70,71], which resulted in the recent approval of onasemnogene
abeparvovec (Zolgensma). Using the AAV9 serotype, Hordeaux et al. [72] used single
intrathecal delivery of AAV9-CAG-hGAA in Gaa−/− mice and demonstrated neurological
correction and associated improvement in cardiac functions.

Glycogen accumulation in Pompe disease occurs in motor neurons that contribute
to neuromuscular dysfunction [5,60]. Hence, neuron-specific synapsin I promoter gene
delivery was attempted with a construct yfAAV9/3-Syn-I-hGAA [73]. In this study, neona-
tal Gaa−/− mice were injected intracerebroventricularly resulting in efficient expression of
GAA in neuronal cells, predominantly in the cortex and cerebellum. Glycogen deposits
were not eliminated in the liver and quadriceps, but the brain and spinal cord had signifi-
cant reduction as well as a mitigation of astrogliosis. There was a slight improvement in
muscle strength, but locomotor function assessed by rotarod was normalized. Another
approach investigated AAV-B1, a serotype that was isolated from a novel CNS tropic AAV
capsid, after a single round of in vivo selection from an AAV capsid library [74]. AAV-B1
effectively transduced CNS and muscle cells, and thereafter was tested in three-month-old
Gaa−/− mice using a desmin promoter to drive GAA expression for muscle and CNS cor-
rection [75]. This vector efficiently transduced the tongue and also showed improvement
in respiratory pathology and increased grip strength, while cardiac transduction cleared
glycogen in the myocardium with moderate transduction observed in motor neurons. The
results using the novel AAV-B1 serotype were similar to a control AAV9 vector.

In another study, using an intralingual route of injection of recombinant AAV1 and
AAV9 vectors in Gaa−/− mice, resulted in efficient transduction of tongue fibers, but AAV9
was more efficient in transducing motor neurons [76]. To enhance the muscular efficacy
of the therapeutic protein, GILT-tagged GAA with a portion of IGF2 fused to GAA was
developed. This GILT-tagged GAA was previously investigated for ERT in Pompe mice,
and demonstrated to be fivefold more effective than equivalent doses of rhGAA at clearing
glycogen in skeletal muscle [77] as well as improved respiratory function in a Pompe mouse
model [78]. In other LSD models, e.g., MPS VII mice, using IGF2-tagged proteins for ERT
was also able to more effectively reduce storage product in key tissues [77,79]. Recombinant
GILT-tagged GAA was also investigated in a phase 1/2 clinical trial (NCT01230801) [80],
in which patients showed initial improved respiratory measures as well as a limited in-
crease in walking endurance. However, the GILT tagged GAA (reveglucosidase alfa)
induced transient mild hypoglycemia in a few patients due to the IGF2 moiety that can
bind the insulin receptor with low affinity. Hypoglycemia was particularly observed in
the high-dose groups receiving 20 mg/kg. This IGF2-tagged GAA was incorporated in a
AAV9-DES-IGFIIcoGAA vector, and after intralingual injection of IGF2-tagged GAA pro-
tein was present in XII motor neurons as demonstrated by immunohistochemical staining
of GAA, increased GAA activity in tongue lysates and enhanced reduction of glycogen
accumulation [81]. Another optimized gene therapy vector developed by Amicus Thera-
peutics/University of Pennsylvania using a pan-tropic AAV capsid carrying an engineered
GAA transgene modified for improved secretion and uptake has been communicated,
which efficiently corrected heart, CNS and muscle pathology after IV administration of
2.5 × 1013 vector genomes/kg in young Gaa−/− mice [82–84]. Finally, novel AAV-capsid
from Abeona Therapeutics’ next-generation AIM™ AAV vector platform has been reported
to have improved biodistribution in heart, muscle and CNS, and is now in preclinical
development for Pompe disease [85].

