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The purpose of feature selection is to identify the relevant and non-redundant features from a dataset. In this article, the
feature selection problem is organized as a graph-theoretic problem where a feature-dissimilarity graph is shaped from the
data matrix. The nodes represent features and the edges represent their dissimilarity. Both nodes and edges are given
weight according to the feature’s relevance and dissimilarity among the features, respectively. The problem of finding
relevant and non-redundant features is then mapped into densest subgraph finding problem. We have proposed a
multiobjective particle swarm optimization (PSO)-based algorithm that optimizes average node-weight and average edge-
weight of the candidate subgraph simultaneously. The proposed algorithm is applied for identifying relevant and non-
redundant disease-related genes from microarray gene expression data. The performance of the proposed method is
compared with that of several other existing feature selection techniques on different real-life microarray gene expression
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Introduction

Data dimensionality reduction can be done in two ways: 1)
feature extraction creates new feature by combining features and,
2) feature selection choose subset of features by eliminating
features with less or no predictive information. The center of
attention of this proposed study is only on the feature selection.
Feature selections have immense impact in improving the quality
of classification and clustering technique in machine learning and
pattern classification. The feature selection can be applied to both
supervised and unsupervised learning. In a supervised scenario [1],
[2], the correct class of all training samples are additionally known
and the feature evaluation criteria to generate selected feature set
are based on the known class label of the features. In contrast, in
unsupervised cases the assessment criteria are completely inde-
pendent of the true class labels of the features. Performance in
unsupervised classification is typically considered as the capability
of a clustering algorithm to expose groupings (clusters) in a given
data set. Subsequently, the clustering solution is evaluated using
some cluster validation techniques like entropy (E), class separa-
bility (S), fuzzy feature evaluation index (FFEI), etc [3]. Again
feature selection may be filter-based or wrapper-based approach.
When the utility of a feature is measured in terms of some proxy
measure, then it is called filter-based feature selection. The proxy
measure uses the class label in supervised filter-based approach. In
unsupervised filter, the proxy measure considers the degree to
which the distribution of the feature values exhibits the class
structure in the feature space. Utility measures for wrapper
methods [2] completely rely on a classifier or clustering result. As
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filter methods are independent of the classifier applied subse-
quently, they have excellent generalization properties, but may be
less effective at decreasing the dimensionality of the feature space
and boosting classification accuracy. Generally, they are compu-
tationally cheaper than the wrapper approaches. But wrapper
based methods are more prone to have data over-fitting. The
variety of feature selection technique has been addressed in quite a
few ways such as clustering based [4], [5], content based [6], for
ensemble classifier [7], graph based [8], [9] and feature similarity
based [3].

In this context, two opposite strategies have been proposed in
the literature: those that aim at the exclusion of redundant features
[3] and those that focus on the elimination of irrelevant features
[10]. Besides these methods there exist some Particle Swarm
Optimization (PSO) based feature selection techniques in the
literature. In [11], a multiswarm binary PSO has been introduced.
A scheduling algorithm has been executed for selecting fittest
subswarm where classification accuracy and fscore are combined
as objective function. Then in [12], author used PSO and Least
Square Support Vector Machine for feature selection and in [13]
an improved PSO with signtest has been described for identifying
relevant features. Again article [14] used bPSo but all these
methods have been modeled as single objective fashion where
classification accuracy has been considered as objective function.
However, also there exist multiobjective PSO-based approaches
like [15], [16] and [17] where MOPSO has been well studied but
they did not consider the redundancy among features which
should be minimized for reducing computation cost and improv-
ing the performance. Therefore, the objective of feature selection
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should be to select the most significant or relevant as well as non-
redundant features.

In this article we have proposed a novel graph-theoretic model
for selecting most relevant and non-redundant features from the
mput dataset. In the proposed method, first a complete graph is
shaped where the nodes symbolize the features and edge weights
are defined by the dissimilarity among the features. Then we
extract the densest subgraph from the feature-dissimilarity graph.
The attributes contained by the extracted subgraph comprise the
final selected relevant and non-redundant features. For identifying
the densest subgraph, we have projected a multiobjective binary
particle swarm optimization (MO-bPSO) based algorithm. The
particles are fashioned as binary strings for encoding the feature
subset. Two objective functions, average node-weight and average
edge-weight are optimized simultaneously. Unlike single objective
optimization which yields a single best solution, multiobjective
optimization (MOO) [18], [19] algorithms turn out a set of
solutions which contains a number of non-dominated solutions,
none of which can be further improved on any one objective
without degrading it in another. Here the multiobjective
optimization problem is tackled by applying bPSO [20] in which
fitness comparison takes Pareto dominance [21] into account
during the movement of the particles in the search space. The
non-dominated solutions are stored in an archive to approximate
the Pareto front [22].

