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Abstract

rather than the proliferation of cancer.

The cellular apoptosis susceptibility (CSE1L/CAS) protein is highly expressed in cancer, and its expression is posi-
tively correlated with high cancer stage, high cancer grade, and worse outcomes of patients. CSETL (or CAS) regu-
lates chemotherapeutic drug-induced cancer cell apoptosis and may play important roles in mediating the
cytotoxicities of chemotherapeutic drugs against cancer cells in cancer chemotherapy. CSETL was originally
regarded as a proliferation-associated protein and was thought to regulate the proliferation of cancer cells in can-
cer progression. However, the results of experimental studies showed that enhanced CSETL expression is unable to
increase proliferation of cancer cells and CSE1L regulates invasion and metastasis but not proliferation of cancer
cells. Recent studies revealed that CSETL is a secretory protein, and there is a higher prevalence of secretory CSE1L
in the sera of patients with metastatic cancer. Therefore, CSETL may be a useful serological marker for screening,
diagnosis and prognosis, assessment of therapeutic responses, and monitoring for recurrence of cancer. In this
paper, we review the expression of CSE1L in cancer and discuss why CSE1L regulates the invasion and metastasis

Background

Cancer is a disease in which a group of cells in the body
displays uncontrolled proliferation, invasion, and some-
times metastasis. Malignant cancers are known by their
ability to escape from their original location and metas-
tasize to the lymph nodes or other organs. Metastases
are the main cause of cancer mortality; therefore diag-
noses of metastatic cancer are critical for making thera-
peutic decisions. Non-metastatic tumors are usually
treatable by surgical resection. For patients with cancer
that has spread or metastasized, radiation, chemother-
apy, or a combination of chemotherapy and radiation
can be offered as treatment. Diagnosing cancer metasta-
sis by assaying the level of serological markers of
patients is relatively non-invasive. Serum markers that
can detect cancer metastasis should be highly useful for
screening, diagnosis, prognosis, assessment of therapeu-
tic responses, and monitoring for recurrence of cancer

* Correspondence: jiangmwd@gmail.com

'Section of Hematology-Oncology, Department of Medicine, Taipei Medical
University and Hospital, Taipei, Taiwan

Full list of author information is available at the end of the article

( BioMVed Central

and thus can provide information for taking medical
practice to new levels of precision [1,2].

CSE1L/CAS, the cellular apoptosis susceptibility pro-
tein, was identified in a studying of an antisense cDNA
fragment that is capable of causing MCF-7 human
breast cancer cells resistant to apoptosis induced by bac-
terial toxins such as Pseudomonas exotoxin, diphtheria
toxin, and tumor necrosis factor [3]. CSEIL is the
human homologue of the yeast chromosome segregation
gene, CSEI, and it encodes a 971-amino acid protein
with an approximately 100-kDa molecular masses distri-
buting in the cytoplasm and nuclei of cells [4]. CSE1L
can associate with microtubules and mitotic spindles,
which are cellular organelles for cell mitosis; thus,
CSE1L was speculated to play a role in cancer cell pro-
liferation, and was regarded as a proliferation-associated
protein in 1996 [5,6]. Since then many pathological
reports demonstrated that the expression of CSE1L in
cancer is related to cancer proliferation [6-10], although
there is no experimental studies to show that increased
CSEI1L expression in cancer cells can enhance the prolif-
eration of cancer cells. CSE1L is highly expressed
in cancer; thus, if CSE1L plays a role in cancer cell
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proliferation during cancer development, increased
CSE1L expression in cancer cells should be able to
increase the proliferation of cancer cells. Our recent
study showed that increased CSE1L expression in MCEF-
7 human breast cancer cells was unable to stimulate cell
proliferation [11]. Increased CSE1L expression was also
unable to increase the proliferation of other cancer cells
including HT-29 human colorectal cancer cells, Hep G2
human hepatocarcinoma cells, 293 kidney cancer cells,
and B16-F10 mouse melanoma cells (unpublished data).
The results of our study further showed that CSE1L
enhanced the invasion and metastasis of B16-F10 cancer
cells in animal metastasis studies [11].

CSELL is a cellular apoptosis susceptibility protein and
it is highly expressed in various cancers; our recent stu-
dies showed that CSE1L plays an important role in reg-
ulating cancer cell apoptosis induced by
chemotherapeutic drugs [12,13]. Therefore, CSE1L may
be a target for developing strategies to improve the effi-
cacy of cancer chemotherapy as well as for screening
more potent anticancer reagents.