Several modifications to AAV serotypes have been used in gene therapy trials with
enhanced safety and long-term efficacy across target organs to correct the pathophysiology
across the CNS, heart, and skeletal muscles. There were also several successful preclinical
attempts with these recombinant AAV vectors secreting high amounts of GAA and able
to directly correct CNS resolving the respiratory dysfunction in Pompe disease mice. Al-
though clinical trials assessing safety show promising results, the ability to mount immune
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responses to the capsid protein and transgene product, as well as pre-existing neutraliz-
ing antibodies against AAV might compromise safety and clinical efficacy. AAV vector
infusions can cause inflammatory toxicities that increase with vector dosing, complement
activation, cytopenias and marked hepatotoxicity [86]. Additionally, infusing high doses
of 2 × 1014 genome copies per kilogram bodyweight of an AAV9 variant systemically in
non-human primates and piglets, caused liver and sensory neuron toxicities independent
of an immune response to the capsid or transgene product [87]. Furthermore, in patients
with X-linked myotubular myopathy, the investigational therapeutic MTM1 (myotubularin)
named AT132 using an AAV8 resulted in four deaths showing liver dysfunction from
3–4 weeks after receiving AT132. All patients had evidence of pre-existing intrahepatic
cholestasis, implicating disease background may have played a role, but more investigation
is required [88].

Prior exposure to wild-type (WT) AAV by natural infection develops humoral immu-
nity in humans against the capsid protein [89]. The anti-AAV neutralizing antibodies and
the cross-reactive antibodies across various AAV serotypes blocks target cell transduction
and thereby significantly alter the therapeutic efficacy of the administered rAAV with the
transgene [90,91]. These rAAV capsids and the transgene product have the ability to acti-
vate both humoral and cellular responses contributing to activating cytotoxic T lymphocyte
(CTL) responses and complement proteins [92]. These innate problems associated with
rAAV need to be carefully studied in order to improve overall outcomes. The pivotal role
of TLR9 activation [93] as a mediator of both the cellular and humoral immune response
needs to be analyzed further, as well as CpG motifs in the vector genome, which can drive
the immune responses associated with CD8+ T-cell activation [94]. The introduction of
novel technologies, such as incorporating short DNA oligonucleotides in vector genomes
that antagonize TLR9 activation, may be beneficial in reducing TLR9-mediated immune
responses and may allow higher doses to be infused in patients [95].

3.2. Lentiviral Mediated HSPC Gene Therapy in Lysosomal Storage Disorders

Gammaretroviral and lentiviral vectors have been used in hematopoietic stem cell
gene therapy for both blood disorders and lysosomal storage disorders (LSDs). In HSPC
gene therapy trials for X-linked severe combined immunodeficiency and Wiskott–Aldrich
syndrome using early design gammaretroviral vectors, which resulted in T acute lym-
phoblastic leukemia in a considerable proportion of patients [96]. In the Wiskott–Aldrich
syndrome clinical trial, nine out of 10 treated patients had successful engraftment, but
seven patients developed acute leukemia with integration site analysis revealing inser-
tions near proto-oncogenes LMO2, MDS1 or MN1 [97]. In ADA-SCID, however, retroviral
gene therapy did not show evidence of leukemic transformation, despite integration in
LMO2 and other proto-oncogenes [98–101], indicating that insertional oncogenesis is vector
and disease-specific. In light of these early trials, the field has since moved away from
gammaretroviral-based vectors and instead utilize safer third-generation self-inactivating
(SIN) LV vectors as the platform for HSPC gene therapy.