In this proposed article, feature selection technique is applied to
identify relevant and non-redundant gene markers from micro-
array gene expression data [23]. Microarray is a rapidly growing
technology that provides the opportunity to assay the expression
levels of genes in a single experiment. A microarray gene
expression data set contains the expression levels of thousands of
genes over a number of tissue samples. Hence this is a sample
versus gene matrix which also contains the class label for each
sample. Although recently it has gained popularity in the process
of finding disease-related gene or marker, its high dimensionality
and noise pose a challenging problem. Moreover some genes may
not be very relevant to the corresponding class labels; hence they
are not helpful for phenotype classification. In binary classification
[24], the task of classification is done to the samples of the
microarray dataset consisting of normal (benign) and cancer
(malignant) tissue. Otherwise when samples represent three or
more subtypes of cancer then classification [25] is called multiclass
cancer classification.

It is common in practice that in order to find the most relevant
genes, most of the existing feature selection techniques [26], [27]
produce a redundant set of genes. This fact has encouraged us to
apply our proposed graph-based multiobjective binary particle
swarm optimization technique which selects not only the relevant
genes but a non-redundant set of genes also. The performance of
the proposed technique is established on different real-life
microarray gene expression data sets and compared with that of
various existing gene selection techniques.

Materials and Methods
Other Relative Methods

There are many more feature selection techniques in the
existing literature establish their own superiority. In this article, we
have taken some of them namely, T-test, Ranksum test, SFS, SBE,
CFS, mRMR(MIQ), Graph-based feature selection () and Cluster-
based feature selection(). Moreover as our method is multiobjective
one, so the singleobjective versions are also taken into account. By
nature, the Sequential Forward Search (SFS) [28] selects features
sequentially depending on the adopted criteria. On the contrary,
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Sequential Backward elimination (SBE) [29] discards features on
the basis of the adopted criteria. Additionally, a methods like
Correlation-based Feature Selection (CFS) [30] has been used for
performance analysis. Here, the ratio of snr value to mean
correlation value is considered as the criteria to calculate the
features importance. The number of resultant features of our
proposed approach is the input of the other comparative
algorithms like T-test, Ranksum test, SFS, SBE, CFS and
mRMR(miq). In case of T-test [31], and Ranksum test [32],
[26], at first the p-values of the features are sorted and required
numbers of features are taken for validation. In mRMR feature
selection technique [33,34], the relevance of gene is calculated by
mutual information [35] between a feature and its corresponding
class labels and redundancy is computed as the mutual informa-
tion among the features. The basic concept of mRMR is to select
the genes such that they are relevant and mutually maximally
dissimilar to each other at the same time. Let s denotes the subset
of genes that we are seeking. The average minimum redundancy is
given as Equation 1:

1
Minimum W= —; 1(i,), 1
MZZ (i) (1

ijes

where I(i,j) presents the mutual information between i-th gene
and j-th gene and |s| is the number of genes in S. The discriminant
power of a gene by the mutual information /(/,gi) is calculated as
per Equation 2. That means the mutual information between
targeted classes h="hy,hy, - -+ ik and the gene expression g; is the
measure of relevance of that gene. Thus the maximum relevance
condition is to maximize the average relevance of all genes in s is
Equation 2:

Maximum V = ﬁz I(h,i). (2)

ies

Therefore, the redundancy of a gene has to be minimized and
relevance of a gene has to be maximized. As two conditions are
equally important, two simplest combined criteria are:
Max(V—W), and Max(V/W). Here only the mRMR for
discrete variable in form of mRMR mutual information quotient
mRMR MIQ) is described. The mRMR with MIQ scheme is
formulated as per Equation 3.

MRM R 110 = maxicq, {I(i,h) / [‘—; > 1G] } . (3)

Jjes

Next, in Graph-based feature selection method [36], a graph
G=(V xE) has been constructed with node-set V, edge-set
EcV xV and edge weight matrix I/ whose elements are in the
interval [0; 1]. Each vertex represents a feature and the edge
between two features represents their pair wise relationship. The
weight on the edge reflects the degree of relevance between two
features. Therefore, the graph G with the corresponding edge-
weight or weighted relevance matrix has been formed. The
algorithm states: a) computing the relevance matrix W =(wj), .,
based on the mutual information between feature vectors, b)
dominant-set clustering to cluster the feature vectors and c)
selecting the optimal feature set from each dominant set using the
multidimensional interaction information (MII) criterion. There-
fore, in Cluster-based feature selection method [37], the feature set
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is partitioned into clusters of similar features where the number of
clusters and the cardinality of the subset of selected features, is
automatically estimated from the data. But this method relies on
some user defined parameters.

Multiobjective Optimization (MOO) and Problem
Description

In this section first the basic concepts of multiobjective
optimization are described. Subsequently, the formulation of gene
selection problem as multiobjective optimization problem is
described.