CSE1L in chemotherapeutic drug-induced cancer cell
apoptosis

Apoptosis (or programmed cell death) plays an impor-
tant role in mediating apoptotic stimuli including che-
motherapeutic drug-induced cell cytotoxicity [14].
CSELL is a cellular apoptosis susceptibility protein, and
CSE1L-mediated cancer cell apoptosis was first investi-
gated by Brinkmann et al. using a vector expressing
antisense CSEIL cDNA. Their results showed that
CSE1L mediated apoptosis induced by Pseudomonas
exotoxin, diphtheria toxin, and tumor necrosis factor
but did not mediate apoptosis induced by ricin, cyclo-
heximide, staurosporine, or etoposide, a cancer che-
motherapeutic drug. Therefore, CSE1L-mediated
apoptosis was thought to be limited to selected apopto-
tic stimuli such as adenosine diphosphate (ADP)-ribosy-
lating toxins and tumor necrosis factor [3,15]. CSE1L is
essential for cell survival, and severe depletion of CSE1L
can cause cell death [16]. Those studies used antisense
CSEI1L cDNA to reduce the cellular CSE1L level; hence
the results of their studies might have been a result of
those transfected cells expressing not very low levels of
CSE1L. Also, they only tested the cancer chemothera-
peutic drug, etoposide. An apoptosis-regulating protein
should not only regulate apoptosis induced by just
ADP-ribosylating toxins and tumor necrosis factor.
CSE1L is highly expressed in cancer; therefore enhan-
cing CSE1L expression rather than reducing CSE1L
expression in cells is a more appropriate way to study
CSE1L-mediated cancer cell apoptosis. We established
HT-29 human colorectal cells and MCEF-7 breast cancer
cells stably transfected with the pcDNA-CSE1L vector, a
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eukaryotic expression vector carrying the full-length
human CSE1L cDNA to study the effect of increased
CSE1L expression on cancer cell apoptosis induced by
chemotherapeutic drugs [12,13]. The chemotherapeutic
drugs we tested including paclitaxel, doxorubicin,
5-fluorouracil, cisplatin, etoposide, and 4-OH-tamoxifen.
Our results showed that CSE1L regulated cancer cell
apoptosis induced by most of the chemotherapeutic
drugs that we tested [12,13]. Increased CSE1L expres-
sion enhanced apoptosis induced by doxorubicin,
5-fluorouracil, cisplatin, and 4-OH-tamoxifen, but
decreased apoptosis induced by paclitaxel in HT-29 can-
cer cells and MCF-7 cancer cells [12,13]. Therefore,
CSE1L-mediated apoptosis is not limited to apoptosis
induced by ADP-ribosylating toxins and tumor necrosis
factor. Microtubules are the target of paclitaxel-induced
cancer cell apoptosis [12], thus the expression of micro-
tubule-associated protein may have an impact on cancer
cell apoptosis induced by paclitaxel. For example, the
expression of the microtubule-associated protein, caveo-
lin-1, was reported to enhance paclitaxel-mediated
apoptosis of MCEF-7 cells [17]. Low expression level of
the microtubule-binding protein, tau, was reported to
enhance the sensitivity of human breast cancer to pacli-
taxel treatment [18]. CSE1L is also a microtubule-asso-
ciated protein [5]. Paclitaxel treatment can block or
prolong cells in the G2/M phase of the cell cycle during
apoptosis induction [19], and to induce microtubule
aster formation in apoptotic cells [20]. Cell cycle ana-
lyses showed that increased CSE1L expression inhibited
paclitaxel-induced G2/M phase cell cycle arrest, and
immunofluorescence studies showed that increased
CSE1L expression inhibited paclitaxel-induced microtu-
bule aster formation in cells [12]. Therefore, CSEIL
might inhibit paclitaxel-induced apoptosis by affecting
G2/M phase cell cycle arrest and microtubule aster for-
mation induced by paclitaxel.