LV vectors are able to efficiently transduce both dividing and non-dividing cells, e.g.,
neurons [102], but HSPCs require an additional cytokine stimulation step for efficient ex
vivo transduction [103]. The current state-of-the-art LV vectors are third-generation SIN
vectors, for which the packaging sequences and transfer vector are divided among four
plasmids to further reduce the risk of recombination events [104–106]. The SIN configura-
tion of the long-terminal repeat (LTR) improved safety and allowed controlled transgene
expression by an internal promoter, while the addition of a Woodchuck hepatitis virus
posttranscriptional regulatory element significantly improved transgene expression [107].
The most commonly used envelope glycoprotein for human HSPC LV transduction is
the vesicular stomatitis virus g-protein (VSVg), which imparts broad cell tropism [108].
Pseudotyping LV vectors with VSVg also provides stability to the vector particles, which
can readily be concentrated to high titers using ultracentrifugation [109]. Although VSVg is
commonly used for LV vector pseudotyping [108], other glycoproteins, such as RD114/TR
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and baboon retrovirus envelopes, are capable of efficiently mediating transduction of hu-
man HSPCs, and may be a suitable, even beneficial, alternative to VSVg pseudotyping.
Third-generation SIN LV vectors are now the predominant vector system used in HSPC
gene therapy trials and exhibit improved efficiency and reduced genotoxicity profiles in
preclinical and clinical settings [110].

LV HSPC gene therapy has been successfully applied in clinical trials for the treat-
ment of metabolic diseases, such as metachromatic leukodystrophy (MLD) [111], Fabry
disease [112] and Hurler disease [113], as well as for peroxisomal disorder X-linked cerebral
adrenoleukodystrophy (CALD), with reported follow-ups of 12 years after transplanta-
tion [114–116]. Overall, more than 350 patients have been treated with lentiviral hematopoi-
etic stem cell gene therapy for monogenic disorders without any serious genotoxic-related
adverse events [117]. The benefit of using HSPCs relies on the ability of ex vivo transduced
HSPCs to durably engraft in the bone marrow niche and give rise to the full hematopoietic
cellular repertoire (including microglia in the CNS), which then act as factories providing
local delivery of enzyme to disease target tissues, and systemic delivery through circu-
lation in the plasma. Immune tolerance induction to recombinant therapeutic enzymes
has been shown in allogeneic hematopoietic cell transplantation in Hurler’s disease [118],
and in Fabry HSPC gene therapy [112], whereby antibodies against recombinant protein
resolve over a few months, making LV HSPC gene therapy a platform with very low
immunogenicity risk.

An additional benefit of LV HSPC gene therapy is the ability of modified HSPCs to
differentiate into microglial cells and engraft into the CNS compartment [119]. LV gene ther-
apy modified microglial cells can provide robust expression of protein throughout the CNS
and may provide significant therapeutic benefit through cross-correction of disease-affected
glial cells. This characteristic of HSPC gene therapy was successfully demonstrated in
preclinical gene therapy studies in MLD mouse models, in which high levels of engraftment
in bone marrow after busulfan conditioning was achieved with genetically modified HSPC
microglia acting as sources of Arylsulfatase A enzyme production in the CNS, resulting in
the amelioration of neurological deficits [120,121]. In MLD patients receiving allogeneic
HCT, there was no evidence of cross-correction of oligodendrocytes and astroglia; however,
donor macrophages were able to efficiently digest accumulated sulfatides, which may have
played a direct neuroprotective role for resident oligodendrocytes, enabling remyelina-
tion [122]. These results highlight the ability of LV HSPC gene therapy to penetrate into the
CNS niche and provide therapeutic benefits to LSDs with neurological pathology.