MOO concepts. In many real world problems, there exist
different aspects of solutions which are partially or wholly in
conflict. Therefore, treating those problems as single objective
optimization produces an unreliable result. In multiobjective
optimization problem the objectives may estimate those different
aspects of solutions which are conflicting in nature. The multi-
objective optimization can formally be stated as follows [18], [19].
Find the vector X*=[x},x3,... ,x;‘,]Tof decision variables which
satisfies m inequality constraints:

gi(X)=0,i=1,2,...,m, (4)

and p equality constraints:

hi(®)=0,i=1.2,....p, (5)

and optimizes the vector function:

=1, L@, ... il @) (6)

The constraints in Equation 4 and 5 define the feasible region F
which contains all the allowable solutions. Any solution outside
this region is inadmissible since it violates one or more constraints.
The vector X* denotes an optimal solution in F

The essence of multiobjective optimization technique can be
determined through Pareto optimality [21]. Pareto optimal set
comprises of all those solutions for which it is impossible to
improve any objective without simultaneous worsening in some
other objective. It can be said that a vector of decision variables
X*eF is Pareto optimal if there does not exist another X* such that
Ji(X)<fi(X*) for all i=1, ...,k and f;(¥) <f;j(X*) for at least one j
when the problem is minimizing one. Here, 7 denotes the feasible
region of the problem (i.e., where the constraints are satisfied).
Pareto optimal set [22] generally contains more than one solution
because there exist different ‘trade-off’ solutions to the problem
with respect to different objectives. The set of solutions contained
by Pareto optimal set are called non-dominated solutions. The plot
of the objective functions whose non-dominated vectors are in the
Pareto optimal set is called the Pareto front [22]. Specifically
MOO is a process of generating the whole Pareto front or an
approximation to it.

Problem description. In this article the target is to find non-
redundant but relevant features from a data matrix. In other
words the resultant features are not only non-correlated but
significant too. So the problem should be defined in such a manner
that the correlated and irrelevant features are not selected. In our
proposed scheme, the problem is equivalent to finding most dense
subgraph from a weighted undirected graph. The arrangement of
the data matrix can be viewed as a two-dimensional matrix where
the rows indicate instances and columns indicate attributes or
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features. One additional column is there for presenting the
corresponding class labels of the instances. A range of some
similarity/dissimilarity measures includes correlation coefficient
[38], Euclidean distance [39] and maximal information compres-
sion index [3] etc. Using one of these dissimilarity (negative
similarity) measures the symmetric matrix is generated which is
termed as a dissimilarity matrix. Let the data set has n features,
F={f1.f2.f3,....fn}. Calculating pairwise negative similarity be-
tween features of the feature set F manipulates (n X 1) symmetric
dissimilarity matrix Sm. Therefore from this dissimilarity matrix Sm
a weighted complete graph G can be formed. Since a node
represents a feature, so the vertex set of the graph G is
V ={f1f2./3,--sfn}, 1.€., the graph contains total n nodes. The
value at row ¢ and column j in the dissimilarity matrix Sm,
represents the weight of the edge between node f; and f;. As each
feature has some dissimilarity value with every other feature
(present in dissimilarity symmetric matrix $m), hence the graph G
is a complete graph. Fig. 1 demonstrates the process of conversion
from data matrix to feature-dissimilarity graph. First the dissim-
ilarity matrix (for edge weight) is calculated for the data matrix
using correlation coefficient between each pair of gene. The
correlation coeflicient ¢ between two random variable x and y can
be defined as [38]:

cov(x.y)

oley)= v/ var(x)var(y) ’ @

where var() denotes the variance of a variable and cov(x,y) the
covariance between the variables. If x and y are completely
correlated, i.e., exact linear dependent exist, then a(x,y)is 1 or —1
and if totally uncorrelated then o(x,y) is 0. Hence (1 —|a(x,p)|)
represents the dissimilarity between x and y. Subsequently, a graph
G is formulated from the dissimilarity matrix. Let the samples are
belong to either classl (denoted by cl) or class2 (denoted by c2).
Then the signal-to-noise ratio (SNR) value (node weight)
corresponds to each feature (f;) is calculated using mean and
standard deviation (s.d.) of class] samples (c1) and class2 samples

(c2) and defined as [40]:

|mean(fi(c1)) —mean(fi(c2))
| s.d.(fi(cl) +s.d.(fi(c2) |

The SNR describes the ratio of the relative mean to the sum of
Standard Deviation of two classes of samples. Basically, it describes
the difference between central tendency and variation or
dispersion exists from the average value of the data points. A
low SNR indicates that the feature does not have much different
values in different classes. Whereas, high SNR indicates that the
feature values are spread out over a large range of values and it is
expected that the values are different in different classes. Very low
SNR may be considered to be insignificant to the class labels and
high SNR value means feature is highly differentially expressed.
Therefore the SNR value is treated as feature relevance. For the
graph G larger edge weight means that the features connected by
that edge are more dissimilar and larger node weight means
features are more relevant. Thus finding the most dense subgraph
g from graph G is equivalent to finding the non-redundant and
most relevant feature set, as the features (nodes) enclosed by the
subgraph g, will have maximum average edge weight (dissimilarity)
and maximum average node weight (SNR). Therefore the
problem can be defined as: find the most densest subgraph (g)

|SNR;| =

(8)
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Figure 1. Construction of Feature-dissimilarity Graph. From the data matrix first Relevance Vector and Dissimilarity Matrix are Computed, then
a weighted complete Feature-dissimilarity Graph is computed. Here an example of 5 feature-dissimilarity graph is depicted.