CPP32 (caspase-3) is one of the central apoptosis
executioner molecules, and elevation of cleaved CPP32
is a sign of increased apoptosis [21]. Pathological studies
showed that the expression of CPP32 was positively cor-
related with CSE1L expression in endometrial carcinoma
(p = 0.008) [22]. Increased CSEI1L expression can
enhance both interferon-y-induced CPP32 expression
and the level of the cleaved CPP32 product, thereby
inducing apoptosis of HT-29 cancer cells [23]. There-
fore, the CPP32 apoptotic pathway is involved in
CSE1L-mediated cancer cell apoptosis.

p53 is crucial in mediating cell apoptosis induced by
various apoptosis-inducing stimuli, and most che-
motherapeutic drugs exert their antitumor activity
through a p53-dependent mechanism [24-28]. The activ-
ity of p53 is regulated by both the protein abundance
and post-translational modifications of preexisting
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p53 molecules [29,30]. CSE1L was recently shown to
associate with a subset of p53 target promoters, and
reduced CSE1L expression decreased 53-mediated tran-
scription and thus lowered apoptosis [31]. Our studies
showed that increased CSE1L expression can enhance
doxorubicin-induced p53 accumulation [12,13]; there-
fore, CSE1L regulates p53 protein accumulation induced
by chemotherapeutic drugs. Other studies of ours also
showed that interferon-y treatment increased CSE1L
expression in cancer cells [23] and interferon-y co-treat-
ment enhanced doxorubicin-induced p53 accumulation
of Hep G2 hepatoma cells [32]. Thus, interferon-y may
increase doxorubicin-induced p53 accumulation by
modulating CSE1L expression. CSEIL is highly
expressed in cancer, and the results of our studies sug-
gest that CSE1L plays a role in regulating p53 accumu-
lation induced by chemotherapeutic drugs. Therefore,
CSE1L may play an important role in mediating the
cytotoxicities of chemotherapeutic drugs against cancer
cells in cancer chemotherapy. Also, CSE1L may be a tar-
get for developing strategies to improve the efficacy and
outcomes of cancer chemotherapy.

CSE1L expression in cancer
CSELL is highly expressed in various cancer types, and
its expression level is positively correlated with high
tumor stage, high tumor grade, and worse outcomes of
cancer patients. The CSEIL gene is located on chromo-
some 20q13, a region frequently harbors amplifications
that correlate with cancer aggression [33-35]. The copy
number of the CSEIL gene is increased in breast, colon,
and bladder cancer cell lines [36]. An array-based
comparative genomic hybridization study showed high-
frequency amplifications of the CSEIL gene in naso-
pharyngeal carcinomas [37] and in medulloblastomas
[38]. The results of array-based comparative genomic
hybridization showed that 57.1% of the glioblastoma
multiforme cases had high-frequency amplification of
the CSEIL gene [39]. Idbaih et al. investigated a series
of 16 low-grade gliomas and their subsequent progres-
sion to higher-grade malignancies using a one-megabase
bacterial artificial chromosome (BAC)-based array com-
parative genomic hybridization technique, and reported
that the CSE1L gene was associated with the progression
of gliomas [40]. The results of another study using
microarray-based detection showed that CSE1L was
highly expressed in nasopharyngeal carcinomas [41].
Combined cytogenetic, array-based comparative geno-
mic hybridization studies and expression analyses also
showed that CSE1L was significantly overexpressed in
advanced prostate cancer xenografts [42].

The results of a pathological study showed that
expression of CSE1L was not detected in normal hepa-
tocytes, while strong CSE1L expression was detected in
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hepatocellular carcinoma [10]. Another study showed
that the immunohistochemical staining intensity score
of CSE1L was significantly higher in human hepatocellu-
lar carcinoma than in non-tumor tissue (p < 0.05) [43].
In breast cancer, benign lesions of the breast showed
weak CSEI1L staining, while 70% - 90% of breast tumor
cells were heavily stained for CSE1L [9]. In serous ovar-
ian carcinoma, moderate to strong immunostaining of
CSE1L was observed in 34 of 41 cases (83%) of serous
carcinomas, and CSE1L immunoreactivity was positively
related to the frequency of apoptotic bodies (p =
0.0170), the tumor grade (p = 0.0107), and adverse out-
comes (p = 0.0035) [44]. Peiro et al. reported that
CSE1L protein reactivity was present in 100% of 69
ovarian carcinomas, and a significant reciprocal correla-
tion was observed between high levels of CSE1L and the
histological type, FIGO (International Federation of
Obstetrics and Gynecology) stage III and grade 3, resi-
dual tumors of > 2 c¢cm, and 20q13.2 (ZNF217 gene)
amplification (> four copies in > 20% cells) [45]. A tissue
array study composed of 244 serous ovarian tumors of
different grades (0-3) and stages (I-IV) showed a higher
expression of CSEIL in poorly compared to highly
differentiated invasive ovarian tumors [46].

