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The determinants underlying the heterogeneity of coronavirus disease 2019 (COVID-19) remain to be elucidated.
To systemically analyze the immunopathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection, we built a multicompartment mathematical model based on immunological principles and typical
COVID-19-related characteristics. This model integrated the trafficking of immune cells and cytokines among the
secondary lymphoid organs, peripheral blood and lungs. Our results suggested that early-stage lymphopenia was

related to lymphocyte chemotaxis, while prolonged lymphopenia in critically ill patients was associated with
myeloid-derived suppressor cells. Furthermore, our model predicted that insufficient SARS-CoV-2-specific naive
T/B cell pools and ineffective activation of antigen-presenting cells (APCs) would cause delayed immunity acti-
vation, resulting in elevated viral load, low immunoglobulin level, etc. Overall, we provided a comprehensive
view of the dynamics of host immunity after SARS-CoV-2 infection that enabled us to understand COVID-19
heterogeneity from systemic perspective.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
causes coronavirus disease 2019 (COVID-19) and is responsible for the
current pandemic. COVID-19 is recognized as a more complicated,
multiorgan and heterogeneous illness than initially anticipated (Cor-
don-Cardo et al., 2020). Because of its heterogeneity, the spectrum of
clinical features ranges from asymptomatic or mild upper respiratory
tract symptoms to severe pneumonia and acute respiratory distress syn-
drome (Wu and McGoogan, 2020). COVID-19 patients display a diverse
array of pathophysiological characteristics, including hyperinflammatory
state, endothelial dysfunction and thromboembolic disease, as well as a
clinical course that may be complicated by abrupt, unexpected deterio-
ration during apparent recovery (Wiersinga et al., 2020). Several studies
also found heterogeneity of immune response to vaccination in different
individuals (Monin et al., 2021; Pimpinelli et al., 2021; Schwarz et al.,
2021).
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To investigate the heterogeneity of COVID-19, it is necessary to study
immune response in different COVID-19 patients. SARS-CoV-2 infects
cells expressing the surface receptor angiotensin-converting enzyme 2
(ACE-2) via the viral spike protein (Hoffmann et al., 2020). SARS-CoV-2
infection gives rise to host cell pyroptosis, damage-associated molecular
pattern (DAMP) release and inflammatory cascade initiation (Vabret
et al., 2020). A striking age-related disparity has been observed in the
prevalence and severity of COVID-19, including differences in
cross-neutralizing antibodies and differences in the levels and binding
affinity of ACE-2 (Wong et al., 2020). The marked heterogeneity of dis-
ease prevalence and severity might be explained by age-dependent
immunological mechanisms (Chen et al., 2021). Younger patients expe-
rience infrequent, mild, and self-limiting infections, possibly resulting
from higher levels of cross-neutralizing antibodies, lower levels of ACE-2
receptors in nasal epithelium, plenty of naive T/B cells and higher reg-
ulatory T-cell response, and lower IL-6 and TNF-a production from innate
immune cells (Chen et al., 2021; Wong et al., 2020). Despite the many
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studies on heterogeneous immune response in COVID-19 patients, viral
dynamics and host innate and adaptive immune responses in patients
with diverse ages and health conditions, all in the setting of sparse
antiviral and immunomodulating therapies, remain to be further studied.

Mathematical models have been utilized in the field of oncology to
reconcile molecular reductionism with quantitative and holistic ap-
proaches that disentangle complex systems and provide a deeper un-
derstanding of cancer progression (Altrock et al., 2015; Anderson and
Quaranta, 2008; Leon-Triana et al., 2021). Over the past two years,
population-level epidemiological models helped predicting the spread of
COVID-19 and provided insights for optimal control strategies (Wang
et al,, 2019; Zheng et al.,, 2021a, 2021b). Currently, mathematical
modeling has also been used to analyze immune response in COVID-19
patients. Hernandez-Vargas et al. found a slow immune response
against SARS-CoV-2 compared with influenza by fitting data (Hernan-
dez-Vargas and Velasco-Hernandez, 2020). Jenner, A.L., et al. focused on
innate immunity in different patients and proposed that delayed type-I
IFN response caused severe tissue damage in the lungs, resulting in se-
vere inflammation (Jenner et al., 2021). Voutouri, C., et al. incorporated
both innate and adaptive immune responses, associating disease pro-
gression with the response rate of activated CD8+ T cells, and discussed
the effect of multiple treatment strategies (Voutouri et al., 2021). Sadria
and Layton simulated the actions of drugs that target SARS-CoV-2 virus
infection and pointed out the importance of early intervention (Sadria
and Layton, 2021). Although mathematical models have contributed in
terms of host immunity against SARS-CoV-2 infection, we still need an
immune model integrating multiple compartments in a manner that links
peripheral blood and immunological processes, which is important for
the detection of immune response (Ganusov and Auerbach, 2014). Thus,
we constructed a multicompartment mathematical model to simulate the
dynamics of host immunity in peripheral blood, lungs and secondary
lymphatic organs (lymph nodes and spleen). We discussed the impact of
key factors underlying the heterogeneity of COVID-19 patients, such as
naive T/B cell pools and the activation of antigen-presenting cells (APCs),
in combination with the distributions of immune cells among the
different compartments. Together, we provided a systematic framework
for dissecting the heterogeneity of disease progression and symptom-
atology in patients with COVID-19.