3.2.1. Lentiviral Vector HSPC Gene Therapy for Pompe Disease Treatment

Ex vivo hematopoietic stem cell gene therapy has also been tested preclinically for the
treatment of Pompe disease, with results showing robust systemic GAA expression and
the ability to correct neurological deficits in Pompe mouse models [123–125]. Transplan-
tation of syngeneic genetically modified HSPCs has the advantage of inducing immune
tolerance to endogenously secreted proteins and infused recombinant proteins as previ-
ously reported in several preclinical models [123,126,127]. This approach could provide
long-lasting therapeutic benefit through the single administration of transduced cells, and
can potentially be used to treat both IOPD and LOPD patients, assuming sufficiently high
levels of GAA expression beyond the minimum disease threshold are achieved. The first
preclinical study that reported HSPC gene therapy for Pompe disease was by Douillard-
Guilloux et al. [123]. Here the authors used third-generation SIN LV vectors expressing
human GAA driven by a ubiquitous MND (myeloproliferative sarcoma virus enhancer,
negative control region deleted D1857 rev primer binding site substituted) promoter to
transduce HSPCs before infusing into irradiated Gaa−/− mice. Results showed low but
detectable GAA enzyme activity in peripheral blood and bone marrow cells (~50–80% of
wild-type levels) at 17 weeks after infusion, and chimerism determined in colony-forming
cells was approximately 13–20%. Despite low levels of GAA enzyme, significant glycogen
reduction was observed in gastrocnemius tissue, although not in the heart, and results were
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comparable to administration of rhGAA alone. Importantly, in HPSC gene therapy-treated
Gaa−/− mice, IgG immune responses are undetectable through immune tolerance induction
against the transgene product—one of the key benefits of the tolerogenic nature of HSPC
transplantation [123].

In another preclinical study, a vector containing the strong spleen focus forming virus
(SFFV) promoter was used to drive the expression of the GAA transgene in hematopoietic
cells [124]. Supraphysiological levels of GAA enzyme activity were achieved at eight
months after infusion of genetically modified cells, reaching ~13–48-fold higher levels in
peripheral blood and spleen compared to wild-type controls. Bone marrow chimerism
was roughly ~35% with an average VCN per diploid genome of 7.3. GAA enzyme activity
persisted up to 18 months after transplantation, and there was a significant reduction in
glycogen deposits in the heart, diaphragm, lung, liver and spleen, without a reduction in
glycogen in the brain. Functional improvements in locomotor and respiratory function were
observed, as well as reversal of cardiac remodeling. Overall, this attempt was successful in
restoring partial functions of the affected organs and tissues but did not achieve biochemical
correction in the CNS.

Another modification to the LV vector expression cassette was to incorporate a codon-
optimized GAA transgene (GAAco) to improve overall expression [125]. The subsequent
preclinical study demonstrated improved GAA protein production in circulation compared
to the native GAA sequence, which cleared the glycogen deposits from the heart and
skeletal muscles and enabled improved locomotor function and resolution of cardiac
hypertrophy at a ~7 VCN/dg. Importantly, the human GAA protein was also detected
in microglia and astrocytes of transplanted mice. The presence of genetically modified
microglia throughout the brain in transplanted Gaa−/− mice can clearly be demonstrated
(Figure 4), and GAA protein detected in astrocytes suggests efficient cross-correction [125].
Even with the high average VCN, integration site analysis showed an expected lentiviral
pattern, with no proto-oncogene selection and without any genotoxicity-related adverse
effects. Nonetheless, VCN/dg were generally higher than the FDA-guided maximum
vector copy number, which is <5 copies per diploid genome [128]. Higher chimerism of
genetically modified cells may allow for improved glycogen clearance at a lower average
VCN than what was obtained in the studies by Douillard-Guilloux [123], van Til [124] and
Stok et al. [125].

