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Abstract

The purpose of feature selection is to identify the relevant and non-redundant features from a dataset. In this article, the
feature selection problem is organized as a graph-theoretic problem where a feature-dissimilarity graph is shaped from the
data matrix. The nodes represent features and the edges represent their dissimilarity. Both nodes and edges are given
weight according to the feature’s relevance and dissimilarity among the features, respectively. The problem of finding
relevant and non-redundant features is then mapped into densest subgraph finding problem. We have proposed a
multiobjective particle swarm optimization (PSO)-based algorithm that optimizes average node-weight and average edge-
weight of the candidate subgraph simultaneously. The proposed algorithm is applied for identifying relevant and non-
redundant disease-related genes from microarray gene expression data. The performance of the proposed method is
compared with that of several other existing feature selection techniques on different real-life microarray gene expression
datasets.
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Introduction

Data dimensionality reduction can be done in two ways: 1)

feature extraction creates new feature by combining features and,

2) feature selection choose subset of features by eliminating

features with less or no predictive information. The center of

attention of this proposed study is only on the feature selection.

Feature selections have immense impact in improving the quality

of classification and clustering technique in machine learning and

pattern classification. The feature selection can be applied to both

supervised and unsupervised learning. In a supervised scenario [1],

[2], the correct class of all training samples are additionally known

and the feature evaluation criteria to generate selected feature set

are based on the known class label of the features. In contrast, in

unsupervised cases the assessment criteria are completely inde-

pendent of the true class labels of the features. Performance in

unsupervised classification is typically considered as the capability

of a clustering algorithm to expose groupings (clusters) in a given

data set. Subsequently, the clustering solution is evaluated using

some cluster validation techniques like entropy (E), class separa-

bility (S), fuzzy feature evaluation index (FFEI), etc [3]. Again

feature selection may be filter-based or wrapper-based approach.

When the utility of a feature is measured in terms of some proxy

measure, then it is called filter-based feature selection. The proxy

measure uses the class label in supervised filter-based approach. In

unsupervised filter, the proxy measure considers the degree to

which the distribution of the feature values exhibits the class

structure in the feature space. Utility measures for wrapper

methods [2] completely rely on a classifier or clustering result. As

filter methods are independent of the classifier applied subse-

quently, they have excellent generalization properties, but may be

less effective at decreasing the dimensionality of the feature space

and boosting classification accuracy. Generally, they are compu-

tationally cheaper than the wrapper approaches. But wrapper

based methods are more prone to have data over-fitting. The

variety of feature selection technique has been addressed in quite a

few ways such as clustering based [4], [5], content based [6], for

ensemble classifier [7], graph based [8], [9] and feature similarity

based [3].

In this context, two opposite strategies have been proposed in

the literature: those that aim at the exclusion of redundant features

[3] and those that focus on the elimination of irrelevant features

[10]. Besides these methods there exist some Particle Swarm

Optimization (PSO) based feature selection techniques in the

literature. In [11], a multiswarm binary PSO has been introduced.

A scheduling algorithm has been executed for selecting fittest

subswarm where classification accuracy and fscore are combined

as objective function. Then in [12], author used PSO and Least

Square Support Vector Machine for feature selection and in [13]

an improved PSO with signtest has been described for identifying

relevant features. Again article [14] used bPSo but all these

methods have been modeled as single objective fashion where

classification accuracy has been considered as objective function.

However, also there exist multiobjective PSO-based approaches

like [15], [16] and [17] where MOPSO has been well studied but

they did not consider the redundancy among features which

should be minimized for reducing computation cost and improv-

ing the performance. Therefore, the objective of feature selection
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should be to select the most significant or relevant as well as non-

redundant features.

In this article we have proposed a novel graph-theoretic model

for selecting most relevant and non-redundant features from the

input dataset. In the proposed method, first a complete graph is

shaped where the nodes symbolize the features and edge weights

are defined by the dissimilarity among the features. Then we

extract the densest subgraph from the feature-dissimilarity graph.

The attributes contained by the extracted subgraph comprise the

final selected relevant and non-redundant features. For identifying

the densest subgraph, we have projected a multiobjective binary

particle swarm optimization (MO-bPSO) based algorithm. The

particles are fashioned as binary strings for encoding the feature

subset. Two objective functions, average node-weight and average

edge-weight are optimized simultaneously. Unlike single objective

optimization which yields a single best solution, multiobjective

optimization (MOO) [18], [19] algorithms turn out a set of

solutions which contains a number of non-dominated solutions,

none of which can be further improved on any one objective

without degrading it in another. Here the multiobjective

optimization problem is tackled by applying bPSO [20] in which

fitness comparison takes Pareto dominance [21] into account

during the movement of the particles in the search space. The

non-dominated solutions are stored in an archive to approximate

the Pareto front [22].