An analysis of 89 endometrial carcinomas and 56 sam-
ples of non-neoplastic adjacent endometrium showed
that CSE1L was expressed in 93% of endometrial carci-
nomas neoplastic tissues, while lower levels of CSE1L
expression were observed in the adjacent endometrium
compared to the carcinomas (p = 0.003). Also, CSE1L
expression was higher in grade 3 tumors (p = 0.002)
[22].

Boni et al. studied the expression of CSE1L in 27 con-
trol benign and 55 malignant melanocytic lesions
(including 32 primary and 23 metastatic lesions), and
their results showed that only 13 of the 27 benign mela-
nocytic lesions stained positive for CSE1L [7]. However,
5 of 7 lentigo maligna melanomas, 11 of 12 superficial
spreading melanomas, and all acrolentiginous (n = 7)
and nodular (# = 6) melanomas showed medium to
high intensity immunoreactivity for CSE1L staining [7].
All metastatic melanomas (n = 23) they studied showed
strong CSE1L staining [7]. Also, CSE1L detection in
clinical stages according to the International Union
Against Cancer (UICC) showed an increase from 43% +
34% CSEL-positive cells in stage I, to 53% + 26% in
stage II, 68% * 24% in stage III, and 72% + 24% in stage
v [7].

In normal lymphoid tissue and malignant lymphomas,
low-grade non-Hodgkin’s lymphoma revealed weak
CSEI1L staining, with 10% to 60% of all cells positive [6].
In contrast, highly malignant non-Hodgkin’s lymphoma
and malignant cells of Hodgkin’s disease displayed very
strong CSELL positivity, with staining of up to 80% of
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atypical cells [6]. CSE1L was recently shown to be
expressed in brain pilocytic astrocytomas [47]. The
expression of CSE1L was also reported to be higher in
the primary and metastatic human colorectal carcinoma
compared to the normal colon mucosa (p < 0.0001)
[48]. Recent study also showed that the distribution
CSE1L in the epithelial glands of neoplastic colorectal
epithelium was related to the malignance of colorectal
cancer [49].

The pathological studies showed amplification of the
CSEIL gene or high expression of CSE1L protein in var-
ious cancer types including hepatocellular carcinomas,
endometrial carcinomas, cutaneous melanomas, lympho-
mas, ovarian carcinomas, breast carcinomas, prostate
cancers, nasopharyngeal carcinomas, medulloblastomas,
glioblastomas, and colorectal carcinomas. The pathologi-
cal studies also showed that the expression of CSE1L
was positively correlated with a higher cancer stage and
higher cancer grade, indicating that CSE1L plays an
important role in cancer development and progression.

CSE1L is unable to increase cancer cell proliferation

Cancer cells are characterized by their uncontrolled pro-
liferative abilities. CSE1L is the human homologue of
the yeast chromosome segregation gene, CSEI [4].
Mutation of the yeast CSEI was shown to lead to
defects in both chromosome segregation and B-type
cyclin degradation; therefore a role of yeast CSEI in
facilitating the mitotic phase (not the S phase) of yeast
replication was described [50,51]. Another study by Yu
et al. reported that depletion of CSEI resulted in a
defect in the S-phase progression of yeast; therefore
they demonstrated that CSEI plays a role in DNA repli-
cation during yeast proliferation [52]. It should be
noted, however, that their studies were based on CSEI
mutation or depletion and did not include an experi-
ment to see the effect of increased CSE1 expression on
yeast replication. Moreover, an immunofluorescence
study of the distribution of human CSEIL in cells
showed that CSE1L was associated with microtubules
and mitotic spindle of mitotic cells; hence CSE1L was
first suggested by Scherf et al. to play a role in promot-
ing the mitotic phase of the cell cycle, and thus CSE1L
was assumed to be able to increase the proliferation of
human cells [5]. Another study by Ogryzko et al.
reported that transient transfection of vectors carrying
the antisense CSEIL cDNA into HeLa human cervical
cancer cells interfered with cell mitosis [53]. Because
CSE1L is highly expressed in various cancers, CSE1L
was thus regarded as a proliferation-associated protein
and was thought to play a role in tumor proliferation
during cancer development and progression [8,54]. Con-
sequently, many pathological studies reported that the
expression of CSE1L was positively correlated with

Page 4 of 9

tumor proliferation, and the role of CSEIL in cancer
progression was to increase tumor proliferation [6-10],
although there are no experimental studies showing that
increased CSE1L expression in cancer cells can increase
cancer cell proliferation.

