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database of genetic variations in the Japanese
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Akihiro Umezawa12, Shoji Tsuji9, Naomichi Matsumoto2 and Fumihiko Matsuda1

Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic

variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many

candidates to explain the disease phenotype are still far from being established, because the population-specific frequency

spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese

individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622

previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and

predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by

which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate

the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were

centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the

database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/.
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INTRODUCTION

Next-generation sequencing technologies are revolutionizing the
approach in identifying genetic variants that are associated with
diseases. A current promising strategy focuses on rare variants that

are shared among affected individuals but not found in public
databases or appropriate normal control samples. This strategy is
the most effective for rare Mendelian diseases, because it is unlikely
that the rare pathogenic variants with large effect size have already
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been reported or deposited in public databases without linking to
diseases. However, as these databases grow in size, the risk of
eliminating genuine pathogenic variants that are segregating in the
population will be augmented in the absence of a comprehensive
knowledge of human genetic architectures including rare variants with
their frequencies.
To expand our limited knowledge about genetic variation, several

projects on whole-genome and -exome resequencing of a large
number of individuals are now underway.1–6 Such efforts include
the international 1000 Genomes Project,2 which constructed a global
reference of human genetic variation with a relatively small number of
samples for each world-wide population. However, it is not sufficient
as a source of population-specific rare and low frequency variants due
to the limitation of coverage and sample number. The other large-
scale sequencing efforts set their target population to Europeans or
Africans. Among them, NHLBI GO Exome Sequencing Project has
been collecting over 500 000 single-nucleotide variations on protein
coding regions using the largest sample collections of 46500
European Americans and African Americans.5 According to these
reports, the majority of the identified variants were previously
unknown, population-specific and present at low allele frequencies,
which suggests that a further exploratory survey of genetic variations
in diverse populations will provide opportunities to better understand
the role of genetic variations in the pathogenesis of human complex
diseases as well as rare diseases.
In this study, we collected exomic sequencing data of 1208 Japanese

individuals from five institutes and a data set of common variants
determined by Illumina’s BeadArray technology from 3248 individuals
of Japanese cohorts. Although several sequencing projects are going
on for the East Asian population including Japanese for East
Asian-specific genetic diversity information,4,7,8 our data sets currently
provide the largest catalog of genetic diversity on the protein coding
regions in the Japanese population. We centralized these data sets into
a newly developed public database—human genetic variation database
(HGVD). This database will serve as a useful resource sharing system,
which will be required for research in genetic profiling in the future as
well as for the development of genetic tests to screen for clinically
relevant variants in personal genomes.

MATERIALS AND METHODS

Subjects
All subjects who participated in our exome sequencing projects were approved
by the Institutional Review Board of each center (Kyoto University, National
Research Institute for Child Health and Development, Tohoku University,
University of Tokyo and Yokohama City University) in which donors gave
written informed consent according to institutional and national guidelines,
and anonymized to prevent the individual from being identified in the database.
Each institute has ensured that all of the subjects have no clinical record
associated with major diseases.

Exome sequencing and variation detection
Five data collection centers applied different combinations of exome capture
and sequencing platforms on a subset of samples (Supplementary Table 1).
Basic procedures are extraction of genomic DNAs from peripheral blood cells
and enrichment of DNA fragments corresponding to exons using commercially
available oligonucleotide libraries followed by applications to next-generation
sequencers (HiSeq1000 (Illumina, San Diego, CA, USA), HiSeq2000 (Illumina)
and SOLiD 5500XL (Thermo Fisher Scientific inc., Waltham, MA, USA)). The
read lengths of the single- and paired-end libraries ranged from 75 to 101 bases.
Each center processed the data using a variety of pipelines for variation call
(Supplementary Table 2). The main functional steps of these pipelines were as
follows: the sequences obtained from the individuals were aligned to the

reference genome (NCBI Build 37/hg19) using the Burrows–Wheeler Aligner9

or Novoalign (http://www.novocraft.com/). Downstream processes included
the removal of potential PCR duplicates, recalibration of base quality values,
local realignment and variation call were analyzed using Samtools,10 Picard
(http://broadinstitute.github.io/picard/) and GATK.11 The variations that were
likely to be false -positive calls were filtered by optimization criteria drawn up at
each center (Supplementary Table 2).