2. Results

2.1. Construction of a simplified multicompartment mathematical model of
immune response after SARS-CoV-2 infection

SARS-CoV-2 infection in an individual host will cause the activation
of innate and adaptive immunity, including the proliferation of lym-
phocytes and the migration of immune cells and cytokines among lungs,
draining lymph nodes, distant lymph nodes and spleen, and peripheral
blood. In Figure 1, we illustrated the migration of immune cells and
cytokines among the different compartments and the immune response
network in lungs and secondary lymphatic organs.

During SARS-CoV-2 infection, SARS-CoV-2-infected lung epithelial
cells first recruit innate immune cells, such as monocytes, NK cells, and
neutrophils, to lungs via the secretion of chemokines. Monocytes are
activated and differentiate into macrophages and dendritic cells (DCs),
which work as antigen-presenting cells (APCs), upon exposure to viruses.
Activated macrophages can phagocytize infected epithelial cells and
virus, while activated DCs migrate to the secondary lymphoid organs to
present antigens to activate naive T cells. NK cells kill infected cells, and
neutrophils phagocytize virus in the lungs.

Consequently, under the stimulation of both APCs and cytokines,
naive T/B cells proliferate and differentiate into SARS-CoV-2-specific
effector T/B cells, including cytotoxic T lymphocytes (CTLs), helper T
(Th) cells, inducible regulatory T cells (iTregs), and antibody-secreting
cells (ASCs). CTLs migrate to the lungs and clear infected cells, and
ASCs secrete immunoglobulin (Ig) which neutralizes virus. Th cells,
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including Th1, Th2, and Th17 cells, secrete various cytokines and facil-
itate immune cell function. iTregs exert immunosuppressive functions by
secreting anti-inflammatory cytokines, including IL-10 and transforming
growth factor § (TGF-p). MDSCs exhibit similar immunosuppressive
functions, which can be observed in critically ill patients, especially
critically ill patients with bacterial infection.

To investigate the clinical characteristics of patients with different
severities, we analyzed longitudinal data of 194 COVID-19 patients from
Wuhan Union Hospital, including their hemogram and serum cytokine
profiles, as well as clinical classification and outcome. These clinical
results suggested that the time courses of peripheral blood leukocytes,
neutrophils, lymphocytes, IL-10 and IL-6 exhibited obvious distinguish-
ability among mildly/moderately, severely, and critically ill patients
(Figure S1). Particularly, the time courses of both peripheral blood
lymphocytes and IL-6 are significantly related to the outcomes of COVID-
19 patients (Figure S1). During the late stage of infection, critically ill
patients showed significantly higher levels of IL-6, neutrophil count and
MDSCs fraction than patients with mild and severe disease (Figure S1 and
Figure S2), which could be attributed to elevated viral load and sec-
ondary bacterial infection in critically ill patients. Blood culture results
confirmed bacterial co-infection in critically ill patients, who exhibited
such common bacteria as klebsiella pneumoniae, staphylococcus epi-
dermidis, and enterococcus faecium (Table S1).

Based on immunological principles, clinical data and COVID-19-
related literature, we then constructed a multicompartment mathemat-
ical model to describe the dynamic processes of SARS-CoV-2 infection
and the response of both innate immunity and adaptive immunity,
together with leukocyte chemotaxis and post-viral bacterial infection.
Details of the equations used in our model can be found in Section II of
the Supplementary Material.

In our model, the dynamics of SARS-CoV-2-specific naive T/B cells is
depicted in the following equation, where [naive] refers to the concen-
tration of naive T/B cells (109/L). In this article, naive T/B cells mean
SARS-CoV-2-specific naive T/B cells without further specification.

d[naive]
dt

[naive]
K

= I'naive[NAIVeE] (1 - > — dnaive[naive). 1

We do not show intercompartmental flow and differentiation terms in
the above equation. The kinetic parameters r,ive, K and dive denote the
proliferation rate, environmental bearing capacity and the apoptosis rate
of naive cells, respectively. K describes the sufficiency of the naive T/B
cell pool, and larger K indicates a more sufficient naive cell pool.

In addition, as a major process during the initiation of immune
response, antigen-bearing DCs and rare antigen-specific T/B cells must
quickly find each other (Pulendran and Ahmed, 2011). Children dis-
played higher basal expression of relevant pattern recognition receptors,
such as MDAS5 (IFIH1) and RIG-I (DDX58), in upper airway epithelial
cells. Consequently, macrophages, dendritic cells, and a pre-activated
antiviral innate immunity could control SARS-CoV-2 infection early in
children (Loske et al., 2021).