doi:10.1371/journal.pone.0090949.g001

from a complete weighted graph G. Thus the features present in
the reduced subgraph g are the required output of our proposed
technique. Here we have developed a multiobjective bPSO to
address this problem.

Proposed Multiobjective Binary PSO-based Approach

Particle Swarm Optimization (PSO) [41], [42] is a well known
swarm-based optimization techniques which optimizes a problem
by iteratively trying to get better candidate solutions with respect
to a given fitness measure. In PSO, a set of particles or candidate
solutions traverse the search space with a velocity based on their
own experience and the experience of their neighbors. During
each traversal, the velocity and thereby the position of the particles
are restructured. This process is repeated until some stopping
criteria are met. Unlike other classical optimization techniques
which tend to have premature convergence to local optimal
solution, PSO is known for globalized searching.

In this article, the input data matrix is first transformed into a
weighted undirected complete feature-graph, where the nodes
(having relevance as node weight) symbolize the genes and the
edges are weighted according to the dissimilarity of genes. In each
iteration, a reduced subgraph is computed for which the average
relevance and average dissimilarity among the genes contained by
the reduced subgraph are maximized. Therefore, the densest
subgraph having maximum average weight (nodetedge) is
identified by applying binary PSO [20]. The bPSO is applied to
multiobjective optimization and with the help of non-dominated
sorting [43] and Crowding Distance measure [18], small set of
non-redundant informative genes is identified.

Particle encoding. Here the population is called swarm and
it consists of m number of candidate solutions or particles. Each
particle has n cells where 7 1s the total number of genes comprises
the data matrix i.e., each cell signify one gene from the data
matrix. The cells can have values either 0 or 1. If the «th cell of a
particle has value 1 then th gene is selected from the dataset,
otherwise it is ignored.

Initialization. Initially each cell of a particle is either 0 or 1
chosen randomly. After the initial particles are chosen, their
corresponding fitness values are calculated. Then the velocity of
each cell of the particle is initialized to zero. For each dataset, the
algorithm is executed for 100 iterations. The input of the proposed
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system, i.e., the swarm size is set to 25 and the weighting factors cl
and c2 which are cognitive and social parameters respectively are
set to 2.

Fitness computation. Here two objectives, average dissim-
ilarity (negative correlation) and average signal-to-noise values are
maximized. Each particle form a reduced subgraph for which
average negative correlation (avg_ncorr) and average SNR value
(avg_snr) are computed. As the bPSO algorithm is designed as
minimization problem, so fitness values are computed as
(1 —avg_ncorr) and (1 —avg_snr). Then cells are iterated as usual
PSO evaluation [44]. Now for calculating fitness values of a
particle, those genes are selected for which representing cells have
value 1. Therefore, these selected genes of the corresponding
particle forms a subgraph g[v,e,yw,ew] where v is the set of nodes, ¢
is the set of edges, vw is a vector of node weights by computing
SNR value for each node and ew is a edge weight matrix calculated
by (l-correlation) between each pair of nodes. Thereafter,
avg_ncorr (Equation 9) and avg_snr (Equation 10) are defined as

Z‘z‘il Zj‘il ewij
pl.(v[=1) °

2

©)

avg_ncorr =

Iv] )
avg_snr = ﬁvw, (10)

Updating position and velocity. As each cell represents one
gene, so here the two terms cell and gene are used interchange-
ably. The position of a gene within a particle contains either 0 or
1, and velocity of each gene is initialized to zero. Using the
information obtained from the previous step the position and
velocity of each particle are updated. Each particle keeps track of
the best position it has achieved so far in the history, and this best
position is also called pbest or local best. In multiobjective
perspective, that position is chosen for pbest for which fitness of
that particle dominates other fitnesses acquired by that particle in
the history, if there is no such fitness then random choice is done
between current and previous position of that particle. The best
position among all the particles is called global best or gbest which
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is randomly chosen from the archive of non-dominated candidate
solutions. Actually whenever a particle moves to a new position
with a velocity, its position and velocity are altered according to
the Equations 11 and 12 given below [20]:

vii(t+1)  =wxv(t)+cy xr * (phestj(f) —

11
Xij(1)) 42 * 1y % (ghest (1) — x;(1)), (11)

it 1) = xy(0) + vyt +1). (12)