We amplified the full-length CSEIL ¢cDNA from
human cells and cloned it into the pcDNA3.1 eukaryo-
tic-expressing vector to obtain the pcDNA-CSE1L vec-
tor to study the effect of increased CSE1L expression on
cancer cell proliferation [11,55]. Our results showed that
increased CSE1L expression in HT-29 cells did not
increase cell proliferation, but on the contrary, increased
CSE1L expression decreased the proliferation of HT-29
cells [55]. The HT-29 human colorectal cancer cell line
is a special cell line as it easily becomes polarized in cul-
ture [56]. The formation of cell polarity is related to cell
proliferation, and loss of apical-basal cell polarity can
increase cell proliferation [57]. Increased CSE1L expres-
sion in HT-29 cells stimulated polarization of HT-29
cells [58]. Hence, we thought that the decrease in cell
proliferation of pcDNA-CSE1L vector-transfected HT-
29 cells might be a result of polarization of HT-29 cells
induced by increased CSE1L expression, and not a result
of increased CSE1L expression that directly decreased
the proliferation of HT-29 cells [55]. Nevertheless, our
other studies showed that although increased CSE1L
expression was unable to induce polarization of MCEF-7
cancer cells as it did in HT-29 cells, enhanced CSE1L
expression in MCF-7 cells still decreased but not
increased the proliferation of MCF-7 cells [11]. There-
fore, CSE1L is unable to stimulate cancer cell
proliferation.

CSE1L may be necessary for the M phase cell cycle
progression of cells, thus a reduction in the CSE1L level
can lead to a defect in chromosome segregation in the
mitotic cell-cycle phase. However, it is quite impossible
that high expression of CSE1L in cancer cells can
enhance chromosome segregation at the mitotic phase
of cells and thus increase cancer cell proliferation. First,
the key step that determines the rate limitation for cell
proliferation is mainly at the G1-S phase of the cell
cycle rather than at the M phase [59]. Second, CSE1L is
associated with mitotic spindles and functions in the
mitotic spindle checkpoint; therefore high expression of
CSELL in cancer cells may halt the progression of mito-
sis until the cells are truly ready to divide. The p53 pro-
tein also plays a role in activating cell-cycle checkpoints,
and activation of p53 can stop cell-cycle progression at
the cell-cycle checkpoints [60]. The involvement of
CSEI1L in the proliferation of cancer cells was also sup-
ported by a pathological study which reported that the
expression of the Ki67 proliferation marker was signifi-
cantly positively correlated with CSEIL in a study of
malignant lymphomas; nevertheless, that study also
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showed that a significant fraction of CSE1L-positive
malignant lymphocytes were Ki-67 negative [6]. Various
oncogenes may be activated and various anti-oncogenes
may be inactivated in tumors; the activated oncogenes
and inactivated anti-oncogenes can stimulate the prolif-
eration of cancer cells that highly express CSE1L. There-
fore, a positive correlation between CSE1L and Ki67
expression in tumors is insufficient to conclude that
CSE1L can stimulate cancer cell proliferation. CSE1L is
an apoptosis susceptibility protein; hence increased
CSE1L expression can cause cells to be susceptible to
apoptosis, let alone to stimulate cell proliferation. In our
studies, MCF-7 cells and HT-29 cells transfected with
CSE1L-expressing vectors were prone to apoptosis, and
exhibited a relatively lower cell growth rate as compared
to those of the control vector-transfected cells [11].
Recently, CSE1L was shown to be associated with a sub-
set of p53 target promoters, and reduced CSE1L expres-
sion decreased 53-mediated transcription and lowered
apoptosis [31]. p53 is known to be able to promote the
expression of cell-cycle arrest target genes while enhan-
cing the transactivation of proapoptotic genes [61].
Therefore, that report further suggested that although
CSELL definitely plays an important role in cancer pro-
gression, it does not stimulate cancer proliferation.
Finally, CSE1L is highly, not barely, expressed in cancer.
However, studies reporting that human CSEIL (also
yeast CSE1) is associated with cell proliferation were
only based on the effect of CSE1L reduction or CSE1
deletion on the growth of human or yeast cells. There-
fore, it is inappropriate to use the results of CSE1L
reduction experiments to assume that CSE1L can stimu-
late or increase cancer cell proliferation and draw a con-
clusion that the role of CSE1L in cancer development is
to stimulate cancer proliferation.