We utilize the following equation to describe APCs among which
[Mono] and [I] denote the concentrations of monocytes and infected
epithelial cells (10°/L). Subscript 3 represents variation in the lungs
(compartment 3).

d[APC;] 1§
= aarc 3
de K? + 1]

[MOHO:;] — dDC [APC3]7 (2)

We do not show intercompartmental flow terms and the effect of
cytokines on activation in the above equation. Kinetic parameters aspc
and dapc denote the differentiation rate and the apoptosis rate of APCs,
respectively. We used the form of [I]* /(K2 +[I]*) to describe the activation
of APCs by SARS-CoV-2-infected epithelial cells, and K; is inversely
related to the sensitivity of APCs response to antigen.

For the sake of simplicity and clarity, we made the following main
assumptions in our model.
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Figure 1. Schematic illustration of multicompartment mathematical model and the host immune response network during the SARS-CoV-2 infection. (a)
The model consisted of four compartments: draining lymph nodes, distant lymph nodes and spleen, peripheral blood and lungs. Chemokines/chemokine receptors
regulate the migratory patterns and positioning of immune cells among the different compartments. (b) Compartment 3 (Lungs) was the primary site of immune
response involving the interplay among SARS-CoV-2, bacteria, epithelial cells, innate cells and adaptive cells. Under the stimulation of both APCs and cytokines, SARS-
CoV-2-specific naive T/B cells proliferate and differentiate into effector T/B cells in secondary lymphoid organs (compartment 1 and 4), including cytotoxic T
lymphocytes (CTLs), helper T (Th) cells, inducible regulatory T cells (iTregs) and antibody-secreting cells (ASCs). Th cells, including Th1, Th2, and Th17 cells, secrete
various cytokines and facilitate immune cell function. nCoV (SARS-CoV-2 virus), Bac (bacteria), H (susceptible epithelial cells), I (infected epithelial cells), D (dead
epithelial cells), Mono (monocyte), M® (macrophage), DC (dendritic cell), Neut (neutrophil), NK (natural killer cell). The adaptive immune cells pictured above are all
virus-specific; non-virus-specific lymphocytes are not pictured.
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First, we assumed that the parameters relevant to APCs function and
naive T/B cells decreased with disease severity. The characteristic of
COVID-19 patients most commonly attributed to disease severity is age
(Chen et al., 2021; Hu et al., 2021). This age dependency could be
explained by the impaired immune response in elderly individuals with
COVID-19, which was reported to be correlated with T/B cell repertoire
restrictions and decreased DC antigen-presenting ability (Paschold et al.,
2020; Zheng et al., 2020). Also, TCR/BCR repertoire composition and
diversity have been considered as the major determinants of disease
outcomes following viral infection (Gutierrez et al., 2020; Schultheiss
et al., 2020).

Second, patients with severe COVID-19 have a higher viral load and a
long virus-shedding period (Liu et al., 2020), which would cause even
more severe damage to the lungs. Dysfunction of the mucosal immune
system increases the susceptibility of patients to bacterial infection
(Hanada et al., 2018), making severe patients more susceptible to bac-
terial infection than those who have not been seriously affected (Chen
et al., 2020). In this regard, we integrated post-viral bacterial infection
and clearance of bacteria by innate immunity into our model. We
assumed that the growth rate of bacteria was linked to the reduced ratio
of healthy lung epithelial cells, (Hy — H)/Hy, where H denotes the
number of healthy lung epithelial cells, and Hy denotes the initial value
of H.

Third, we assumed that high IL-6 level triggered the release of
MDSCs. Severe patients with COVID-19 exhibit the emergence of
myelopoiesis-generating immuno-suppressive myeloid cells (HLA-DR-/
low monocytes and immature neutrophils) (Agrati et al., 2020; Giamar-
ellos-Bourboulis et al., 2020; Silvin et al., 2020). MDSCs can be induced
by inflammatory conditions, such as high concentrations of IL-6 (Gia-
marellos-Bourboulis et al., 2020; Schrijver et al., 2019; Tobin et al.,
2019). Since host sepsis contributes to the extraordinary elevation of
plasma IL-6 in critically ill patients with COVID-19 (Huang et al., 2020),
factors generated during sepsis would induce the expansion and egress of
MDSCs from the bone marrow into the peripheral blood (Schrijver et al.,
2019).

Last, we assumed that high level of immunosuppressive cell-derived-
TGF-B could trigger lymphocyte apoptosis (Banerjee et al., 2011). The
concentration of serum TGF-p increased with time after SARS-CoV-2
infection (Ferreira-Gomes et al., 2021), which may suppress immune
efficacy against SARS-CoV-2.

More detail about model assumptions and equations can be found in
Section I and Section II of the Supplementary Material.

2.2. Modeling the dynamics of host immunity in different types of COVID-
19 patients

Using the above model, we aimed to analyze and reveal the dynamic
processes of virus and host immunity through replicating the migration
of the lymphocytes among lungs, lymph nodes and peripheral blood in
different patients after the onset of SARS-CoV-2 infection.