Although the viral SFFV promoter has been used in a clinical trial for ADA-SCID [129],
less-strong human promoters for clinical application are preferred. Hence, the elongation
factor 1 alpha short promoter (EFS) in combination with elements from the β-globin locus
(LCR-EFS) has been explored for ADA-SCID gene therapy to enhance expression in ery-
throcyte progenitors [130]. It was postulated that using this LCR-EFS enhancer/promoter
fusion promoter could also be beneficial in the treatment of LSDs. In a more recent pub-
lication, an LV vector with the erythroid-specific LCR-EFS element driving hGAA cDNA
partially rescued clinical manifestations in a murine Pompe disease model [131]. GAA
expression was 3–6-fold preferentially higher in erythroid cells, which enhanced GAA
secretion. In Gaa−/− mice, the biochemical correction was observed in heart, but not in
skeletal muscle, lung and brain. Consequently, heart parameters were improved, i.e., re-
duction in heart mass after treatment, but with no improvement in rotarod or grip strength
measurements. The VCN was relatively low in this study (~0.6 VCN/dg in blood with a
range 0.36–1.44 VCN/dg) at 36–100% donor cell chimerism, and it may be advantageous
to increase the average VCN for improved biochemical correction. Other constitutively
active promoters and/or lineage-restricted promoters to drive robust GAA expression
in hematopoietic lineages may provide a more favorable risk/benefit profile. Of note,
human CD34+ HSPCs were efficiently transduced without losing their stemness or differ-
entiation potential, and successfully expressed GAA in plasma of the transplanted NSG
(NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice [131].
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Figure 4. GAA protein expression in resting microglia in the brain of LV HSPC gene-therapy treated
Gaa−/− mice. Genetically modified Gaa−/− lineage negative bone marrow cells transduced with
a lentiviral vector with codon-optimized GAA, driven by the spleen focus forming virus (SFFV)
promoter were infused in to Gaa−/− mice [29] after busulfex conditioning. Brains were harvested
at six months after infusion of genetically modified cells in Gaa−/− mice, and post saline perfu-
sion fixed in 4% formaldehyde for 24 h, and subsequently processed for immunofluorescence and
immunohistochemical staining for GAA protein. Top panels: Representative anti-GAA (green)
and Iba1 (red) immunofluorescence staining shows GAA colocalization in engrafted microglia-like
cells in the hippocampal region. DAPI is shown in blue. Bottom panels: representative images of
immunohistochemical staining for GAA. White arrows indicate microglia cells colocalizing with
GAA signal.

To enhance delivery to target tissues, in vitro studies showed that IGF2-tagged GAAco
improved secretion and uptake in a transwell system [132]. To that effect, a lentiviral
vector using the MND promoter driving expression of a IGF2-tagged GAA was used in
LV HSPC gene therapy. In this study, nine GAA chimeric variants driven by the MND
promoter were investigated [133], including tags described to enhance delivery to the CNS,
such as an apolipoprotein E (ApoE) tag [127] and a modified IGF2 tag containing a R37A
mutation for GILT delivery [134]. The MND-GILT-R37A-GAAco vector was more effective
in reducing glycogen in skeletal muscles and CNS than the non-tagged GAAco vector 16
weeks after transplantation of genetically modified HSPCs. Effects in the CNS were found
to be achieved from a relatively low percent of 0.1–3.7% microglial cell engraftment in
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the brain, approximated using surrogate control Gaa−/− mice transplanted with HSPCs
transduced with a GFP vector.

Using a hGAA transgene, CNS penetration and correction were minimal or only
achievable with very high systemic expression levels. Pre-transplant conditioning plays
an important role in the successful engraftment of the transduced HSPCs in bone marrow
and CNS [135]. For this to be more efficient, the conditioning regimen should be able
to ablate resident microglial cells and increase the turnover of donor-derived microglial
cells as local producers of the therapeutic protein. The conditioning regimens commonly
used in preclinical animal models are irradiation and chemotherapeutic agents, such as the
alkylating agent busulfan (1,4-butanediol dimethanesulfonate). Since microglia account
for ~5–12% of cells in the rodent brain [136], the therapeutic enzyme levels depend on
the percentage of microglial engraftment in the brain, the transgene promoter activity in
microglial cells, and the efficiency of cross-correction. The GAA enzyme activity levels in
the CNS of treated Pompe mice were lower than the activity level observed in wild-type
animals [133]. However, the low enzyme activity levels were similar to those seen in other
studies using HSPC gene therapy, such as Arsa−/− mice reaching close to 10% of wild-type
arylsulfatase A enzyme activities [121], and Ids−/− treated mice which did not exceed 4%
of wild-type levels in the brain. Interestingly, heparan sulfate and dermatan sulfate levels
were completely cleared even at these levels of enzyme activity [127].