In this proposed article, feature selection technique is applied to

identify relevant and non-redundant gene markers from micro-

array gene expression data [23]. Microarray is a rapidly growing

technology that provides the opportunity to assay the expression

levels of genes in a single experiment. A microarray gene

expression data set contains the expression levels of thousands of

genes over a number of tissue samples. Hence this is a sample

versus gene matrix which also contains the class label for each

sample. Although recently it has gained popularity in the process

of finding disease-related gene or marker, its high dimensionality

and noise pose a challenging problem. Moreover some genes may

not be very relevant to the corresponding class labels; hence they

are not helpful for phenotype classification. In binary classification

[24], the task of classification is done to the samples of the

microarray dataset consisting of normal (benign) and cancer

(malignant) tissue. Otherwise when samples represent three or

more subtypes of cancer then classification [25] is called multiclass

cancer classification.

It is common in practice that in order to find the most relevant

genes, most of the existing feature selection techniques [26], [27]

produce a redundant set of genes. This fact has encouraged us to

apply our proposed graph-based multiobjective binary particle

swarm optimization technique which selects not only the relevant

genes but a non-redundant set of genes also. The performance of

the proposed technique is established on different real-life

microarray gene expression data sets and compared with that of

various existing gene selection techniques.

Materials and Methods

Other Relative Methods
There are many more feature selection techniques in the

existing literature establish their own superiority. In this article, we

have taken some of them namely, T-test, Ranksum test, SFS, SBE,

CFS, mRMR(MIQ), Graph-based feature selection () and Cluster-

based feature selection(). Moreover as our method is multiobjective

one, so the singleobjective versions are also taken into account. By

nature, the Sequential Forward Search (SFS) [28] selects features

sequentially depending on the adopted criteria. On the contrary,

Sequential Backward elimination (SBE) [29] discards features on

the basis of the adopted criteria. Additionally, a methods like

Correlation-based Feature Selection (CFS) [30] has been used for

performance analysis. Here, the ratio of snr value to mean

correlation value is considered as the criteria to calculate the

features importance. The number of resultant features of our

proposed approach is the input of the other comparative

algorithms like T-test, Ranksum test, SFS, SBE, CFS and

mRMR(miq). In case of T-test [31], and Ranksum test [32],

[26], at first the p-values of the features are sorted and required

numbers of features are taken for validation. In mRMR feature

selection technique [33,34], the relevance of gene is calculated by

mutual information [35] between a feature and its corresponding

class labels and redundancy is computed as the mutual informa-

tion among the features. The basic concept of mRMR is to select

the genes such that they are relevant and mutually maximally

dissimilar to each other at the same time. Let s denotes the subset

of genes that we are seeking. The average minimum redundancy is

given as Equation 1:

MinimumW~
1

jsj2
X
i,j[s

I(i,j), ð1Þ

where I(i,j) presents the mutual information between i-th gene

and j-th gene and jsj is the number of genes in S. The discriminant

power of a gene by the mutual information I(h,gi) is calculated as

per Equation 2. That means the mutual information between

targeted classes h~h1,h2, � � � ,hk and the gene expression gi is the

measure of relevance of that gene. Thus the maximum relevance

condition is to maximize the average relevance of all genes in s is

Equation 2:

MaximumV~
1

jsj
X
i[s

I(h,i): ð2Þ

Therefore, the redundancy of a gene has to be minimized and

relevance of a gene has to be maximized. As two conditions are

equally important, two simplest combined criteria are:

Max(V{W ), and Max(V=W ). Here only the mRMR for

discrete variable in form of mRMR mutual information quotient

(mRMR MIQ) is described. The mRMR with MIQ scheme is

formulated as per Equation 3.

mRMRMIQ~maxi[Vs I(i,h)=½ 1jsj
X
j[s

I(i,j)�
( )

: ð3Þ

Next, in Graph-based feature selection method [36], a graph

G~(V|E) has been constructed with node-set V, edge-set

E(V|V and edge weight matrix W whose elements are in the

interval [0; 1]. Each vertex represents a feature and the edge

between two features represents their pair wise relationship. The

weight on the edge reflects the degree of relevance between two

features. Therefore, the graph G with the corresponding edge-

weight or weighted relevance matrix has been formed. The

algorithm states: a) computing the relevance matrix W~(wij)n|n

based on the mutual information between feature vectors, b)

dominant-set clustering to cluster the feature vectors and c)

selecting the optimal feature set from each dominant set using the

multidimensional interaction information (MII) criterion. There-

fore, in Cluster-based feature selection method [37], the feature set

Finding Non-Redundant and Relevant Gene Markers
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is partitioned into clusters of similar features where the number of

clusters and the cardinality of the subset of selected features, is

automatically estimated from the data. But this method relies on

some user defined parameters.

