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Abstract: Plants are a rich source of secondary metabolites that exhibit numerous desired properties.
The compounds may influence the biology of melanocytes, pigment cells that produce melanin,
by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its
downstream target is microphthalmia-associated transcription factor, responsible for the expression
of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review
aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and
isolated plant compounds in B16 cells. Database searches were conducted using online-based library
search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or
downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpig-
mentation by changing the level of melanin production, which may pose a significant cosmetic issue.
Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation
disorders.

Keywords: melanoma cells; melanogenesis; signaling pathways; plant extracts; isolated plant compounds

1. Introduction

Melanocytes, the melanin-producing cells, are located in the basal layer of the skin.
Melanin accumulates in the melanosomes, which are then transferred to keratinocytes.
The epidermal-melanin unit is composed of a single melanocyte and neighboring ker-
atinocytes. Keratinocytes may also modulate melanocyte function and melanin production
(melanogenesis): a complex biochemical process that begins with the transformation of the
amino acid tyrosine by tyrosinase (TYR). The type and amount of melanin produced by
melanocytes is genetically determined, but production is also influenced by many other
internal and external factors, including ultraviolet (UV) radiation. The keratinocyte-derived
paracrine factors, including melanocyte-stimulating hormone (α-MSH) and stem cell factor
(SCF), may regulate melanocyte biology through receptor-mediated signaling pathways [1].

One of the major regulators of melanogenesis is microphthalmia-associated transcrip-
tion factor (MITF), which is responsible for the activation of TYR expression. It is also the
downstream target of many signaling pathways, including cyclic adenosine monophos-
phate (cAMP)/protein kinase A (PKA), mitogen-activated protein kinases (MAPKs), and
phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT). These pathways are induced
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in melanocytes by the activation of melanocortin 1 receptor (MCR1) and receptor tyrosine
kinase (c-KIT) as a result of attachment of the corresponding ligand, i.e., α-MSH and SCF [2].

Plants are a rich source of secondary metabolites, which can be classified in various
groups including phenolics, alkaloids, saponins, terpenes, lipids, and carbohydrates ac-
cording to their chemical structure. It is estimated that more than 200,000 such molecules
may exist in the plant kingdom [3]. Compounds of natural origin have several beneficial
properties, including modulation of different signaling pathways. The pathways involved
in the regulation of melanogenesis may also be subject to such modulation. That process
can be both upregulated and downregulated [4]. Thus, owing to their properties plant
extracts and isolated plant compounds may play a very important role in counteracting
hyperpigmentation and hypopigmentation skin disorders [5].

This literature review examines the role of plant extracts and isolated plant compounds
in the process of melanogenesis regulation in B16 cells, a well-established model for the
discovery of melanogenic principles. The mechanisms of regulation are discussed in detail
from the viewpoint of intracellular signal transduction pathways.

2. Study Design

Published data in the time range 2012–2022 were explored using widely-recognized
databases such as NCBI-PubMed, Google Scholar, Scopus, and ScienceDirect. The following
keywords were used: plant extract, plant-derived compound, melanogenesis, B16 cells,
signaling pathways, ultraviolet radiation. This literature review included studies on plant
extracts and pure compounds with available information on their modulatory effects on
signaling pathways in B16 cells. Only compounds isolated directly from plants were
included. Studies involving non-B16 cells, and synthetic compounds were excluded, as
well as studies reporting only the final effects of extracts or compounds on melanogenesis
without clarifying their molecular background. Items published in languages other than
English or with only an abstract available were also rejected. In order to standardize the
scientific names of plants, the “Medicinal Plant Names Services” (https://mpns.science.
kew.org/mpns-portal/searchName?) (accessed on 10 May 2022) was used. PuBChem
(https://pubchem.ncbi.nlm.nih.gov) (accessed on 10 May 2022) was used to obtain IUPAC
names of pure compounds.