Identification of novel variations and functional prediction of
genetic variations
Variations were categorized as novel if they were not registered in the dbSNP
(Build 137),12 the 1000 Genomes Project (November 2010 data release),13 10
personal genomes (version 1.04)14 or the NHLBI GO Exome Sequencing
Project (ESP6500SI).5 All identified variants were annotated using RefSeq15 and
three types of deleteriousness scores were used to predict the effect of amino
acid substitutions: (i) functional prediction score based on phylogenetic analysis
and effect on protein structure with machine learning (PolyPhen-2),16

(ii) functional prediction score based on the degree of conservation of amino
acid residues in sequence alignments (SIFT),17 and (iii) conservation score
based on nucleotide sequence alignments and a model of neutral evolution
(PhyloP).18 These scores were obtained from the dbNSFP database.19

Allele frequency spectrum
Under the assumption of neutral evolution at equilibrium, the expected
number of sites at which the new nucleotide is present x times in the sample
is given by 4Nμ/x, where N and μ are the effective population size and mutation
rate, respectively.20 To compute the expected spectrum, 4Nμ is estimated from
the observed segregating sites according to Watterson’s formula.21 In order to
make comparisons to neutral without the effect of misidentification of ancestral
states for these sites, the folded allele frequency spectra by minor allele count
were projected. Only autosomal genes were included in calculating the allele
frequency spectra.

Nucleotide diversity estimation
Pairwise nucleotide diversity (π) was calculated for all base pairs of RefSeq genes
in autosomal regions. For this analysis, exomic sequences of 300 samples
generated by Kyoto University were used. Only target base pairs with at least
10× coverage were included. To evaluate departures from the expected
patterns of neutral variation, we also calculated Tajima’s D, a statistic that
compares nucleotide diversity estimated from the number of polymorphic sites
observed in a given set of chromosomes against nucleotide diversity estimated
from the allele frequency of the polymorphic sites for each gene.22

Fixation index calculation
We calculated unbiased estimates of fixation index (FST) as described
previously.23 For the calculation, allele frequencies in African Americans and
European Americans were downloaded from the Exome Sequencing Project
website (http://evs.gs.washington.edu/EVS/, ESP6500SI).

Functional enrichment analysis for the genes having high FST and
diversity
We used GeneTrail24 to test for enrichments of functional annotations for a set
of 484 genes having high FST (⩾0.30) compared with African American
versus European American (FST⩽ 0.30) and for a set of 46 genes having
high-nucleotide diversity (π⩾ 0.005) values. The tests were performed against
KEGG pathways,25 OMIM categories26 and gene ontology.27 We reported false
discovery rates for each P-value using a hyper-geometric distribution.

Quality control and genetic analyzes for genotyping data set
Whole-genome genotyping was performed for a total of 3712 individuals,
which is a subset of 9393 participants of The Nagahama Prospective Genome
Cohort for the Comprehensive Human Bioscience (the Nagahama Study),28

using the Illumina HumanHap610 quad (Illumina), Human 2.5M (Illumina)
and Human exome Beadarrays (Illumina). The 300 samples used for exome
sequencing in Kyoto University were independently collected from the area of
Nagahama city. However, they were given different anonymous ID, and due to
an ethical reason, we are not able to link them with participants of the
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Nagahama Study. After excluding 162 samples of which genotyping call rates
were smaller than 95%, kinship analysis and principal component analysis,
were applied using PLINK (version 1.07)29 and SMARTPCA program of the
EIGENSOFT package (version 2.0),30 respectively. There were 302 related
individuals that were excluded from the further analysis, resulting in a data set
of 3248 East Asian individuals, including 3 possible Chinese and 13 Korean
individuals. (Supplementary Figure 1). A total of 1 794 196 single-nucleotide
variations were included in the database after filtering out single-nucleotide
variations with o99% genotyping success rates, with minor allele frequencies
smaller than 0.01, or with Hardy Weinberg’s equilibrium P-values smaller than
1× 10− 7.

Evaluation of Japanese major allele reference sequence
In order to avoid biased evaluation of the Japanese major allele reference
sequence, 192 Japanese exome sequencing data were randomly selected from
in-house data sets and were used. The 100 base pair of paired-end reads from
these samples were mapped onto the human genome reference sequence (Build
37/hg19) as well as the major allele reference sequences for African, European
and Japanese populations using Burrows–Wheeler Aligner (version 0.6.1)9

with default parameters. Uniquely mapped reads are defined by the
Burrows–Wheeler Aligner with which ‘XT:U’ tags are added in output files.