Multiobjective Optimization (MOO) and Problem
Description

In this section first the basic concepts of multiobjective

optimization are described. Subsequently, the formulation of gene

selection problem as multiobjective optimization problem is

described.

MOO concepts. In many real world problems, there exist

different aspects of solutions which are partially or wholly in

conflict. Therefore, treating those problems as single objective

optimization produces an unreliable result. In multiobjective

optimization problem the objectives may estimate those different

aspects of solutions which are conflicting in nature. The multi-

objective optimization can formally be stated as follows [18], [19].

Find the vector ~xx�~½x�1,x�2, . . . ,x�n�
T

of decision variables which

satisfies m inequality constraints:

gi(~xx)§0, i~1,2,:::,m, ð4Þ

and p equality constraints:

hi(~xx)~0, i~1,2,:::,p, ð5Þ

and optimizes the vector function:

~ff (~xx)~½f1(~xx), f2(~xx), . . . , fk(~xx)�T : ð6Þ

The constraints in Equation 4 and 5 define the feasible region

which contains all the allowable solutions. Any solution outside

this region is inadmissible since it violates one or more constraints.

The vector ~xx� denotes an optimal solution in .

The essence of multiobjective optimization technique can be

determined through Pareto optimality [21]. Pareto optimal set

comprises of all those solutions for which it is impossible to

improve any objective without simultaneous worsening in some

other objective. It can be said that a vector of decision variables

~xx�[F is Pareto optimal if there does not exist another~xx� such that

fi(~xx)ƒfi(~xx
�) for all i~1, . . . ,k and fj(~xx)vfj(~xx

�) for at least one j

when the problem is minimizing one. Here, denotes the feasible

region of the problem (i.e., where the constraints are satisfied).

Pareto optimal set [22] generally contains more than one solution

because there exist different ‘trade-off’ solutions to the problem

with respect to different objectives. The set of solutions contained

by Pareto optimal set are called non-dominated solutions. The plot

of the objective functions whose non-dominated vectors are in the

Pareto optimal set is called the Pareto front [22]. Specifically

MOO is a process of generating the whole Pareto front or an

approximation to it.

Problem description. In this article the target is to find non-

redundant but relevant features from a data matrix. In other

words the resultant features are not only non-correlated but

significant too. So the problem should be defined in such a manner

that the correlated and irrelevant features are not selected. In our

proposed scheme, the problem is equivalent to finding most dense

subgraph from a weighted undirected graph. The arrangement of

the data matrix can be viewed as a two-dimensional matrix where

the rows indicate instances and columns indicate attributes or

features. One additional column is there for presenting the

corresponding class labels of the instances. A range of some

similarity/dissimilarity measures includes correlation coefficient

[38], Euclidean distance [39] and maximal information compres-

sion index [3] etc. Using one of these dissimilarity (negative

similarity) measures the symmetric matrix is generated which is

termed as a dissimilarity matrix. Let the data set has n features,

F~ff1,f2,f3,:::,fng. Calculating pairwise negative similarity be-

tween features of the feature set F manipulates (n|n) symmetric

dissimilarity matrix Sm. Therefore from this dissimilarity matrix Sm

a weighted complete graph G can be formed. Since a node

represents a feature, so the vertex set of the graph G is

V~ff1,f2,f3,:::,fng, i.e., the graph contains total n nodes. The

value at row i and column j in the dissimilarity matrix Sm,

represents the weight of the edge between node fi and fj . As each

feature has some dissimilarity value with every other feature

(present in dissimilarity symmetric matrix Sm), hence the graph G

is a complete graph. Fig. 1 demonstrates the process of conversion

from data matrix to feature-dissimilarity graph. First the dissim-

ilarity matrix (for edge weight) is calculated for the data matrix

using correlation coefficient between each pair of gene. The

correlation coefficient s between two random variable x and y can

be defined as [38]:

s(x,y)~
cov(x,y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(x)var(y)
p , ð7Þ

where var() denotes the variance of a variable and cov(x,y) the

covariance between the variables. If x and y are completely

correlated, i.e., exact linear dependent exist, then s(x,y) is 1 or 21

and if totally uncorrelated then s(x,y) is 0. Hence (1{js(x,y)j)
represents the dissimilarity between x and y. Subsequently, a graph

G is formulated from the dissimilarity matrix. Let the samples are

belong to either class1 (denoted by c1) or class2 (denoted by c2).