3. Melanocyte Biology

While melanocytes are mostly found in the human skin, they can be also present
elsewhere in the human body. In human skin, melanocytes are stationed in the basal layer
of the epidermis and account for 1% of epidermal cells. The cells originate from neural crest
cells, then mature and produce melanin in specialized organelles named melanosomes.
The melanosomes are transferred to keratinocytes followed by pigment cell death. These
cells express specific proteins including TYR, tyrosinase-related protein 1 and 2 (TYRP1,
TYRP2) and MITF, among others. They form characteristic melanin units, in which one
melanocyte is neighbored by 30–40 keratinocytes. Cross-talk exists between these two cell
types. Keratinocytes influence the growth and activity of melanocytes through the action
of growth factors and target adhesion molecules. Examples of compounds that are secreted
by keratinocytes after UV radiation exposure and affect melanocytes include α-MSH,
SCF, nerve growth factor (NGF), prostaglandin E2 (PGE2), endothelin (ET-1), granulocyte-
macrophage colony-stimulating factor receptor (GM-CSFR) and basic fibroblast growth
factor (bFGF). Melanocyte biology is also controlled by fibroblasts, which secrete SCF and
neuregulin 1 (NRG1), among others. Upon stimulation, melanocytes also secrete a number
of signaling molecules such as pro-inflammatory cytokines including IL-1α, IL-2, IL-3, IL-6,
IL-10 and tumor necrosis factor α (TNF-α), as well as chemokines including IL-8, CCL2
and transforming growth factor (TGF-β), α-MSH, catecholamines, eicosanoids, serotonin
and nitric oxide (NO) [1,6,7].

Melanocytes synthesize melanin through a biochemical pathway called melanogenesis.
The process takes place in separate cytoplasmic organelles called melanosomes. Melanin

https://mpns.science.kew.org/mpns-portal/searchName
https://mpns.science.kew.org/mpns-portal/searchName
https://pubchem.ncbi.nlm.nih.gov


Molecules 2022, 27, 4360 3 of 21

is typically found as yellow—red pheomelanin and dark brown–black eumelanin, whose
production is determined by enzyme action and substrate availability. TYR catalyzes the
hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine (DOPA). DOPA is then oxidized
to DOPAquinone. DOPAquinone in the presence of cysteine leads to the formation of 3- or
5-cysteinylDOPAs, which then yield pheomelanin by conversion. In the absence of thiol
substrates, DOPAquinone undergoes cyclization to DOPAchrome. DOPAchrome leads
to the formation of 5,6-dihydroxyindole, which upon transformation forms eumelanin.
However, in the presence of DOPAchrome tautomerase (TYRP2), 5,6-dihydroxyindole-2-
carboxylic acid is formed from DOPAchrome. Further transformations involving TYR and
TYRP1 finally produce the brown color of melanin (Figure 1).
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Figure 1. Schematic presentation of melanin synthesis during melanogenesis in melanocytes. [Created
by BioRender].

Human skin contains a mixture of all types of melanin, and visible pigmentation is
determined by their ratio. In addition, melanin has numerous properties that are beneficial
to the body; while the most important one is the absorbance and scattering of UV radiation,
the molecule also plays a part in the neutralization of free radicals [4].

Melanogenesis is regulated by more than 125 genes [8]. Many factors, including
external agents (UV radiation), and both internal and paracrine factors produced by ker-
atinocytes and fibroblasts, stimulate specific intracellular signaling pathways involved
in melanogenesis, including cAMP/PKA, MAPKs and PI3K/AKT. The most important
regulator of melanogenesis is MITF. It affects the activation of key melanogenesis-related
genes such as TYR, TYRP1 and TYRP2, and is a common downstream target of many
signal transduction pathways that may be modulated by plant extracts and isolated plant
compounds (Figure 2) [2].
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Figure 2. Selected signaling pathways involved in melanogenesis that are modulated by several
isolated plant compounds. [Created by BioRender].