Here ¢ is the time stamp and th particle and j-th position are
considered. In Equation 11 new velocity (v;(t+1)) is acquired
using velocity of previous time (v;(?)), pbest and gbest. Then new
position (x;(z+ 1)) is obtained by adding new velocity with current
position (x;(#)) as shown in Equation 12. r| and r; are two random
value in the range of 0 to 1. w in Equation 13 is the inertia weight
which is computed as:

gbest

Wz(l'l_pbest

). (13)

Updating archive. The repository where the non-dominated
population in the history is reserved called archive. First the
archive 4 is initialized with non-dominated population of P;. Next
for updating the archive 4, the next generation population P 1 is
merged with the archive A4; i.e., Aj11=A;+ P;iy1 and then non-
dominated solutions are yielded by applying non-dominated
sorting and crowded distance sorting to the combined archive
Ais1. The non-dominated sorting and crowded distance sorting
are evaluated for this combined population to obtain better
diversity of the Pareto optimal front.

Proposed MObPSO algorithm. Here, the proposed multi-
objective binary particle swarm optimization (MODbPSO) is
designed for maximizing the dissimilarity (negative correlation)
and SNR, which are represented as edge weight and node weight,
respectively. The adopted graph based MODbPSO technique is
illustrated in Table 1 Algorithm 1. The population is initialized by
arbitrarily selected features from the data matrix and population
fitness values are calculated using Equation 9 and Equation 10.
The archive 4 is initialized by the population after non-dominated
sorting of the primary population. Velocity and position are
updated using Equations 11 and 12 respectively. Local best P is
updated comparing the current fitness and previous fitness of a
particle and global best G is updated according to random picking
of particle from the archive. After updating the position and
velocity, the archive is added with next generation solution and
then non-dominated sorting [43] and crowding distance [18]
sorting are used to revise the extended archive. These steps are
repeated for particular number of iterations.

Results and Discussion

In this section, we first describe the real-life datasets and their
preprocessing procedure, thereafter portray the performance
metrics followed by the results of different algorithms.

Datasets and Preprocessing

In this article three real-life gene expression datasets are used
which are publicly available from the following website: www.
biolab.si/supp/bi-cancer/projections/info/.
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Prostate. Gene expression measurements for samples of
prostate tumors and adjacent prostate tissue not containing tumor
were used to build this classification model. It contains 50 normal
tissues and 52 prostate tumor samples. The expression matrix
consists of 12533 number of genes and 102 number of samples.

DLBCL. Diffuse large B-cell lymphomas (DLBCL) and
follicular lymphomas (FL) are two B-cell lineage malignancies
that have very different clinical presentations, natural histories and
response to therapy. Total 7070 genes are there in the dataset. The
number of samples of type DLBCL is 58 and of type FL is 19.

GSE412 (Child-ALL). The childhood ALL dataset (GSE412)
includes gene expression information on 110 childhood acute
lymphoblastic leukemia samples. The dataset has 50 examples of
type before therapy and 60 examples of type after therapy. The
number of genes is 8280.

The above described two-class datasets can be obtained as
matrix format whose columns are genes and rows are samples and
preprocessed by SNR (Equation 8) for each gene (column). The
genes (column) of the data matrix are sorted according to the
decreasing order of obtained |SNR|. Lastly from the data matrix
top 100 genes are taken. After that the data matrix is normalized
to set each gene expression value in the range from 0 to 1.

Score Analysis

Performance is evaluated using sensitivity, specificity, accuracy,
fscore, AUC and average correlation. The entire dataset is divided
mto two different sets: training and test set. The proposed
approach is applied on the training data. Therefore, a set of non-
dominated candidate solutions are obtained. After that, for final
marker genes assortment, we employ the BMI-score [45] which
considers the discriminative power of each gene by incorporating
the true positive rate from logistic regression. In mathematical
terms, let us assume a data set D consisting of two groups ‘control
(ctr)” and ‘experiment (exp)’. BMI assigns a score for a feature x
defined as follows:

. CVetr
BMI(x)=4.TP*\/|A g| o (14)

where

A, fA>=1
A liff — 15
< % , otherwise (15)

Here, A is a scaling factor and TP? is the product of the true
positive (TP) rates determined for each group using logistic
regression. CV;, and CV denote the coefficient of variance for the
feature x in the ‘control’ group and in both groups, respectively.
Also, A=X/X, where X, and x denote the mean value of x in
‘control’ and in both groups, respectively. The maximum BMI-
score generating candidate solution is considered as the most
informative solution. The performance of the proposed algorithm
is compared with that of its single objective versions and other two
statistical tests like T-test and Wilcoxon Ranksum test. The
datasets are arbitrarily divided into two sets: training set and test
set. This process is repeated 10 times and we got 10 train sets and
their corresponding 10 test sets. Each of the algorithms is executed
for each train file and evaluated with the corresponding test file.
Thus for each algorithm, we got 10 sensitivity, 10 spectficity, 10
accuracy and 10 F-score values. Now the average of these 10
values for each performance metric with standard deviation are
computed and tabularized.
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Table 1. Algorithm 1: Graph based MObPSO (Minimization Problem).