Then the signal-to-noise ratio (SNR) value (node weight)

corresponds to each feature (fi) is calculated using mean and

standard deviation (s.d.) of class1 samples (c1) and class2 samples

(c2) and defined as [40]:

jSNRij~
mean(fi(c1)){mean(fi(c2))

s:d:(fi(c1))zs:d:(fi(c2))

����
����: ð8Þ

The SNR describes the ratio of the relative mean to the sum of

Standard Deviation of two classes of samples. Basically, it describes

the difference between central tendency and variation or

dispersion exists from the average value of the data points. A

low SNR indicates that the feature does not have much different

values in different classes. Whereas, high SNR indicates that the

feature values are spread out over a large range of values and it is

expected that the values are different in different classes. Very low

SNR may be considered to be insignificant to the class labels and

high SNR value means feature is highly differentially expressed.

Therefore the SNR value is treated as feature relevance. For the

graph G larger edge weight means that the features connected by

that edge are more dissimilar and larger node weight means

features are more relevant. Thus finding the most dense subgraph

g from graph G is equivalent to finding the non-redundant and

most relevant feature set, as the features (nodes) enclosed by the

subgraph g, will have maximum average edge weight (dissimilarity)

and maximum average node weight (SNR). Therefore the

problem can be defined as: find the most densest subgraph (g)

Finding Non-Redundant and Relevant Gene Markers
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from a complete weighted graph G. Thus the features present in

the reduced subgraph g are the required output of our proposed

technique. Here we have developed a multiobjective bPSO to

address this problem.

Proposed Multiobjective Binary PSO-based Approach
Particle Swarm Optimization (PSO) [41], [42] is a well known

swarm-based optimization techniques which optimizes a problem

by iteratively trying to get better candidate solutions with respect

to a given fitness measure. In PSO, a set of particles or candidate

solutions traverse the search space with a velocity based on their

own experience and the experience of their neighbors. During

each traversal, the velocity and thereby the position of the particles

are restructured. This process is repeated until some stopping

criteria are met. Unlike other classical optimization techniques

which tend to have premature convergence to local optimal

solution, PSO is known for globalized searching.

In this article, the input data matrix is first transformed into a

weighted undirected complete feature-graph, where the nodes

(having relevance as node weight) symbolize the genes and the

edges are weighted according to the dissimilarity of genes. In each

iteration, a reduced subgraph is computed for which the average

relevance and average dissimilarity among the genes contained by

the reduced subgraph are maximized. Therefore, the densest

subgraph having maximum average weight (node+edge) is

identified by applying binary PSO [20]. The bPSO is applied to

multiobjective optimization and with the help of non-dominated

sorting [43] and Crowding Distance measure [18], small set of

non-redundant informative genes is identified.

Particle encoding. Here the population is called swarm and

it consists of m number of candidate solutions or particles. Each

particle has n cells where n is the total number of genes comprises

the data matrix i.e., each cell signify one gene from the data

matrix. The cells can have values either 0 or 1. If the i-th cell of a

particle has value 1 then i-th gene is selected from the dataset,

otherwise it is ignored.

Initialization. Initially each cell of a particle is either 0 or 1

chosen randomly. After the initial particles are chosen, their

corresponding fitness values are calculated. Then the velocity of

each cell of the particle is initialized to zero. For each dataset, the

algorithm is executed for 100 iterations. The input of the proposed

system, i.e., the swarm size is set to 25 and the weighting factors c1

and c2 which are cognitive and social parameters respectively are

set to 2.