For terminally differentiated cells, their proliferation is in turn inhibited [9]. Despite
their very low proliferative capacity, melanocytes undergo telomerase-dependent senes-
cence. Senescence results in characteristic morphological and functional changes. This is
an irreversible process and cells cannot be stimulated to proliferate again by agents such
as growth factors. A crucial role in senescence is played by the retinoblastoma protein
(pRb). It acts as a repressor of genes involved in DNA replication, resulting in cell cycle
arrest. Along with pRb, other cell cycle inhibitors such as p16INK4a and p21Waf1 and their
homologs interact to inhibit cyclin-dependent kinases (CDKs) activity and thus prevent
phosphorylation of pRB, keeping it in an activated state [10]. For example, Spartium junceum
flowers inhibit melanogenesis in B16 melanoma cells by inducing senescence caused by
cell cycle arrest in the G2/M phase [11].

Furthermore, it has been shown that melanocytes can also undergo stress-induced
senescence. UVB radiation exposure was confirmed to affect melanocyte proliferation.
Exposure to low and repeated doses of UVB radiation increased β-galactosidase activity
associated with senescence, and changes in the expression of other markers, including p21,
p53 and lamin B1. In addition, UVB radiation was shown to contribute to impairment of
the proteasome, intensification of autophagy processes in melanocytes, and increased intra-
cellular melanin levels. For example, autophagy may also be induced by hydroxydaidzein
from fermented soybean paste [12]. Aging melanocytes accumulating in the skin are also
thought to impair the proliferation of neighboring keratinocytes [13,14].
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4. Natural Skin Agents against Hyper and Hypo-Pigmentation Disease

Alterations in skin pigmentation might become an esthetic problem. Common hyper-
pigmentation disorders include melasma, solar lentigines, post-inflammatory hyperpig-
mentation, and chloasma. UV radiation exposure can exacerbate all of these conditions.
Clinically, it manifests as a brown or blue discoloration of the skin, whose location depends
on the site of melanin deposition, i.e., in the epidermis and dermis. Hypopigmentation
disorders include vitiligo which is related to genetic and environmental factors. Vitiligo is
clinically manifested by the presence of white patches on the skin; the loss of melanocyte
activity in these areas is probably the result of melanocyte destruction [5]. Plants serve as a
reservoir for ingredients that can be used to improve the appearance of the skin. Metabo-
lites of plant origin are classified as primary and secondary based on their role. The former
are involved in the basic physiological functions of the cell, while the latter are intended to
provide defense against adverse environmental conditions, herbivores, and pathogens [15].

Secondary metabolites can be divided into three main groups depending on the
pathway of their synthesis: terpenes formed via the mevalonate pathway, phenolic com-
pounds formed via the szikimic or mevalonate pathway, nitrogen-containing secondary
metabolites formed mainly from aliphatic amino acids via the tricarboxylic acid pathway,
and aromatic acids derived from the szikimic acid pathway [16]. Due to their chemical
structure, secondary metabolites are divided into phenolics, alkaloids, saponins, terpenes,
lipids or carbohydrates [17].

In the search for new depigmenting and pigmenting agents, studies of plant extracts
have led to the identification of many potentially active compounds. Depigmenting agents
may act at different levels of melanin production, many are activators of tyrosinase, a
key enzyme involved in melanogenesis and pigment production. Others may affect the
expression of this enzyme, in addition to the transport of pigment from melanocytes to
keratinocytes. On the other hand, due to the lack of pigment cells, attempts have been
made to find compounds that influence the differentiation and migration of melanoblasts
or would enable melanin dispersion and induce skin pigmentation.

A great number of plant extracts and isolated plant compounds have been found
to bear adequate anti-melanogenic or melanogenic potential. They may even have an
additional protective potential due to their antioxidant properties, thanks to which they
protect the cell’s macromolecules from the damaging effects of free radicals generated by
UV radiation, among others. In conclusion, plant-derived compounds may form part of
therapeutic interventions against skin abnormalities, including hyperpigmentation and
hypopigmentation [18–22].