An exception to these enzyme levels was observed in gene therapy-treated Idua−/−

mice, which resulted in 4.5-fold wild-type levels [137]. Using irradiation or busulfan condi-
tioning, the number of gene-modified microglia cells in the brain was approximately in the
range of 10% of the microglia cells in the brain, which is around 1% of total CNS cells. De-
pending on how much therapeutic protein is required to achieve efficient cross-correction,
it could be advantageous to increase the proportion of gene-modified microglia in the
CNS. Colony-stimulating factor (CSF1R) is essential for microglia survival [138] and its
receptor tyrosine kinase activity can be inhibited by the brain penetrant chemical PLX5622.
PLX5622 depletes endogenous microglia and its withdrawal resulted in repopulation of
the microglial cell niche from the remaining residual microglial cells [139], demonstrated
in mouse bone marrow transplantation settings, in which PLX5622 treated mice were
subjected to 9 Gy whole-body irradiation followed by whole bone marrow cell transplanta-
tion [140]. After 30 days ~93% of the microglial cells in the brain were donor-derived (~99%
in retina and ~93% in spinal cord). This experiment revealed the potential advantage of
using CSF1R inhibitors to increase the number of donor-derived cells in the brain, which
is an important parameter in treating diseases with CNS pathology. Further studies are
needed to investigate the safety of this drug, but ongoing studies testing the safety of
CSF1R targeting agents may provide compounds to increase the engraftment of genetically
modified cells in the CNS [141,142].

Another approach could be to use antibody fusion proteins to either neonatal Fc
receptor, a low-density lipoprotein receptor-related protein, the transferrin receptor (TfR),
or the insulin receptor in a gene therapy setting to enhance delivery directly through the
BBB into the CNS, as was done previously in attempts to improve ERTs [24]. However,
targeting the insulin receptor, as well as other receptors, may come with the risk of transient
hypoglycemia and other unwanted side effects [143].

3.2.2. In Vivo Lentiviral Gene Therapy for Pompe Disease

In addition to ex vivo Lentiviral gene therapy approaches, direct in vivo applications
have also been explored for the treatment of Pompe disease. Testing this modality in vivo
relies on taking advantage of the relative immature immune systems in newborn mice [144].
In line with this strategy, Kyosen et al., used a LV vector encoding GAA driven by the
CMV promoter and IV injected it directly into neonatal mice [145]. The GAA protein
detected in plasma stabilized from +/− 8 weeks and was followed up to 24 weeks. The
results indicated effective glycogen reduction in the heart but not in the diaphragm and
quadriceps. The neonatal delivery has the advantage of minimizing immune responses,



Biomedicines 2022, 10, 302 16 of 26

as observed by lack of CD4+ and CD8+ cell infiltrates in tissues, with few mice develop-
ing anti-GAA antibodies. However, further improvements are needed to efficiently clear
glycogen deposits from cardiac, respiratory, skeletal muscle and CNS tissue. Unfortunately,
in vivo lentiviral gene therapy for Pompe disease has only achieved low efficacy, a platform
perhaps more suitable for diseases that do not require such high protein levels as is required
in Pompe disease. Lentiviral gene therapy has been investigated in large animal preclin-
ical models for hemophilia in dogs [146] in which VSVg pseudotyped lentiviral vectors
with an enhanced transthyretin hepatocyte-specific promoter driving codon-optimized
hyperfunctional canine Factor IX carrying the R338L mutation, and four tandem repeats of
miR-142 target sequences to limit expression in antigen-presenting cells were used. After
intrahepatic portal vein delivery, this approach reached 1% of normal FIX activity, but
manufacturing capacity and observed infusion-related complications may limit applica-
tions for lentiviral-directed gene therapy in the context of Pompe disease. More recent
modifications on lentiviral vector producer cells to alter the lentiviral particle composi-
tion by removing human leukocyte antigens and incorporating ‘do-not-eat-me’ signals
to prevent phagocytosis by Kupffer cells improved liver transduction significantly [147].
Unfortunately, this approach of liver-directed targeting would fail to efficiently target the
CNS compartment, which would be needed to address CNS associated disease pathology
seen in Pompe disease. Similar to this predicament, in targeting the CNS compartment, as
has been shown in the non-human primate Krabbe models which demonstrated efficient
lentiviral vector transduction of neurons, astrocytes, and oligodendrocytes near the site of
injection, one would fail to target key tissues in the periphery [148].