RESULTS

Japanese genetic variation database
The HGVD is a web-accessible resource of genetic variations of the
Japanese population. Currently, the database contains 287 588 single-
nucleotide variations identified by whole-exome sequencing of 1208
individuals and 1 794 196 variants by genome scan of 3248 individuals

with no record of major diseases. The HGVD is freely accessible
via the internet at http://www.genome.med.kyoto-u.ac.jp/SnpDB.
The database is developed with PostgreSQL (version 9.1.3) relational
database, and the graphical user interface developed on JBrowse 1.4
(http://jbrowse.org/) is accessible on an Apache 2.2.3 server (https://
httpd.apache.org/). The data in HGVD can be retrieved through the
interface that allows users to search with a specific gene name or a
dbSNP rsID and for a genomic region of interest. All of the HGVD
data sets described in the following sections are downloadable as a
series of text files that include allele frequency, genotype frequency and
a Japanese major allele reference genome.

Exome sequencing
We sequenced 1208 healthy Japanese individuals. A total of 12.9
terabases of DNA sequence were generated and processed with a
variety of analysis pipelines at each center (Supplementary Table 2).
On average, 95.4% of the reads were mapped on the reference
genome, which corresponded to 96.3% of the targeted bases covered
with at least 10× depths (Supplementary Table 1).

Allele frequency spectrum and functional impact of Japanese
genetic variations
We identified 287 588 single nucleotide variants from the filtered data
set of which 130 966 (45.5%) variants were found in the public
database. Although the minor allele frequencies of the majority of the
newly identified variants (139 096 or 88.8%) were smaller than 0.5%,
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the other 17 526 variants were found to be having minor allele
frequency of greater than 0.5% (Figure 1a and Supplementary
Figure 2). These observations indicate that not only the abundance
of population-specific variation were rare, but also the common
variations that are not registered in public databases are still found.
The allele frequency spectrum of the Japanese population showed an
excess of rare variations in comparison with the frequency spectrum
predicted under the neutral equilibrium model (Figure 1b). The
tendency was similar to European Americans rather than African
Americans (Supplementary Figure S9 in Tennessen et al.5). Due to the
abundance of rare variations, the mean score of Tajima’s D statistics22

was also negative (−0.95). These variation spectra in Japanese have not
been clearly observed by the relatively small samples of exome
sequencing analysis.31 On the other hand, a possible trace of recent
rapid population expansion in demographics was suggested from the
whole-genome sequencing analysis of 1070 Japanese individuals
collected from a relatively small area.4

To evaluate the functional impact of variations found in
Japanese, we used four measures; categories of synonymous and
non-synonymous (NS:S), PolyPhen-2,16 SIFT17 and PhyloP.18

In accordance with previous reports,5,32 we observed an increased
fraction of deleterious non-synonymous variations with lower minor
allele frequencies (Figures 1c and d), suggesting that such variations
arose recently enough to escape from purges of negative selection
pressures.

Signatures of natural selection in the Japanese genome
The FST, a measure of genetic population differentiation,33 has proven
to be a useful parameter for the ability to detect chromosomal loci that
have been affected by natural selection.23 To identify candidate genes
that may have been subjected to natural selection in Japanese, we
calculated the unbiased estimates of FST using the allele frequency data
from African American, European American and Japanese (FST-AEJ)
and compared them with the FST from African American and
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European American (FST-AE). As shown in Figure 2, the majority of
FST values were globally unchanged between two calculations
(distributed along diagonal), because most of the variations in
Japanese are likely to have similar frequencies to either African
American or European American. Nevertheless, we noted that some
fractions of the values were deviated from the diagonal with tendency
toward higher in FST-AEJ rather than FST-AE, resulting from changes
of allele frequency in Japanese population. Over representation
analysis of the gene set having highly deviated FST values revealed
an enrichment of well-known pigmentation genes MC1R and OCA2
(P= 8.88× 10− 4). These genes are not only involved in melanin
synthesis responsible for brown/lighter color of eyes and hair34 but
also associated with oculocutaneous albinism (MIM 203200). High
frequencies of derived alleles (rs1800414 and rs885479) of these
regions were observed in Japanese (78.97 and 56.40%) compared
with European Americans (4.82 and 0.03%) and African Americans