Fitness computation. Here two objectives, average dissim-

ilarity (negative correlation) and average signal-to-noise values are

maximized. Each particle form a reduced subgraph for which

average negative correlation (avg ncorr) and average SNR value

(avg snr) are computed. As the bPSO algorithm is designed as

minimization problem, so fitness values are computed as

(1{avg ncorr) and (1{avg snr). Then cells are iterated as usual

PSO evaluation [44]. Now for calculating fitness values of a

particle, those genes are selected for which representing cells have

value 1. Therefore, these selected genes of the corresponding

particle forms a subgraph g½v,e,vw,ew� where v is the set of nodes, e

is the set of edges, vw is a vector of node weights by computing

SNR value for each node and ew is a edge weight matrix calculated

by (1-correlation) between each pair of nodes. Thereafter,

avg ncorr (Equation 9) and avg snr (Equation 10) are defined as

avg ncorr~

Pjvj
i~1

Pjvj
j~1 ewij

jvj:(jvj{1)

2

, ð9Þ

avg snr~

Pjvj
i~1 vwi

jvj : ð10Þ

Updating position and velocity. As each cell represents one

gene, so here the two terms cell and gene are used interchange-

ably. The position of a gene within a particle contains either 0 or

1, and velocity of each gene is initialized to zero. Using the

information obtained from the previous step the position and

velocity of each particle are updated. Each particle keeps track of

the best position it has achieved so far in the history, and this best

position is also called pbest or local best. In multiobjective

perspective, that position is chosen for pbest for which fitness of

that particle dominates other fitnesses acquired by that particle in

the history, if there is no such fitness then random choice is done

between current and previous position of that particle. The best

position among all the particles is called global best or gbest which

Figure 1. Construction of Feature-dissimilarity Graph. From the data matrix first Relevance Vector and Dissimilarity Matrix are Computed, then
a weighted complete Feature-dissimilarity Graph is computed. Here an example of 5 feature-dissimilarity graph is depicted.
doi:10.1371/journal.pone.0090949.g001
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is randomly chosen from the archive of non-dominated candidate

solutions. Actually whenever a particle moves to a new position

with a velocity, its position and velocity are altered according to

the Equations 11 and 12 given below [20]:

vij(tz1) ~w � vij(t)zc1 � r1 � (pbestij(t){

xij(t))zc2 � r2 � (gbestij(t){xij(t)),
ð11Þ

xij(tz1)~xij(t)zvij(tz1): ð12Þ

Here t is the time stamp and i-th particle and j-th position are

considered. In Equation 11 new velocity (vij(tz1)) is acquired

using velocity of previous time (vij(t)), pbest and gbest. Then new

position (xij(tz1)) is obtained by adding new velocity with current

position (xij(t)) as shown in Equation 12. r1 and r2 are two random

value in the range of 0 to 1. w in Equation 13 is the inertia weight

which is computed as:

w~(1:1{
gbest

pbest
): ð13Þ

Updating archive. The repository where the non-dominated

population in the history is reserved called archive. First the

archive A is initialized with non-dominated population of Pi. Next

for updating the archive A, the next generation population Piz1 is

merged with the archive Ai i.e., Aiz1~AizPiz1 and then non-

dominated solutions are yielded by applying non-dominated

sorting and crowded distance sorting to the combined archive

Aiz1. The non-dominated sorting and crowded distance sorting

are evaluated for this combined population to obtain better

diversity of the Pareto optimal front.

Proposed MObPSO algorithm. Here, the proposed multi-

objective binary particle swarm optimization (MObPSO) is

designed for maximizing the dissimilarity (negative correlation)

and SNR, which are represented as edge weight and node weight,

respectively. The adopted graph based MObPSO technique is

illustrated in Table 1 Algorithm 1. The population is initialized by

arbitrarily selected features from the data matrix and population

fitness values are calculated using Equation 9 and Equation 10.

The archive A is initialized by the population after non-dominated

sorting of the primary population. Velocity and position are

updated using Equations 11 and 12 respectively. Local best P is

updated comparing the current fitness and previous fitness of a

particle and global best G is updated according to random picking

of particle from the archive. After updating the position and

velocity, the archive is added with next generation solution and

then non-dominated sorting [43] and crowding distance [18]

sorting are used to revise the extended archive. These steps are

repeated for particular number of iterations.

Results and Discussion

In this section, we first describe the real-life datasets and their

preprocessing procedure, thereafter portray the performance

metrics followed by the results of different algorithms.

Datasets and Preprocessing
In this article three real-life gene expression datasets are used

which are publicly available from the following website: www.

biolab.si/supp/bi-cancer/projections/info/.

Prostate. Gene expression measurements for samples of

prostate tumors and adjacent prostate tissue not containing tumor

were used to build this classification model. It contains 50 normal

tissues and 52 prostate tumor samples. The expression matrix

consists of 12533 number of genes and 102 number of samples.

DLBCL. Diffuse large B-cell lymphomas (DLBCL) and

follicular lymphomas (FL) are two B-cell lineage malignancies

that have very different clinical presentations, natural histories and

response to therapy. Total 7070 genes are there in the dataset. The

number of samples of type DLBCL is 58 and of type FL is 19.