Output: archive 4

12 [XpoVna G Pl : = initialize(dr)

n=1

N
V1 V1
3 | f1o1o 2 S EwL,
' EaIKIEY
2
, s\
&( 21— S

5:4 : =x, (if fitnesses(x,) # fitnesses(u),YueA
6:forn: =1:N do
7. ford:=1:Cdo

8: Vad @ =WVpa +11.(Pug — Xna) +12.(Gpa — Xna)
B3 Xnd = Xnd + Vnd
10: if x,; > =thr then
11: Xpd 2 =1

12: else

13: if x,s <thr then
14: Xpa : =0

15: end if

16: end if

17: end for

18: end for

19:forn: =1: Ndo
20: g[VLELVWLEWI1]=Sm(V1,xV1,)

Vi Vi
S S EWy

2 Sle= =i gri=n
2
sy,
22: f2n=T

23: A: =AUx,
24: fork:=1:N do
25: if (fitnesses(x,k) # fitnesses(P,)) then

26: P,:=x,

27: if Non-dominated fitnesses then
28: P, : = Random — choice[x,,P,)
29: end if

30: end if

31: G, : =random — select(A)

32: end for

33: end for

34: A : =x, (if fitnesses(x,) # fitnesses(u),YucA)
35: CrowdingSort(A)

36: From step-6 to step-33 are repeated according to number of iteration

Input: data matrix df, C =number of genes, N =number of particles, threshold thr=0.9, Graph G=[V,E,VW ,EW| designed from dissimilarity matrix Sm.

>Random locations and velocities

2: gy[VLELVWI1,EW1]|=Sm(V1Y x V1) >subgraphs gy for N particles are formed from dissimilarity matrix Sm

[>average dissimilarity value for the N subgraphs

[>average snr value for the nodes contained by N subgraphs

> Initialize archive A by first non-dominated x,

> discretize the cell value

> new subgraph produced by the evaluated particles

[>average dissimilarity value for the new subgraph

[>average snr value the nodes contained by the new subgraph

>Add x, to 4

>Update personal best

>Non-dominated sorting is applied to the updated archive

>crowding distance sorting for archive

doi:10.1371/journal.pone.0090949.t001

With respect to Prostate data, it is evident from Table 2 that for
each score metric the proposed method outperforms (0.8962, 0.9,
0.898, 0.9002, 0.964) the singleobjective versions, T-test, Ranksum
test, SFS and SBE. Regarding sensitivity, our method is better
than Graph-based and Cluster-based but differs slightly with CFS
and mRMR (miq). Again with respect to specificity, the

PLOS ONE | www.plosone.org

performance is average. In case of accuracy and fscore, proposed
method is better than mRMR (miq) and Cluster-based method but
not as good as CFS and Graph-based method. The AUC
produced by the proposed method is 0.964 which is better than
all the other methods. Except T-test, our method produces 0.4714
as average correlation which is less compared to that for the other
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methods. This indicates that non-correlated genes are identified.
As population-based optimization techniques take more time to
execute, therefore time complexity of our method is 81.176 Sec.
which is not so high than other comparative methods.

For DLBCL data, Table 2 shows that with respect to average
sensitivity, fscore and AUC our proposed technique (0.9111,
0.8428 and 0.9644) uniformly scores better than all the other
methods. With respect to specificity, proposed method has scored
better than all but CFS and Graph-based method. The accuracy

Normal Tissue

Table 4. Gene Markers Identified by the Proposed Method for Various Dataset.
Data set Gene ID Symbol Description Up or Down
Prostate 37639_at HPN Hepsin up
Cancer 32243 g at CRYAB crystallin, alpha B up
33904 _at CLDN3 claudin 3 up
41504 _s_at MAF v-maf musculoaponeurotic fibrosarcoma oncogene homolog up
40435 _at SLC25A6 solute carrier family 25, member 6 down
33614_at RPL18A, ribosomal protein L18a, L18a pseudogene 3 down
RPL18AP3
DLBCL X02152_at LDHA lactate dehydrogenase down
M14328_s_at ENO1 enolase 1 (alpha) down
U59309_at FH fumarate hydratase, mitochondrial precursor down
Child 41117_s-at SLC9A3R2 solute carrier family 9, isoform 3 regulator 2 down
ALL 37226_at BNIP1 BCL2/adenovirus E1B 19 KDa interacting protein 1 down
330609_f _at UGT2B15 UDP glucuronosy1transferase 2 family, polypeptide B15 down
34757 _at PARP2 poly (ADP-ribose) polymerase 2 down
39335_at EIF5AL1, eukaryotic translation initiation factor 5A-like1 and 5A down
EIF5A
doi:10.1371/journal.pone.0090949.t004

produced by our method is also better than others except Graph-
based method. Although CFS and Graph-based method result less
correlated genes but their sensitivity is very bad. Time complexity
for proposed method is higher than others but however, the
difference is not very high.