Under the constraints of the physiological level of immune cells and
cytokines from clinical data and treatments, we estimated the ranges of
kinetic parameters in the model to recapitulate the characteristics indi-
cated by clinical data (See section |V in supplementary material for de-
tails). Accordingly, we classified COVID-19 patients into four typical
disease severities: mild/moderate, severe, critically ill (survivor) and
critically ill (non-survivor). To capture the clinical characteristics of pa-
tients with these four typical different severities, we selected and modi-
fied different sets of kinetic parameters, as shown in Table S2, especially
different K (environmental bearing capacity of naive T/B cells) and K;
(sensitivity of APCs response to antigen). We also decreased the killing
rate of CTLs for severe and critically ill patients and lowered the clear-
ance rate of bacteria for critically ill non-survivors. More detail about
kinetic parameters can be found in Table S3. Initial state was set as steady
state without viral infection (see Section III of the Supplementary
Material).
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First, in Figure 2, we longitudinally analyzed the dynamics of viral
load, bacterial load, APCs, CTLs and SARS-CoV-2 specific Ig level in the
lungs of COVID-19 patients. In the 1% week after SARS-CoV-2 infection,
viral load in the lungs in the four types of patients showed no obvious
difference. During the 2" week after SARS-CoV-2 infection, in the lungs
of the mild/moderate patients, APCs, CTLs and Ig level increased quickly.
These activated innate/adaptive immune cells and Ig cooperated to clear
the virus and kill infected epithelial cells, inducing the rapid decrease of
viral load in mild/moderate patients (Figure 2a). However, in patients
with higher severity, as shown in Figure 2b-d, during the 2" week after
SARS-CoV-2 infection, APCs, CTLs and Ig increased more slowly in
comparison to the response in mild/moderate patients, in particular, for
the critically ill survivor (Figure 2c¢) and non-survivor patients
(Figure 2d). An obvious delayed activation of innate and adaptive im-
munity occurred and caused the accumulation of high viral load in the
lungs and severe lung epithelial damage, setting up conditions for bac-
terial infection. In critically ill non-survivors during the 3" and 4™ week,
bacterial infection did activate further innate immune response with a
high level of APCs. Blood culture verified bacterial infections in some
critically ill patients (Table S1). Our results indicated that the delayed
response of APCs, CTLs and Ig contributed to a high viral load in the lungs
and a long virus maintenance period in COVID-19 patients, both asso-
ciated with higher severity.

Then, we investigated the dynamics of both IL-6 and lymphocytes,
including all subsets of T cells and B cells, both SARS-CoV-2-specific and
non-SARS-CoV-2-specific, and NK cells in the different compartments of
four types of COVID-19 patients. We illustrated the time-dependent tra-
jectories of IL-6 and lymphocytes in peripheral blood (Figure 3a-b),
which qualitatively fit the clinical data for the four types of patients
(Figure S1). Furthermore, in patients with higher severity, the simulation
results not only showed a higher level of serum IL-6 (Figure 3a), but also
suggested that extensive damage to lung epithelial, in turn, causes the
accumulation of more macrophages (Figure S3). The simulation implied
that different serum IL-6 level in COVID-19 patients could be explained
by the difference in macrophage activation.

Next, we investigated the mechanism of lymphopenia during SARS-
CoV-2 infection. Recent studies show that the durability of lymphope-
nia determined disease severity (Tan et al., 2020). Disease severity is also
correlated with the upregulation of chemokine and chemokine receptor
expression (Bost et al., 2020; Chua et al.,, 2020), implying that
severity-associated lymphopenia could be explained by the difference in
lymphocyte chemotaxis. Moreover, the clinical study showed that
abundance of inflammatory monocyte-derived macrophages increased in
the lungs of critically ill COVID-19 patients (Liao et al., 2020; Yao et al.,
2021).

In our model, we assumed that specific leukocyte trafficking mole-
cules recruit leukocytes to SARS-CoV-2-infected lungs, while macro-
phages and infected epithelial cells are the main chemokine-secreting
cells (Table S4). In Figure 3b, we showed that mild/moderate patients
exhibited transient lymphopenia; severe and critically ill (survivors)
patients had a longer period of lymphopenia; and critically ill (non-sur-
vivors) patients showed continuous lymphopenia. In Figure 3c, it can be
seen that COVID-19 patients with different severities manifest the traf-
ficking of lymphocytes among the secondary lymphoid organs, periph-
eral blood and lungs throughout the course of SARS-CoV-2 infection. In
the early stage of SARS-CoV-2 infection (termed 0-10 days), we found
that lymphocytes decreased in both peripheral blood and secondary
lymphoid organs and were recruited to lung tissues and that more lym-
phocytes infiltrated into the lungs of COVID-19 patients with higher
severity. In the recovered patients, following the resolution of inflam-
mation, lymphocytes exited inflamed tissues and participated in recy-
cling, together with the recovery of the total number of lymphocytes.
However, critically ill patients (non-survivors) at the late stage of disease
(termed 21-28 days) exhibited the continuous decrease of lymphocytes
in peripheral blood and secondary lymphoid organs, but a high level of
lymphocytes in the lungs (Figure 3c).
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Figure 2. Modelling the immune processes in lungs of four types of patients after SARS-CoV-2 infection. (a-d) Curves illustrate the dynamic processes of SARS-