3.3. Alternative Applications to Modulate GAA Mutations and Disease Correction

In addition to cell and gene therapy approaches, alternative molecular-based strategies
are being explored for the treatment of PD. For instance, chemically modified antisense
oligonucleotides (AON) insensitive to RNase-mediated degradation have been tested in
preclinical settings to enhance endogenous production of wild-type GAA enzymes [149,150].
Van der Wal et al. identified overlapping AONs that increased GAA activity in patient-
derived cells carrying a commonly reported splice variant above disease thresholds by
blocking a negative splicing element, resulting in the inclusion of exon 2. These findings
provide proof of concept for using this experimental modality to correct aberrant splicing
and mediate exon inclusion. Importantly, AON treatments have been well-tolerated in
clinical trials for spinal muscular atrophy and Duchenne muscular dystrophy [151,152].
However, because AONs are sequence-specific, they are usually only suitable for a small
subgroup of patients with similar gene variants, which limits a use case for a broader patient
population. This therapeutic approach would also fail to provide the supraphysiological
expression likely needed to prevent or reverse the most severe forms of PD. However,
alternate modalities of therapy in conjunction with more potent forms of therapy could
potentially benefit PD patients.

Targeting satellite cell activation in Pompe disease is another active area of research that
could potentially be used in combination with the above-mentioned gene therapies. Skeletal
muscle can regenerate in response to damage by recruiting the activity of tissue-resident
stem cells. Skeletal muscle stem cells (MuSCs), also known as muscle satellite cells, rapidly
activate after sensing tissue damage and proliferate to regenerate damaged myofibers.
Although MuSC numbers have been shown to be stable in PD patient biopsies, Schaaf et al.
found that MuSCs were lacking markers of active regeneration, namely the expression of
embryonic myosin heavy chain [153]. Similarly, in Pompe mouse models, Gaa-deficient mice
also show muscle wasting and an absence of MuSC activation and regeneration, despite
ruling out cell-intrinsic defects [154]. The inability to efficiently activate MuSCs to restore
muscle regeneration likely contributes, in part, to ongoing muscle wasting seen in Pompe
patients and suggests that the surrounding niche may suppress MuSC activation. These
findings provide a therapeutic rationale to investigate methods able to target MuSCs with
the hopes of attenuating PD muscle pathology. Satellite cells have been shown to be safely
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and efficiently activated through physical exercise [155,156]. Previous exercise programs
were found to be beneficial for adult Pompe patients and present a sensible supplemental
therapy. Small molecules targeting and activating MuSCs or targeting indirectly through
connected pathways, such as autophagic flux, is another possibility.

The use of protein engineering strategies has also shown promise in generating more
stable GAA proteins, an application that would complement both ERT and gene therapy
efforts. Using directed evolution and high-throughput screening methods, Dellas et al.
and Botham et al. demonstrated that modified GAA amino acid sequences, containing
up to 30 amino acid changes from the reference sequence, could drastically help increase
protein stability at neutral and low pH ranges, increase expression and increase cellular
uptake in Pompe disease fibroblasts and myoblasts [157,158]. These results will need to be
corroborated in an in vivo setting to prove meaningful efficacy and safety of substituting a
substantial number of amino acids; however, this strategy highlights another interesting
avenue in which innovation could help leverage existing treatment modalities.