GSE412 (Child-ALL). The childhood ALL dataset (GSE412)

includes gene expression information on 110 childhood acute

lymphoblastic leukemia samples. The dataset has 50 examples of

type before therapy and 60 examples of type after therapy. The

number of genes is 8280.

The above described two-class datasets can be obtained as

matrix format whose columns are genes and rows are samples and

preprocessed by SNR (Equation 8) for each gene (column). The

genes (column) of the data matrix are sorted according to the

decreasing order of obtained jSNRj. Lastly from the data matrix

top 100 genes are taken. After that the data matrix is normalized

to set each gene expression value in the range from 0 to 1.

Score Analysis
Performance is evaluated using sensitivity, specificity, accuracy,

fscore, AUC and average correlation. The entire dataset is divided

into two different sets: training and test set. The proposed

approach is applied on the training data. Therefore, a set of non-

dominated candidate solutions are obtained. After that, for final

marker genes assortment, we employ the BMI -score [45] which

considers the discriminative power of each gene by incorporating

the true positive rate from logistic regression. In mathematical

terms, let us assume a data set D consisting of two groups ‘control

(ctr)’ and ‘experiment (exp)’. BMI assigns a score for a feature x
defined as follows:

BMI(x)~l:TP2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j diff j

CVctr

CV

r
, ð14Þ

where

Ddiff ~

D, if Dw~1

1

D
, otherwise

8<
: ð15Þ

Here, l is a scaling factor and TP2 is the product of the true

positive (TP) rates determined for each group using logistic

regression. CVctr and CV denote the coefficient of variance for the

feature x in the ‘control’ group and in both groups, respectively.

Also, D~�xx=�xxctr, where xctr, and x denote the mean value of x in

‘control’ and in both groups, respectively. The maximum BMI-

score generating candidate solution is considered as the most

informative solution. The performance of the proposed algorithm

is compared with that of its single objective versions and other two

statistical tests like T-test and Wilcoxon Ranksum test. The

datasets are arbitrarily divided into two sets: training set and test

set. This process is repeated 10 times and we got 10 train sets and

their corresponding 10 test sets. Each of the algorithms is executed

for each train file and evaluated with the corresponding test file.

Thus for each algorithm, we got 10 sensitivity, 10 specificity, 10

accuracy and 10 F -score values. Now the average of these 10

values for each performance metric with standard deviation are

computed and tabularized.
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With respect to Prostate data, it is evident from Table 2 that for

each score metric the proposed method outperforms (0.8962, 0.9,

0.898, 0.9002, 0.964) the singleobjective versions, T-test, Ranksum

test, SFS and SBE. Regarding sensitivity, our method is better

than Graph-based and Cluster-based but differs slightly with CFS

and mRMR (miq). Again with respect to specificity, the

performance is average. In case of accuracy and fscore, proposed

method is better than mRMR (miq) and Cluster-based method but

not as good as CFS and Graph-based method. The AUC

produced by the proposed method is 0.964 which is better than

all the other methods. Except T-test, our method produces 0.4714

as average correlation which is less compared to that for the other

Table 1. Algorithm 1: Graph based MObPSO (Minimization Problem).

Input: data matrix dt, C = number of genes, N = number of particles, threshold thr~0:9, Graph G~½V ,E,VW ,EW � designed from dissimilarity matrix Sm.

Output: archive A

1: ½xn,vn,Gn,Pn�Nn~1 : ~ initialize(dt) 4Random locations and velocities

2: gN ½V1,E1,VW1,EW1�~Sm(V1N
n |V1N

n ) 4subgraphs gN for N particles are formed from dissimilarity matrix Sm

3: f 1~1{

PjV1j
i~1

PjV1j
j~1 EW1ij

jV1j:(jV1j{1)

2

0
B@

1
CA

N

4average dissimilarity value for the N subgraphs

4: f 2~1{

PjV1j
i~1 VW1i

jV1j

 !N

4average snr value for the nodes contained by N subgraphs

5:A : ~xn (if fitnesses(xn) 6w fitnesses(u),Vu[A Initialize archive A by first non-dominated xn

6: for n : ~1 : N do

7: for d : ~1 : C do

8: vnd : ~w:vndzr1:(Pnd{xnd )zr2:(Gnd{xnd )