CoV-2 infection, bacterial infection, antigen-presenting cells (APCs), cytotoxic T lymphocytes (CTLs), and SARS-CoV-2-specific-immunoglobulin (Ig) level in the lungs
(compartment 3).
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J. Li et al.

We also presented the time courses of immune cells and cytokines in
the different compartments, as well as viral load, bacterial load, and
epithelial cells in the lungs in Figures S3, S4, S5, S6 and S7 where we
illustrated the disparate immune response among the different types of
patients in the different compartments.

Furthermore, we performed parametric sensitivity analysis of our
model and listed the top 25 (~11%) parameters according to their sen-
sitivities in Figure S8, where Kj, K, parameters relevant to viral infectivity
(e.g., the infection rate of SARS-CoV-2 hy, apoptosis rate of infected
epithelial cell d)), etc., showed high sensitivity to the change of values of

(a)
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four typical disease severities (Table S2). In this paper, we focused on the
heterogeneity of immune system in different patients, and did not take
the infectivity of different viurses into account. Other parameters with
high sensitivity, such as apoptosis rate of neutrophils dyey, the volume of
compartment 4 V4, were not likely to vary much in different patients, so
we did not modify them. We also simulated individual difference within
the same patient type by perturbation of all parameters, as shown in
Figure S9. Although individual differences of immune response within
the same patient type exist, we still focused on the heterogeneity among
the four typical patient types in this article.
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Figure 4. Connecting lymphocytes and IL-6 levels in peripheral blood with the strength of patients' immune response. (a) Simulation results of innate immune
strength ejnnae and adaptive immune strength e,gapiive in COVID-19 patients with different disease severities. (b) The dynamic trajectories of patients with different
severities are plotted on the innate immune strength ejpnae and serum IL-6 plane. (¢) The dynamic trajectories of patients with different severities are plotted on the
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comparison. The yellow circle (b and ¢) indicated the starting point of SARS-CoV-2 infection. The arrows on the curve (b and c¢) indicated the direction of the
trajectory, and the red highlight indicated bacterial infection. (d) The level of serum IL-6 changed with the different levels of bacterial load. Different levels of bacterial
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simulate low, median and high MDSCs levels, respectively.
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2.3. Activation and strength of both innate and adaptive immunity
determined COVID-19 severity

Based on our recent work (Zhou et al., 2021), we developed quanti-
tative indicator to describe the ability and strength of host innate and
adaptive immunity against SARS-CoV-2 infection. We analyzed the two
equations related to SARS-CoV-2 virus and infected epithelial cells. In the
lungs of patients, [V], [H] and|l] denote the concentrations of virus,
healthy epithelial cells and infected epithelial cells, respectively. Thus,
we have:

%‘1{] = Vstl%dl - (bl‘\/leu[ [Neuts) + by [Igs] + by [M(/)3]) vl
3)
% = hy[V][H] — (bl [Mps] + by [NKs] + by, [CTLs] ) [I] — dy[I]. “

Where, [IFN — I|, [Neut], [Ig], [M¢], |[NK], and [CTL] denote the concen-
tration of Type-I interferon, neutrophil, immunoglobulin, macrophage,
NK, and CTL respectively. The detailed information of parameters is
listed in Table S3. Assuming that the infected epithelial cells rapidly
reach equilibrium, d[I]/dt = 0, we simplified Eq. (3) to

d[v
W+ e Ro 1)1V, ©)
Ka7
y3NVdIhV7
K4 + [IFN — 1
RO = d76 [ 3] [HL
€ = exi€clear (6)

exit = by [Mes] + by [NKs] + by, [CTLs]
€clear = bI‘\/Ieut [NeUt3] + ng [Ig3] + b)‘\jl [M[/)?’]'

We defined e as the immune strength of host that consists of both innate
and adaptive immunity. Similarly, we also respectively defined ej,nqe and
€adapive @S innate and adaptive immune strength, epnae = (b}, [Mes] +
b [NKs]) (b, [Neuts] + by, [Meps]), €adapiive = Doy [CTLs] by [Igs].

We plotted the time courses of eipnate and eagaprive in patient lungs, as
shown in Figure 4a. In mild/moderate patients, we see the quickest
activation of innate immune response and highest level of adaptive im-
mune strength. For patients with more severe disease, the initial acti-
vation time of innate and adaptive immunity occurred later. A
longitudinal analysis of e, einnate and e,daptive can be found in Figure S10.