CSE1L enhances matrix metalloproteinase-2 secretion and
increases cancer cell invasion

Increased CSE1L expression is unable to enhance the
proliferation of cancer cells, thus CSE1L may promote
cancer progression by other mechanisms. A pathological
study by Brustmann et al. reported that the immuno-
reactivity of CSE1L was positively related to high cancer
grade (p = 0.0107) and adverse outcomes (p = 0.0035)
in serous ovarian carcinoma [44]. By studying 89 sam-
ples of endometrial carcinomas and 56 samples of the
non-neoplastic adjacent endometrium, Peiro et al.
reported that CSE1L expression was higher in grade 3
tumors (p = 0.002), and a shorter survival was observed
for patients whose tumors contained > 50% of CSE1L-
positive cells (p = 0.04) [22]. A tissue array study com-
posed of 244 serous tumors of different grades (0-3) and
stages (I-IV) showed a higher expression of CSE1L in
poorly compared to highly differentiated invasive
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ovarian tumors [46]. The expression of CSE1L was cor-
related with advanced stages of melanomas and clinical
stages according to the UICC which showed an increase
from 43% + 34% of CSEIL in stage I, to 53% + 26% in
stage II, 68% * 24% in stage III, and 72% + 24% in stage
IV [7]. Heavy CSE1L staining was observed in all of the
metastatic melanoma (n = 23) they studied [7]. The
results of these pathological studies indicated that the
expression of CSE1L was positively related to high can-
cer stage and worse outcomes of cancer patients. Meta-
stasis is the main characteristic of high cancer stages
and is also the main cause of cancer-related mortality.
Therefore, CSE1L may regulate the invasion and meta-
stasis of cancer.

CSEIL can associate with microtubules [4] and the
nuclear-transport receptor, importin-a [62]. Hence,
CSE1L was predicted to show granule-like staining in
the perinuclear areas of cells due to its association with
importin-a, or show microtubule-like staining due to its
association with microtubules in immunofluorescence
study. However, in a study of the distribution of CSE1L
in cancer cells, we observed that in addition to granule-
like staining in cytoplasm surrounding the perinuclear
areas, CSE1L also showed vesicle-like staining in the
protrusions of MCF-7 cells in immunofluorescence [63].
Cytoplasmic vesicles play important roles in regulating
the exocytosis and secretion of cells [64]. The vesicle-
like staining of CSE1L in cell protrusions indicates that
CSE1L may play a role in regulating cell secretion. The
protrusions of cancer cells also play a role in facilitating
cancer cell invasion [65]. Furthermore, increased CSE1L
expression was shown to increase the secretion of HT-
29 cells [66]. These results suggest that CSE1L may reg-
ulate the secretion and invasion of cancer cells.

Extracellular matrix (ECM) surrounding tumor and
ECM-degrading proteases secreted by tumor cells play
crucial roles in modulating cancer metastasis [67-69].
Matrix metalloproteinases (MMPs), including MMP-2,
are enzymes involved in the degradation of ECM, which
show increased expression during cancer metastasis
[70-76]. MMP-2 production can be regulated at the
level of secretion [77]. Metastatic tumor cells often
develop enhanced secretory abilities in order to enhance
MMPs secretion, thereby enhancing their metastatic
potential [78]. Double-staining immunofluorescence
showed that CSE1L regulates the translocation and
secretion of MMP-2-containing vesicles [11]. Matrigel-
based invasion assays showed that enhanced CSE1L
expression increased cell invasion, and reduced CSE1L
expression inhibited the invasion of MCF-7 cancer cells
[11]. Finally, animal tumor metastasis experiments
showed that reduced CSE1L expression decreased the
pulmonary metastasis of B16-F10 cells, a highly meta-
static cancer cell line, in C57BL/6 mice [11,79].
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Therefore, CSE1L regulates MMP-2 secretion and
enhances the invasion of cancer cells.