9: xnd : ~xndzvnd

10: if xndw~thr then

11: xnd : ~1 4 discretize the cell value

12: else

13: if xndvthr then

14: xnd : ~0

15: end if

16: end if

17: end for

18: end for

19: for n : ~1 : Ndo

20: gn½V1,E1,VW1,EW1�~Sm(V1n|V1n) 4 new subgraph produced by the evaluated particles

21: f 1n~

PjV1j
i~1

PjV1j
j~1 EW1ij

jV1j:(jV1j{1)

2

4average dissimilarity value for the new subgraph

22: f 2n~

PjV1j
i~1 VW1i

jV1j 4average snr value the nodes contained by the new subgraph

23: A : ~A|xn 4Add xn to A

24: for k : ~1 : N do

25: if (fitnesses(xnk) 6w fitnesses(Pn)) then 4Update personal best

26: Pn : ~xn

27: if Non-dominated fitnesses then

28: Pn : ~Random{choice½xn,Pn�
29: end if

30: end if

31: Gn : ~random{select(A)

32: end for

33: end for

34: A : ~xn (if fitnesses(xn) 6w fitnesses(u),Vu[A) 4Non-dominated sorting is applied to the updated archive

35: CrowdingSort(A) 4crowding distance sorting for archive

36: From step-6 to step-33 are repeated according to number of iteration

doi:10.1371/journal.pone.0090949.t001
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methods. This indicates that non-correlated genes are identified.

As population-based optimization techniques take more time to

execute, therefore time complexity of our method is 81.176 Sec.

which is not so high than other comparative methods.

For DLBCL data, Table 2 shows that with respect to average

sensitivity, fscore and AUC our proposed technique (0.9111,

0.8428 and 0.9644) uniformly scores better than all the other

methods. With respect to specificity, proposed method has scored

better than all but CFS and Graph-based method. The accuracy

produced by our method is also better than others except Graph-

based method. Although CFS and Graph-based method result less

correlated genes but their sensitivity is very bad. Time complexity

for proposed method is higher than others but however, the

difference is not very high.

Moreover, for Child-ALL data, it is clear from Table 2 that the

proposed scheme has established its superiority in case of

sensitivity, accuracy. But with respect to average specificity the

score is 0.8233 which is not better than singleobjective (SNR),

Table 4. Gene Markers Identified by the Proposed Method for Various Dataset.

Data set Gene ID Symbol Description Up or Down

Prostate 37639 at HPN Hepsin up

Cancer 32243 g at CRYAB crystallin, alpha B up

33904 at CLDN3 claudin 3 up

41504 s at MAF v-maf musculoaponeurotic fibrosarcoma oncogene homolog up

40435 at SLC25A6 solute carrier family 25, member 6 down

33614 at RPL18A, ribosomal protein L18a, L18a pseudogene 3 down

RPL18AP3

DLBCL X02152 at LDHA lactate dehydrogenase down

M14328 s at ENO1 enolase 1 (alpha) down

U59309 at FH fumarate hydratase, mitochondrial precursor down

Child 41117 s at SLC9A3R2 solute carrier family 9, isoform 3 regulator 2 down

ALL 37226 at BNIP1 BCL2/adenovirus E1B 19 KDa interacting protein 1 down

33069 f at UGT2B15 UDP glucuronosy1transferase 2 family, polypeptide B15 down

34757 at PARP2 poly (ADP-ribose) polymerase 2 down

39335 at EIF5AL1, eukaryotic translation initiation factor 5A-like1 and 5A down

EIF5A

doi:10.1371/journal.pone.0090949.t004

Figure 2. The Heatmap of the gene markers for Prostate Cancer data. The Heatmap describe the expression levels of the four up-regulated
and two down-regulated gene markers for normal and cancerous type in Prostate Cancer data.
doi:10.1371/journal.pone.0090949.g002
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Ranksum test, SFS, CFS, mRMR (miq) and Graph-based method.

But with respect to fscore and AUC, most of the time, proposed

method produce better score than others. Again average

correlation of the proposed method is 0.7324 which is also the

lower than others except CFS. Hence the proposed technique

uniformly yields better values which prove the superiority of our

proposed technique.