Next, we connected host immune response status to the levels of
serum IL-6 and peripheral blood lymphocytes. We found that serum IL-6
was positively associated with innate immune strength ejnnate, which then
means that cytokine release syndrome correlated with the strong acti-
vation of innate immunity (Figure 4b). In critically ill patients, secondary
bacterial infection also caused strong activation of innate immunity,
leading to a high level of serum IL-6 during the 3" and 4™ weeks. Based
on the critically ill survivor model, we changed bacterial load in the lungs
by setting h; to 0, 5, and 80 (1/day) to represent low, median and high
bacterial loads in the lungs, respectively. In Figure 4d, we found that the
level of serum IL-6 was significantly elevated when bacterial load
increased in the lungs. In particular, a low bacterial load could cause a
second peak of serum IL-6 level, suggesting that bacterial infection can
further exacerbate cytokine storm.

In addition, the recovery of peripheral blood lymphocyte level
served as a positive sign of establishment of adaptive immunity, which
is indicated by eidaptive- In the mild/moderate and severe patients
(upper row of Figure 3c and Figure 4c), when e,dapiive began to increase,
the establishment of adaptive immunity could protect lung tissues from
viral damage and decrease the infiltration of lymphocytes into the
lungs, thereby facilitating the recovery of lymphocytes in both pe-
ripheral blood and secondary lymphoid organs. However, from the
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lower row of Figure 3c and Figure 4c, we found that low level of e,daptive
and secondary bacterial infection led to the sequestration of lympho-
cytes in the lungs in critically ill patients, inhibiting the recovery of
lymphocytes in peripheral blood.

In Figure 4e, we simulated the effect of different MDSCs levels on the
level of lymphocytes by setting the Hill coefficient of IL-6 to enhance the
release of MDSCs to 1000, 400, and 100 (pg/ml), and we found MDSCs to
be negatively correlated with the total number of lymphocytes in all
compartments. TGF-f derived by MDSCs may induce lymphocyte
apoptosis and cause the continuous lymphopenia in critically ill patients.
Our simulation showed that proliferation and natural apoptosis in
different patient types were similar; however, TGF-p-induced apoptosis
was higher in critically ill patients than that in other patients
(Figure S11). Thus, we revisited Figure 3b-c and found that the total
number of lymphocytes significantly decreased in critically ill non-
survivors, which included a decrease in lymphocyte numbers in periph-
eral blood and secondary lymphoid organs. By contrast, the total number
of lymphocytes almost recovered at the 28 day after infection in criti-
cally ill survivors. Given that abundant MDSCs were enriched in myeloid
cells in critically ill patients (Figure S2), we concluded that continuous
lymphopenia in critically ill patients might result from MDSCs inhibiting
lymphocyte activity and further inducing lymphocyte apoptosis.

2.4. Naive T/B cell pools and activation of APCs impact the clinical
outcome of patients

To reveal the roles of naive T/B cell pools and the activation of APCs,
we theoretically investigated how the change of K and K; influences the
dynamic processes of immune response and clinical outcome in COVID-
19. For critically ill (survivors) patients, we found in Figure 5a-c that
increasing levels of both K and 1/K; contributed to the decrease of
average viral load, bacterial load and serum Ig in the lungs, suggesting a
better clinical outcome. The convexity of contours also implied a syner-
gistic role for K and 1/K;. We further illustrated the impact of K and K; in
Figure S12, respectively. High K played a role in establishing a strong
adaptive immunity at a relatively low innate immunity; high 1/K; played
a role in the control of viral growth in the early phase and triggered the
quick establishment of strong adaptive immunity (Figure S12).

Furthermore, we changed K and K; based on the parameters of crit-
ically ill patients (survivor) (Table S8) and found the pseudopotential
perspective of three typical COVID-19 trajectories (Figure 5d-f). In
Figure 5d, when the system had relatively low values of K and 1/Kj, it
would start from the initial state and evolve to stable state A, or low
lymphocyte level and high IL-6 level in peripheral blood, that corre-
sponded to critically ill (non-survivor) patients with cytokine storm.
These patients typically had severe bacterial infections at the late stage,
as shown in the lower left corner of Figure 5a-c. When K and 1/K;
increased, as shown in Figure 5e and Figure 5f, state A became unstable.
In Figure 5f, bacterial infection did not occur, and the system evolved
back to the healthy state with a high lymphocyte level and low IL-6 level
in peripheral blood. Similarly, we illustrated in Figure S13 the pseudo-
potential landscape of the mild/moderate, severe, critically ill (survivor),
and critically ill (non-survivor) patients.

Thus, our model quantitatively illustrated that the naive T/B cell
pools and the activation of APCs had a significant impact on the clinical
outcome of COVID-19 patients. During the interaction between SARS-
CoV-2 and host immunity, the hosts with quick activation of innate
and adaptive immunity and sufficient naive T/B cell pools would quickly
recover to health; however, the hosts with diminished innate and adap-
tive immunity activation and insufficient naive T/B cell pools would most
likely have severe disease and bad clinical outcome.