5. Mechanisms of Melanogenesis-Related Signaling Pathway Modulation by Plant
Extracts and Isolated Compounds in B16 Cells

Many genes that encode diverse proteins are implicated in different steps of pig-
mentation such as melanocyte formation from the neural crest, formation of melanosome
components, pigment inclusion, and the transfer of melanosomes from melanocytes to
keratinocytes [23]. Plant extracts and isolated plant compounds may be able to modulate
pigment formation. Most previous studies are based simply on the assessment of melanin
content and tyrosinase enzyme activity in melanocytes exposed to phytochemicals. Others
examine changes in gene expression and protein production that are particularly impor-
tant for melanogenesis. These include MITF, a master regulator of melanogenesis gene
expression; this activates the genes encoding the pigmentation enzyme TYR and tyrosinase-
related proteins (TYRPs) by binding to their promotors. Data on their expression and its
modulation by plant extracts without and with identified compounds (Tables 1 and 2) and
single-derived compounds (Table 3) are presented. Additionally, the roles of phytochemi-
cals in various signaling pathways are also analyzed. Activation of melanocortin 1 receptor
(MC1R) or receptor tyrosine kinase (c-KIT) by α-MSH or SCF ligands, respectively, activate
signaling pathways in melanoma cells that may be modulated by plant extract or isolated
plant compounds. Natural chemicals may have the effect of both stimulating and inhibiting
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melanogenesis. Global expression analysis by Villareal et al. identified MITF modulation
in B16 melanoma cells treated with the Cymbopogon schoenanthus extract, as well as 44
other pigmentation-related genes [24].

Table 1. Modulation on gene expression related to melanogenesis in B16 melanoma cells by plant
extracts without identified compounds.

Name of
Species/Family

Part of
Plant

Type of
Solvent Concentration Methods Effects Ref.

Artemisia asiatica
Nakai ex

Pamp./Asteraceae
whole plant ethanol 25–50 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[25]

Camellia sinensis (L.)
Kuntze/Theaceae flower ethanol 20–40 µg/mL RT-PCR Reduced expression:

TYR [26]

Castanea crenata
Siebold &

Zucc./Fagaceae
inner skin ethyl acetate 10–100 µg/mL Western

blotting
Reduced expression:

TYR [27]

Cinnamomum
osmophloeum

Kaneh./Lauraceae
leaves ethanol 21.25 µg/mL RT-PCR Reduced expression:

MITF, TYR [28]

Coix lacryma-jobi
L./Poaceae seeds ethanol 20–40 mg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[29]

Croton roxburghii
N.P.Balakr. and

Croton sublyratus
Kurz/Euphorbiaceae

leaves ethanol 25–100 µg/mL
RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[30]

Dendrobium
moniliforme (L.)

Sw./Orchidaceae
leaves ethanol 12.5–50 µg/mL Western

blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[31]

Dendropanax
morbiferus

H.Lév./Araliaceae
leaves ethanol 12.5–50 µg/mL Western

blotting
Reduced expression:

TYR, TYRP-2 [32]

Equisetum
ramosissimum

Desf./Equisetaceae
whole plant ethyl acetate,

dichloromethane 10–100 µg/mL

Western
blotting
Western
blotting

ethyl acetate:
Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2;
dichloromethane:

Increased expression:
MITF, TYR, TYRP-1,

TYRP-2

[33]

Euryale ferox Sal-
isb./Nymphaeaceae seeds ethyl acetate 30 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[34]

Gaillardia aristata
Pursh/Asteraceae flowers ethanol 10–20 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[35]

Garcinia mangostana
L./Clusiaceae leaves water 4–32 µg/mL Western

blotting
Increased expression:

TYR [36]

Gastrodia elata
Blume/Orchidaceae whole plant water 0.5–5 mg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[37]

Glechoma hederacea
L./Lamiaceae whole plant water 0.1–1 mg/mL

RT-PCR,
Western
blotting

Reduced expression:
TYR [38]

Glycine max (L.)
Merr./Fabaceae

seeds cell
culture ethanol 0.5–1 mg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[39]
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Table 1. Cont.