(1.53 and 0.09%). The results support the signatures of recent positive
selection, which were observed as significant extensions of haplotype
homozygosity of these gene regions.35,36 For the KEGG pathway,25

11 genes that are involved in extracellular matrix receptor interaction
pathway were significantly enriched (P= 4.83× 10− 4; Supplementary
Table 3). Consistent with previous reports,23 these genes were
distributed throughout the genome (Supplementary Figure 3 and
Supplementary Table 4).
Mean nucleotide diversity (π) of Japanese was 0.042, which is higher

than European American but lower than African American.5 As shown
in Figure 3, genes related to immune function (HLA, CD52 and
DEFB108B), olfactory receptors and ABO blood group, showed higher
nucleotide diversity than other genes. The recompiled data allowed us
to confirm the target of balancing selection to adapt a variety of
pathogen and whose diversities are common characteristics across
populations.5,37

Construction of Japanese major-allele reference sequence
It has been shown that the ethnicity-specific major-allele reference
sequence could improve genotyping accuracy for disease-associated
variant loci.38 To apply this strategy for Japanese genomes, we
substituted 816 991 positions of single nucleotide at the reference
genome by the Japanese-specific major allele. By using 100-bases
paired-end reads of independent exomic resequencing data, we were
able to uniquely map 0.045% more reads to the Japanese-specific
major allele reference sequence genome than to the NCBI reference
sequence (Figure 4), due to the reduction in inconsistency of
alignments (Supplementary Figure 4 and Supplementary Table 5).

DISCUSSION

We have developed a new database, HGVD, to provide the frequencies
of genetic variations, which were determined by exome sequencing
of 1208 healthy Japanese individuals. In addition to the above
main component, the frequencies of common variants determined
with genome scan of 3248 healthy Japanese are also accessible
through the HGVD interface. For further genomics studies, their
individual genotypes are available through the National Bioscience
Database Center (http://humandbs.biosciencedbc.jp/en/, hum0012).
Furthermore, we have also integrated the results of expression-QTL
analysis, based on transcriptome data from individuals whose geno-
typing and exome sequencing data are available.39 This integrative data
will help functional interpretations of genetic variations. Considering
that the integrated information is not yet available from public
databases for Japanese as compared with the African and European
populations,5,32,40 the data set in HGVD will be informative not only
for narrowing down mutations responsible for familial diseases, but
also for explaining a part of missing heritability of complex diseases.41

The unique collection of high-resolution exonic variations in this
study allows us to interpret the genetic diversity of the Japanese
population by comparison with the data of European and African
populations: low-allele frequency and high deleteriousness of the
newly identified variations, excess of rare variations probably due to
the recent rapid population growth in demographics, high-nucleotide
diversity of immune related genes, and high frequency of derived allele
in genes responsible for pigmentation and extracellular matrix
receptor interaction. These signs of local adaptation can be regarded
as an interesting guide for further evaluation of population-specific
phenotype and disease prevalence study across populations.
Our catalog represented a snapshot based on currently available

data generated from five institutes using non-uniform experimental
procedures and analysis pipelines. The integration of these multiple
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data sets could be a disadvantage with respect to the uniformity of
coverage or quality controls. Nevertheless, sequencing with more than
a single platform and multiple libraries is vital to retain a high level of
accuracy, as it creates a buffer against specific errors.42 Each institute
deposited the data that passed their own quality criteria such as
filtering based on GATK best practice (Supplementary Table S1). As
these criteria are widely used and accepted in various sequencing
projects,1–3,6 it is unlikely that many false positives or negatives are
included in our data sets. Although it was not possible to describe the
accuracy of these deposited data sets with a single metric, the data are
satisfactory to use for narrowing-down mutations responsible for rare
Mendelian diseases.
Current surveys of genetic variation largely depend on the sequence

of human genome reference constructed by the international project
in 2003.43 Although the effort to improve the reference genome is
being continued,44,45 a considerable proportion of the genomic
variation that have been recently identified in terms of numbers and
sizes has been shown to be difficult to compile into a single reference
genome without addressing incompatibilities. Therefore, an effort to
reconstruct a more complete and ethnically applicable version of the
human genome reference sequence with the format for integrating a
variety of variation will be essential to bring about a new era for future
human genome studies. This is also an eminent step forward for
further improvement of the pathogenic variation identification as well
as future systematic integration of genomic data into the practice of
medicine and genetic diagnosis in the clinical field.
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