Moreover, for Child-ALL data, it is clear from Table 2 that the
proposed scheme has established its superiority in case of
sensitivity, accuracy. But with respect to average specificity the
score is 0.8233 which is not better than singleobjective (SNR),

Prostate Tumor

33614 _at
40435 _at
41504 s_at
33904 _at

32243 g at

37639 at

Figure 2. The Heatmap of the gene markers for Prostate Cancer data. The Heatmap describe the expression levels of the four up-regulated
and two down-regulated gene markers for normal and cancerous type in Prostate Cancer data.

doi:10.1371/journal.pone.0090949.g002
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o

U59309_at
M14328 s at

X02152_at

FL Tissue

—

Figure 3. The Heatmap of the gene markers for DLBCL data. The Heatmap describe the expression levels of the three down-regulated gene

markers for DLBCL and FL type in DLBCL data.
doi:10.1371/journal.pone.0090949.9g003

Ranksum test, SF'S, CFS, mRMR (miq) and Graph-based method.
But with respect to fscore and AUC, most of the time, proposed
method produce better score than others. Again average
correlation of the proposed method is 0.7324 which is also the
lower than others except CFS. Hence the proposed technique
uniformly yields better values which prove the superiority of our
proposed technique.

Cross-Validation Performance

The performance analysis is extended using 10-fold cross
validation. All the algorithms are executed on the total sample
versus gene dataset and the output genes are validated using 10-
fold cross-validation using Support Vector Machine (SVM). The
cross-validation scores of different algorithms are reported in
Table 3. It is clear from the table that for the prostate dataset, with
respect to sensitivity, specificity, accuracy and fscore proposed
method outperforms than other methods except CFS. With
respect to AUC, our method is better than CFS, mRMR(miq),
Graph-based and Cluster-based. The average correlation for our
method is very much lower than other methods i.e. proposed
method results more non-redundant features than other
comparative methods. But it is obvious from the table that it took
more time to execute than others. In case DLBCL dataset, with
respect to sensitivity, accuracy, fscore and AUC, the proposed
method performs best among all the methods. With respect to
specificity, the proposed method performs slightly less than
singleobjective (SNR), T-test, Ranksum test, CFS and Graph-

Child ALL after therapy

based method. The average correlation produces by the proposed
technique is less than other methods except mRMR (miq). It can
also be noticed from the table that the execution time for the
proposed method is 3.6832 Seconds but the difference with other
method is less. For the Child-ALL dataset, with respect to
accuracy, fscore and AUC the proposed method performs better
than other comparative methods. With respect to sensitivity, the
score is average and less than other methods. The specificity
scored by the proposed technique is 0.719 which highly better
than other methods except Graph-based method. The proposed
method produced 0.6764 as average correlation which is less than
other methods except CFS.

Gene Marker Analysis

After executing the proposed technique 10 times we got 10
feature sets. Thereafter we took those genes as maker which
appears at least 5 times in the 10 feature sets. T'able 4 describes the
gene markers ID, Symbol and Description for the three datasets.
Among the gene markers, many of those have already been
validated to be associated with the respective cancer classes in
different existing literature. Such as for prostate cancer data the
gene 32243_g_at (CRYAB) and 33904_at (CLDN3) have been
reported in [46] and 37639_at (HPN) and 41504_s_at (MAF) have
been reported in [47]. Also the genes X02152_at (LDHA) and
M14328_s_at (ENO1) of DLBCL have been reported in [48].
Again in [49], the genes 41117_s_at (SLC9A3R?2), 33069_f_at
(UGT2B15)of Child-ALL data are reported. In Fig. 2, Fig. 3 and

39335 _at
34757 at
33069 f at
37226 _at

41117 s at

Child ALL before therapy N

Figure 4. The Heatmap of the gene markers for Child-ALL data. The Heatmap describe the expression levels of the five down-regulated gene