3. Discussion and conclusion

In this study, we constructed a multicompartment mathematical
model to assess underlying immunological mechanisms, clinical
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Figure 5. SARS-CoV-2-specific naive T/B cell pools and activation of APCs impact the clinical status and outcome of patients. (a-c) K represents the envi-
ronmental carrying capacity of antigen-specific T/B naive cells, and 1/K; reflects the activation threshold of APCs. Here, K and 1/K; were multiples relative to the
parameters of the critically ill (survivor) type denoted by purple star. Analysis detailing how K and 1/K; affected the following variables: (a) average viral load in the
lungs, (b) average bacterial load in the lungs, and (c¢) average immunoglobulin (Ig) level in peripheral blood (PB). The red line in (b) indicates the boundary of
bacterial infection. Based on the corresponding parameter values K = 0.7 1/K; = 0.7 (red square at bottom left in (b)), K = 1 1/K; = 1 (purple star at middle in (b)),
and K = 1.5 1/K; = 1.5 (blue triangle at upper right in (b)), we calculated and plotted the pseudopotential and the typical trajectories of lymphocytes and IL-6 (d-f).
Red dashed lines show the contour of a specific energy for better visualization. For high levels of K and 1 /K, patients exhibited low levels of viral load, bacterial load
and serum Ig level; for low levels of K and 1/K;, patients exhibited severe bacterial infection and high levels of MDSCs (state A). By increasing the fold change of K and
1/K;, the barrier obstructing the system from recovery disappeared, and state A attractor also disappeared as no bacterial infection occurred.

progression and disease severity, aiming to analyze the heterogeneity of
COVID-19 patients. Based on the model, we simulated and predicted the
dynamics of host immunity after SARS-CoV-2 infection and obtained the
following results. (1) Early-stage lymphopenia was related to lymphocyte
chemotaxis. (2) The prolonged lymphopenia in critically ill patients was
associated with MDSCs, which were induced by highly inflammatory
environment especially during the bacterial infections. A recent study
also indicated that the numbers of suppressive immature neutrophils
and/or G-MDSCs expanded during severe COVID-19 infection, which
was associated with lymphopenia and disease severity (Penaloza et al.,
2021). (3) The delayed onset of innate and adaptive immune responses
after SARS-CoV-2 infection would cause a series of cascading reactions,
including elevated viral load in the lungs and secondary bacterial
infection, in the absence of medical interventions. Secondary bacterial
infection will subsequently evoke a strong innate immunity, leading to
cytokine storm and high levels of MDSCs. (4) SARS-CoV-2-specific naive
T/B cell pools and activation of APCs had a significant impact on
COVID-19 severity. Patients with insufficient SARS-CoV-2-specific naive
T/B cells and inactive APCs would likely lapse into continuous lympho-
penia and cytokine storm.

Our results, especially the simulation results in Figure 5, suggest that
the individual with rapid and strong activation of immunity will quickly
recover to health. Rapid and strong immune activation relies on active
APCs and sufficient SARS-CoV-2-specific naive T/B cell pools. This

provide some hints for the further clinical treatments. On the one hand,
enhancing APCs activation during the early phase of infection may be a
treatment option for high-risk COVID-19 patients. Recent study proposed
that early intervention with recombinant interferon-a2b helps reduce
both viral replication and secondary viral infection of neighboring cells,
thus providing a rational treatment regimen for the management of
COVID-19 (Pandit et al., 2021). On the other hand, vaccination induces
the SARS-CoV-2-specific memory T cells and memory B cells. Memory
T/B cells will rapidly proliferate and differentiate into effector T/B cells
after SARS-CoV-2 infection, which provides a quick and strong response
of adaptive immunity. This will increase efficacy against severe disease
and reduce mortality. Notably, the T/B cell pools here refer to the
virus-specific T/B cell pools, and variants may evade vaccine-induced
response. Thus, it is necessary to enlarge memory T/B cells in terms of
quantity and coverage, and combining different COVID-19 vaccines may
be a helpful strategy against variants. In our recent unpublished work, we
developed a mathematical model including memory T/B cells and further
discussed the efficacy of vaccines against different variants.

In summary, our mathematical model provides a framework to un-
derstand the dynamics of immune processes, enabling us to reveal the
immunopathogenesis of COVID-19. Further, this mathematical framework
may be useful for exploring the effects of medication and vaccines on the
immune process as well as optimizing treatment strategies accordingly. It
may also be applied to study immunodynamics of other diseases.
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4. Limitations of the study

Our mathematical model has some limitations. First, although the
results of our model qualitatively matched our clinical observations,
the lack of detailed clinical data in both the lungs and secondary
lymphatic organs makes it unable to fit parameters in our model.
Therefore, more clinical data, especially animal model data, are needed
for precise simulation and verification. Second, we mainly focused on
how naive T/B cell pools and APC activation affect severity, yet other
factors may also affect severity, such as immune cell function and
immunosuppression (see Section |V in Supplementary Material). Third,
to simplify our model, adaptive immunity triggered by bacterial
infection or other pathogenic infections was not included in our model.
Based on our mathematical model, future model development can
include additional complexities of host immune response against
variant strains, as well as modulation of the immune system by
vaccination.