Cross-Validation Performance
The performance analysis is extended using 10-fold cross

validation. All the algorithms are executed on the total sample

versus gene dataset and the output genes are validated using 10-

fold cross-validation using Support Vector Machine (SVM). The

cross-validation scores of different algorithms are reported in

Table 3. It is clear from the table that for the prostate dataset, with

respect to sensitivity, specificity, accuracy and fscore proposed

method outperforms than other methods except CFS. With

respect to AUC, our method is better than CFS, mRMR(miq),

Graph-based and Cluster-based. The average correlation for our

method is very much lower than other methods i.e. proposed

method results more non-redundant features than other

comparative methods. But it is obvious from the table that it took

more time to execute than others. In case DLBCL dataset, with

respect to sensitivity, accuracy, fscore and AUC, the proposed

method performs best among all the methods. With respect to

specificity, the proposed method performs slightly less than

singleobjective (SNR), T-test, Ranksum test, CFS and Graph-

based method. The average correlation produces by the proposed

technique is less than other methods except mRMR (miq). It can

also be noticed from the table that the execution time for the

proposed method is 3.6832 Seconds but the difference with other

method is less. For the Child-ALL dataset, with respect to

accuracy, fscore and AUC the proposed method performs better

than other comparative methods. With respect to sensitivity, the

score is average and less than other methods. The specificity

scored by the proposed technique is 0.719 which highly better

than other methods except Graph-based method. The proposed

method produced 0.6764 as average correlation which is less than

other methods except CFS.

Gene Marker Analysis
After executing the proposed technique 10 times we got 10

feature sets. Thereafter we took those genes as maker which

appears at least 5 times in the 10 feature sets. Table 4 describes the

gene markers ID, Symbol and Description for the three datasets.

Among the gene markers, many of those have already been

validated to be associated with the respective cancer classes in

different existing literature. Such as for prostate cancer data the

gene 32243 g at (CRYAB) and 33904 at (CLDN3) have been

reported in [46] and 37639 at (HPN) and 41504 s at (MAF) have

been reported in [47]. Also the genes X02152 at (LDHA) and

M14328 s at (ENO1) of DLBCL have been reported in [48].

Again in [49], the genes 41117 s at (SLC9A3R2), 33069 f at

(UGT2B15)of Child-ALL data are reported. In Fig. 2, Fig. 3 and

Figure 3. The Heatmap of the gene markers for DLBCL data. The Heatmap describe the expression levels of the three down-regulated gene
markers for DLBCL and FL type in DLBCL data.
doi:10.1371/journal.pone.0090949.g003

Figure 4. The Heatmap of the gene markers for Child-ALL data. The Heatmap describe the expression levels of the five down-regulated gene
markers for after and before therapy in Child-ALL data.
doi:10.1371/journal.pone.0090949.g004
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Fig. 4, the heatmaps of the feature sets identified by our proposed

technique for prostate dataset, DLBCL dataset and child-all

dataset are shown respectively. The heatmaps show gene versus

sample matrix. The cells of the heatmap represent the expression

levels of the genes in terms of colors. The red shades represent

high expression levels whereas the green shades represent low

expression levels and the colors towards black represent the

medium expression values. It is evident from the figures (2, 3 and

4) that the gene markers for each tumor subtype has either high

expression values (Up-regulated) or low expression values (Down-

regulated) over all the samples of the respective tumor class. From

Fig. 2, it is clear that the genes 37639 at (HPN), 32243 g at
(CRYAB), 33904 at (CLDN3) and 41504 s at (MAF) are up-

regulated (high expression value in normal tissue and low

expression in tumor tissue) and genes 40435 at (SLC25A6) and

33614 at (RPL18A) are down-regulated (vice-versa). Then it can

be seen from Fig. 3 that the genes X02152 at (LDHA),

M14328 s at (ENO1) and U59309 at (FH) are all down-

regulated with respect to DLBCL to FL. Subsequently, for child-

ALL data all genes are down-regulated because Fig. 4 depicts that

high expression value in before-therapy class and low expression

value in after-therapy class.

Conclusion

In this proposed study, the problem of supervised feature

selection is posed as relevant and non-redundant gene markers

identification from microarray gene expression data. The micro-

array data matrix has been converted into feature-dissimilarity

graph where nodes stand for features. The nodes and edges are

weighted according to feature relevance and dissimilarity value

between features, respectively. Then the densest subgraph having

maximum average node and edge weight has been identified that

means features with high relevance and less redundant are selected

as output. For identifying subgraph having non-redundant and

relevant feature nodes, a graph based multiobjective bPSO has

been proposed. Here, bPSO has been modeled using multi-

objective framework which is based on non-dominated sorting and

crowding distance sorting. Three real life datasets have been used

for performance analysis. The comparative study between the

proposed technique and its single objective versions, T-test and

Ranksum test has been performed. Moreover, gene marker

analysis with respect to each dataset is also illustrated. As a future

scope, we plan to incorporate a supervised wrapper based

approach to calculate objective functions using fuzzy association

rules.
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