CSE1L is a secretory protein and there is a higher
prevalence of secretory CSEI1L in sera of patients with
metastatic cancer

CSELL is highly expressed in cancer, and its expression
level is well correlated with advanced cancer stage and
worse patient outcomes. Therefore, CSE1L may play an
important role in cancer progression. CSE1L is a micro-
tubule-associated protein [4]. Our recent study showed
that the association of CSE1L with microtubules is
related with protrusion extension and migration of MCE-
7 breast cancer cells [80]. In the immunofluorescence
study, CSE1L was colocalized with MMP-2 in vesicles
surrounding the outside of the MCF-7 cell membranes
[Fig 1; also see [63]]. Since MMP-2 is a secretory protein,
these results suggest that CSE1L may be secreted
together with MMP-2. In immunohistochemistry, posi-
tive CSELL staining was observed in the gland lumen of
different cancers including breast cancer and colorectal
cancer [63]. The tumor microenvironment, or stroma,
consists of ECM and plays an important role in regulat-
ing cancer metastasis [81,82]. Glands, the major epithelial
components of tubular organs, mediate the passage and
control of homeostasis by modifying secretion. Glands in
cancer tissues also provide the metastatic cancer cells
with a route for invasion to adjacent tissues or other
organs [83]. Moreover, substances that are secreted from
a gland lumen can ultimately reach blood vessels [84].
CSELL staining in the gland lumen of metastatic cancer
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tissues indicate that CSE1L may be secreted by cancer
tissues and CSE1L may be a secretory protein.

CSELL as a secretory protein was assessed by immu-
noblotting with conditioned medium harvested from
B16-F10 cancer cells, and the results showed that
CSE1L was present in conditioned medium of serum-
starved B16-F10 cells [63]. That result confirmed that
CSE1L is a secretory protein. Serum samples collected
from patients with metastatic cancer were assayed for
the presence of secretory CSEIL in sera of patients with
metastatic cancer. The results of immunoblotting also
showed that secretory CSE1L is present in sera of
patients with metastatic cancer [63]. The results of
enzyme-linked immunosorbent assay (ELISA) showed
that serum CSE1L was detected in 58.2% (32/55), 32.0%
(8/25), and 12.1% (8/66) of patients with metastatic,
invasive, and primary cancers, respectively [63]. Serum
CSE1L was more prevalent in patients with metastatic
cancer. The presence of secretory CSELL in the sera of
patients with metastatic cancer was not restricted to a
specific cancer type. Analyses of serum samples from
patients with metastatic cancer showed that serum
CSE1L was detected in various cancer types including
colorectal cancer, breast cancer, lung cancer, cervical
cancer, bile duct cancer, esophageal cancer, ovarian can-
cer, oviduct omental cancer, and head and neck cancer
[63,85]. Recent study also showed that CSE1L was pre-
sent in cerebrospinal fluids of patients with intracerebral
hemorrhage [86]. Therefore, CSE1L is a secretory pro-
tein, and there is a higher prevalence of secretory
CSELL in sera of patients with metastatic cancer.

Phase contrast

CSE1L

Figure 1 CSE1L staining in vesicles surrounding the outside of cell membrane. The distribution of CSETL in MCF-7 cells was analyzed by
immunohistochemistry with anti-CSE1L antibody. Note the vesicle-like staining of CSE1L in cell protrusions and positive staining of CSETL in
vesicles surrounding the outside of the cell membrane. The scale bar = 30 um. The photo is derived from a figure in reference 63 [63].




Tai et al. Journal of Experimental & Clinical Cancer Research 2010, 29:110

http://www.jeccr.com/content/29/1/110

Conclusions

Metastasis is the main cause of cancer-related mortality;
therefore the screening and diagnosis of metastatic can-
cer are important for cancer treatment [87-95]. CSE1L
is highly expressed in various cancers especially high
stage cancers, and thus it may play important roles in
modulating the development and progression of cancer.
CSE1L was previous regarded as a proliferation-asso-
ciated protein and was thought to be associated with
tumor proliferation in cancer progression. Experimental
studies showed that increased CSE1L expression in can-
cer cells was unable to enhance cancer cell proliferation.
CSE1L actually is a secretory protein associated with
cancer metastasis, and CSEIL is more frequently
detected in sera of patients with metastatic cancer than
with primary cancer. Therefore, CAS may have clinical
utility in metastatic cancer screening and diagnosis, and
it may be a potential target for anti-metastasis therapy.
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