Recent advances in gene-editing techniques provide exciting new opportunities for
the treatment of metabolic genetic disorders. Although in vivo targeting of non-dividing
tissues remain challenging, novel base-editing approaches offer solutions to a subset
of diseases whereby homologous-directed repair and double-stranded DNA breaks are
unnecessary. Base editing allows genome editing independent of HDR and dsDNA breaks
through a cytidine or adenosine deaminase fused to a catalytically inactive Cas9 [159].
Villiger et al. recently demonstrated the feasibility of this approach with the correction of
phenylketonuria in a mouse model for the human autosomal recessive liver disease using
CRISPR/Cas-associated base editors [160]. Using a novel intein-split base editor, Villiger
and colleagues were able to bypass AAV cargo size limitations and deliver the fusion
protein in two parts. Delivery of the AAV-base editor system resulted in physiological
blood phenylalanine levels below 120 µmol/L with restoration of enzyme activity and
reversion of the light fur phenotype.

In theory, genome editing in Pompe disease would be an attractive strategy, as it
would permanently correct mutations in the GAA gene and restore enzyme function
under normal physiological control. However, given that Pompe disease would require
widespread biodistribution and extremely high efficiencies of correction in both muscle and
CNS tissue to halt disease progression and reverse disease pathology, the application of
this technology, especially using homology-directed repair, to correct mutations in Pompe
disease is not currently feasible. Although base-editing approaches have shown efficacy
in other diseases as mentioned above, using base editing to treat PD would be difficult
due to the wide range of mutations seen in the GAA gene of the patient population, which
would each require a unique guide RNA sequence. However, using CRISPR-based genome
editing strategies could prove useful in ex vivo gene therapy settings, as it would assuage
any safety concerns regarding integration associated genotoxicity related to retroviral
vector-mediated gene delivery, although unwanted off-target mutations would still have to
be ruled out.

Finally, the availability of CRISPR tools to generate novel mouse models that better
recapitulate human disease phenotypes could help accelerate the design of the next genera-
tion of PD therapies. Huang et al. recently reported the generation of a novel murine IOPD
model utilizing dual sgRNA CRISPR-Cas9 homology-directed recombination to harbor the
orthologous Gaa mutation c.1826dupA (p.Y609 *) [161]. This model effectively recapitulated
the patient-specific genotype, which results in hypertrophic cardiomyopathy and skeletal
muscle weakness, hallmarks of human IOPD. This mouse model can be instrumental
in testing gene-editing and base-editing strategies and could be leveraged to find more
effective therapies.

4. Conclusions

ERT is the current standard of care for the treatment of both IOPD and LOPD, but
unfortunately, while being a major advance in Pompe patient care, ERT still has considerable
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shortfalls, including the ability to impact the CNS. The advent of gene therapy holds great
promise for the potential prevention, halting, and/or reversal of Pompe disease. When
compared to other lysosomal storage diseases, Pompe disease requires larger quantities of
functional recombinant human GAA protein distributed throughout the body, including
the CNS. A potential solution is gene therapy. AAV vectors or LV HSPC mediated gene
therapy may be able to provide improved bioavailability of the transgene product to
enhance efficacy. Several factors for in vivo AAV gene therapy, such as the quantity of
dosing, biodistribution, and immunogenicity to the vector and transgene product, need to
be thoroughly assessed, but technological advancements to the vector design and transgene
may limit vector-associated immunogenicity risks and improve efficacy. Alternatively,
LV HSPC gene therapy could provide the required systemic delivery, with optimizations
in conditioning and transduction efficiency of HSPCs to maximize peripheral and CNS
engraftment of genetically modified cells for optimal efficacy. The benefit-to-risk ratio
associated with treatment modalities in which disease background could play a major
role necessitates scrutinizing every crucial step in the preclinical development. Gene
therapies have the potential to be single-dose treatments, enabling lifelong therapeutic
GAA expression with the possibility of preventing, halting or reversing Pompe disease.
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