Name of
Species/Family

Part of
Plant

Type of
Solvent Concentration Methods Effects Ref.

Haloxylon scoparium
Pomel/Amaranthaceae stems ethanol 0.017%(w/v)

RT-PCR,
Western
blotting

Reduced expression:
MC1R, TYR, TYRP-1 [40]

Kummerowia striata
(Thunb.)

Schindl./Fabaceae
aerial parts ethanol 100–400 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[41]

Kummerowia striata
(Thunb.)

Schindl./Fabaceae
aerial parts ethanol 100–400 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[42]

Melia azedarach
L./Meliaceae whole plant ethanol 20 µg/mL

RT-PCR,
Western
blotting

Increased expression:
TYRP-1 [43]

Nepeta binaludensis
Jamzad/Lamiaceae aerial parts methanol 50 µg/mL Western

blotting
Reduced expression:

TYR [44]

Nepeta sintenisii
Bornm./Lamiaceae aerial parts

n-hexane,
methanol,

water
50 µg/mL Western

blotting
Reduced expression:

MITF [45]

Oplismenus
undulatifolius (Ard.)
P.Beauv./Poaceae

whole plant ethanol 5–15 µg/mL Western
blotting

Reduced expression:
TYR, TYRP-1,

TYRP-2
[46]

Oreocnide fruticosa
(Gaudich.) Hand.
Mazz./Urticaceae

branches ethyl acetate 25–100 µg/mL Western
blotting

Reduced expression:
TYR, TYRP-1,

TYRP-2
[47]

Phyllanthus emblica
L./Phyllanthaceae fruits water 0.05–1 mg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[48]

Pinus densiflora
Siebold &

Zucc./Pinaceae
pine cone ethyl acetate 12.5–50 µg/mL

RT-PCR,
Western
blotting

Reduced expression:
MITF, TYR, TYRP-1,

TYRP-2
[49]

Psoralea corylifolia
(Babchi)/Fabaceae

and Zingiber officinale
Roscoe/Zingiberaceae;

Psoralea corylifolia
(Babchi)/Fabaceae
and Eclipta prostrata
(L.) L./Asteraceae

whole
plants methanol 10–100 µg/mL

RT-PCR,
Western
blotting

Increased expression:
MITF [50]

Syzygium cumini (L.)
Skeels/Myrtaceae

leaves and
branch ethanol 25–100 µg/mL RT-PCR

Reduced expression:
TYR, TYRP-1,

TYRP-2
[51]

Uncaria rhynchophylla
(Miq.)

Miq./Rubiaceae

stems and
hooks ethanol 0.1–1 mg/mL RT-PCR Reduced expression:

TYR [52]

Vitis vinifera
L./Vitaceae

pericarp,
seed, flesh,
and grape

stem

ethanol 100 µg/mL Western
blotting

Increased expression:
MITF, TYR, TYRP-1,

TYRP-2
[53]
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Table 2. Modulation on gene expression related to melanogenesis in B16 melanoma cells by plant
extracts with identified compounds.

Name of
Species/Family

Part of
Plant

Type of
Solvent

Identified
Compounds Concentration Methods Effects Ref.

Acer rubrum
L./Sapindaceae leaves ethanol phenolic

compounds 10 µg/mL
RT-PCR,
Western
blotting

Reduced
expression: MITF,

TYR, TYRP-1,
TYRP-2

[54]

Angelica
polymorpha

Maxim./Apiaceae
flowers hexane

aromadendrene,
methoxsalen,

bergapten,
isopimpinellin,
nonadencane

0.1–100 µg/mL Western
blotting

Reduced
expression: MITF,

TYR
[55]

Argania spinosa L.)
Skeels/Sapotaceae leaves ethanol 14 compounds 30 µg/mL Western

blotting

Increased
expression: TYR,

TYRP-1,
[56]