5. Materials and methods
5.1. Basic framework of the mathematical model

The model contains four compartments: draining lymph nodes, pe-
ripheral blood, lung and distant lymph nodes and spleen. The model
consists of epithelial cells, SARS-CoV-2, bacteria, cytokines, innate im-
mune cells (neutrophils, monocytes, macrophages, dendritic cells (DCs),
myeloid-derived suppressor cells (MDSCs) and natural killer (NK) cells),
and adaptive immune cells (T cell and B cell subsets). Chemokines/
chemokine receptors control the migratory patterns and positioning of
immune cells among the different compartments. We used ordinary dif-
ferential equations (ODEs) to simulate the time-dependent functions of
immunologic variations in the different compartments. Our model con-
sists of equations for 109 immunologic variations (Table S5), which
contain 223 parameters (Table S3). According to the migration patterns
of immune cells and cytokines, we categorized them into six groups
(Table S6). Colony-stimulating factors (CSFs) promoted the mobilization
of monocytes and neutrophils from the bone marrow into the peripheral
blood (Table S7). In this work, we used Hill-type functions to quantita-
tively describe the activation of APCs and the interactions between im-
mune cells and cytokines. ODEs were encoded with Python 3.7, and the
odeint from the scipy.integrate package was used to solve the ODEs.
Detailed information on equations and parameters is included in the
Supplementary Material.

5.2. Model validation with clinical data of various COVID-19 phenotypes

A total of 194 laboratory-confirmed COVID-19 admitted cases with
clarified outcome, either discharged or deceased, were collected at
Union Hospital of Tongji Medical College in Huazhong University of
Science and Technology (Wuhan, P. R. China) (Table S1). Clinical in-
formation for all patients was collected from the hospital's electronic
history system. Of the 194 patients, 42 were utilized for the detection of
immune cell subsets by flow cytometry during the period of lympho-
penia (11 mild/moderate cases, 12 severe cases and 19 critically ill
cases). Blood samples collected at any time from mildly/moderately ill
patients were used as control groups because these patients experienced
transient lymphopenia or no lymphopenia. Disease severity was
assessed according to the Seventh Version of the Novel Coronavirus
Pneumonia Diagnosis and Treatment Guidance from the National
Health Commission of China (Diagnosis and Treatment Protocol for
Novel Coronavirus Pneumonia (Trial Version 7), 2020). This study was
conducted in accordance with the Declaration of Helsinki and was
approved by the Ethics Committee of Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology
(#2020/0004). Written informed consent was waived owing to the
emergence of this high-risk infectious disease.
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5.3. Method for analyzing the impacts of the naive T/B cell pools and
APCs on clinical status

K is a set of parameters, including KZps,r: Kepsnrs Kogs Képants Kepsnrs
K5, which represent the environmental carrying capacity of SARS-CoV-
2-specific naive CD4+ T, naive CD8+ T, and naive B cells in compartment
1 and compartment 4. K represents the Hill coefficient of APCs differ-
entiation. Multiples of K multiply K}pa.r, Kepsnr> Kigs Képant Kepsnrs Kigs
and the multiples of 1/K; divide K;. The average viral load, the average
bacterial load, and the average Ig level were defined as:

tend
[Bac]average = / [Bac]dt/ te"d
JOo
Tend
[Virus]nge = / (Virus]dt /g
0

tend
[Ig]average = /0 [Ig]dt/tend

Here, t.,q represents the end time of the simulation, which is the 28th
day in our model. The peak time of viral load refers to the time corre-
sponding to the peak viral load.

5.4. Method of pseudo landscape

We referred to the method of Zhou J X, et al. (Zhou et al., 2012) to
calculate the pseudo landscape to better visualize the effect of APC ca-
pacity and the SARS-CoV-2-specific naive T/B cell pools on clinical
conditions. The pseudo potential is defined as:

U(r) = —InP(r)

where P(r) represents the probability that the trajectory passes throughr,
which is defined as (T(r) +1)/max(T(r) +1); T(r) is the number of
times that the trajectory passes through r and T(r) +1 is a technical
approximation to prevent divergent results. We divided the plane of r
into a 128*128 grid. To obtain the different trajectories of COVID-19, we
added the disturbances to every parameter within the range of
[90%,110%] using the Latin hypercube sampling scheme. After each step
of the simulation (dt = 0.25 days), the output is multiplied by Gaussian
noise (1 = 1, 6 = 1/20) and then used as the initial value of the next step.
We computed 16384 different trajectories and excluded those with
problems (e.g., nan appears in the output trajectory from random noise);
we then performed statistics on the trajectories. Gaussian blur (windows
of 3*3) was used for noise reduction.
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