markers for after and before therapy in Child-ALL data.
doi:10.1371/journal.pone.0090949.g004
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Fig. 4, the heatmaps of the feature sets identified by our proposed
technique for prostate dataset, DLBCL dataset and child-all
dataset are shown respectively. The heatmaps show gene versus
sample matrix. The cells of the heatmap represent the expression
levels of the genes in terms of colors. The red shades represent
high expression levels whereas the green shades represent low
expression levels and the colors towards black represent the
medium expression values. It is evident from the figures (2, 3 and
4) that the gene markers for each tumor subtype has either high
expression values (Up-regulated) or low expression values (Down-
regulated) over all the samples of the respective tumor class. From
Fig. 2, it is clear that the genes 37639_ar (HPN), 32243_g_at
(CRYAB), 33904_at (CLDN3) and 41504_s_at (MAF) are up-
regulated (high expression value in normal tissue and low
expression in tumor tissue) and genes 40435_at (SLC25A6) and
33614_at (RPL18A) are down-regulated (vice-versa). Then it can
be seen from Fig. 3 that the genes X02152_at (LDHA),
M14328_s_at (ENOI1) and US59309.at (FH) are all down-
regulated with respect to DLBCL to FL. Subsequently, for child-
ALL data all genes are down-regulated because Fig. 4 depicts that
high expression value in before-therapy class and low expression
value in after-therapy class.

Conclusion

In this proposed study, the problem of supervised feature
selection is posed as relevant and non-redundant gene markers

References

1. Kohavi R, John G (1997) Wrapper for feature subset selection. Artificial
Intelligence 97: 273-324.

2. Ruiza R, Riquelmea ], Aguilar-Ruizb J (2006) Incremental wrapper-based gene
selection from microarray data for cancer classification. Pattern Recognition 39:
2383-2392.

3. Mitra P, Murthy C, Pal S (2002) Unsupervised feature selection using feature
similarity. IEEE Transaction on Pattern Analysis and Machine Intellegence 24:
301-312.

4. Jiang S, Wang L (2012) An unsupervised feature selection framework based on
clustering. In: New Frontiers in Applied Data Mining.

5. Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster
data. In: KDD10 Washington DC USA.

6. Dy J, Brodley C, Kak A, Broderick L, Aisen A (2003) Unsupervised feature
selection applied to content-based retrieval of lung images. IEEE Transaction on
Pattern Analysis and Machine Intellegence 25: 373-378.

7. Morita M, Oliveira L, Sabourin R (2004) Unsupervised feature selection for
ensemble of classifiers. In: Frontiers in Handwriting Recognition.

8. Zhang Z, Hancock E (2011) A graph-based approach to feature selection.
Springer.

9. Bahmani B, Kumar R, Vassilvitskii S (2012) Densest subgraph in streaming and
mapreduce. VLDB Endowment 5: 454-465.

10. LiY, Lu B, Wu Z (2006) A hybrid method of unsupervised feature selection
based on ranking. In: IEEE Computer Society Washington DC USA.

11. Liu'Y, Wang G, Chen H, Dong H, Zhu X, et al. (2011) An improved particle
swarm optimization for feature selection. Journal of Bionic Engineering 97: 191
200.

12. Tang E, Suganthan P, Yao X (2005) Feature selection for microarray data using
least squares svm and particle swarm optimization. In: IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology.

13. Chen LF, Su CT, Chen KH (2012) An improved particle swarm optimization
for feature selection. Intelligent Data Analysis 16: 167-182.

14. Mohamad M, Omatu S, Deris S, Yoshioka M, Abdullah A, et al. (2013) An
enhancement of binary particle swarm optimization for gene selection in
classifying cancer classes. Algorithms for Molecular Biology 8.

15. Xue B, Cervante L, Shang L, Browne W, Zhang M (2012) A multi-objective
particle swarm optimisation for filter-based feature selection in classification
problems. Connect Sci 24: 91-116.

16. lashkargir M, Monadjemi S, Dastjerdi A (2009) A hybrid multi-objective particle
swarm optimization method to discover biclusters in microarray data.
International Journal of Computer Science and Information Security 4.

17. Xue B, Zhang M, Browne W (2013) Particle swarm optimization for feature
selection in classification: A multi-objective approach. IEEE Transaction On
Cybernetics 43: 1656-1671.

18. Deb K (2001) Multi-objective Optimization Using Evolutionary Algorithms.
England: John Wiley and Sons.

PLOS ONE | www.plosone.org

Finding Non-Redundant and Relevant Gene Markers

identification from microarray gene expression data. The micro-
array data matrix has been converted into feature-dissimilarity
graph where nodes stand for features. The nodes and edges are
weighted according to feature relevance and dissimilarity value
between features, respectively. Then the densest subgraph having
maximum average node and edge weight has been identified that
means features with high relevance and less redundant are selected
as output. For identifying subgraph having non-redundant and
relevant feature nodes, a graph based multiobjective bPSO has
been proposed. Here, bPSO has been modeled using multi-
objective framework which is based on non-dominated sorting and
crowding distance sorting. Three real life datasets have been used
for performance analysis. The comparative study between the
proposed technique and its single objective versions, T-test and
Ranksum test has been performed. Moreover, gene marker
analysis with respect to each dataset is also illustrated. As a future
scope, we plan to incorporate a supervised wrapper based
approach to calculate objective functions using fuzzy association
rules.
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