Artemisia capillaris
Thunb./Asteraceae

whole
plant ethanol leukodin 12.5–50 µg/mL Western

blotting

Reduced
expression: TYR,
TYRP-1, TYRP-2

[57]

Artocarpus lacucha
Buch.-

Ham./Moraceae
and Glycyrrhiza

glabra L./Fabaceae

heartwood
and root ethanol

gallic acid,
oxyresveratrol,
resveratrol and

glabridin

0.1 mg/mL Western
blotting

Reduced
expression: MITF,

TYRP-2
[58]

Callicarpa
longissima (Hemsl.)
Merr./Lamiaceae

whole
plant ethanol carnosol and

carnosic acid 0.1–10 µg/mL RT-PCR Reduced
expression: MITF [59]

Ceratonia siliqua
L./Fabaceae

leaves, bark
and fruits ethanol

epicatechin-3-O-
gallate,

1,2,3,6-tetra-O-
galloyl-ß-D-

glucose
and gallocatechin-

3-O-gallate

100 µg/mL RT-PCR Reduced
expression: TYR [60]

Glycyrrhiza glabra L.
and Glycyrrhiza

uralensis Fisch. ex
DC./Fabaceae

whole
plant/heat

treated
ethanol isoliquiritigenin 100 µg/mL

RT-PCR,
Western
blotting

Reduced
expression: MITF,

TYR, TYRP-1,
TYRP-2

[61]

Hordeum vulgare
L./Poaceae

barely
sprout water p-coumaric, ferulic,

and vanillic acids 50–250 µg/mL Western
blotting

Reduced
expression: MITF,

TYR
[62]

Juniperus communis
L./Cupressaceae fruits ethanol

hypolaetin-7-O-β-
D-xylopyranoside
and isoscutellarein-

7-O-β-D-
xylopyranoside

50 µg/mL Western
blotting

Reduced
expression: TYR [63]

Libidibia ferrea
(Mart. ex Tul.)

L.P.Queiroz/Fabaceae

bark and
pods ethanol 18 compounds 25 µg/mL

RT-PCR,
Western
blotting

Reduced
expression: TYR [64]

Limonium
tetragonum

(Thunb.) Bul-
lock/Plumbaginaceae

whole
plant

water,
methanol,
buthanol

myricetin
3-galactoside and

quercetin 3-O-
-galactopyronaside

5–20 µg/mL
RT-PCR,
Western
blotting

Reduced
expression: MITF,

TYR, TYRP-1,
TYRP-2

[65]

Myrica rubra
(Lour.) Siebold &
Zucc./Myricaceae

fruits water

myricetin-O-
deoxyhexoside,

quercetin-O-
deoxyhexoside,

and aempferol-O-
hexoside

0.5–2 mg/mL
RT-PCR,
Western
blotting

Reduced
expression: MITF,

TYRP-1,
[66]



Molecules 2022, 27, 4360 9 of 21

Table 2. Cont.

Name of
Species/Family

Part of
Plant

Type of
Solvent

Identified
Compounds Concentration Methods Effects Ref.

Nigella sativa
L./Ranunculaceae seed Thymocid® thymoquinone 20 µg/mL

RT-PCR,
Western
blotting

Reduced
expression: MITF,
TYRP-1, TYRP-2

[67]

Petasites japonicus
(Siebold & Zucc.)

Maxim./Asteraceae

leaves,
stems, and

roots
water

leaf extract-
isorhamnetin

(main)
root

extract-p-coumaric
acid (main)

50–200 µg/mL
RT-PCR,
Western
blotting

Reduced
expression: TYR [68]

Phyllanthus emblica
L./Phyllanthaceae branch ethanol gallic acid and

vanillic acid 6.25–25 µg/mL RT-PCR
Reduced

expression: TYR,
TYRP-1, TYRP-2

[69]

Pueraria montana
(Lour.)

Merr./Fabaceae
aerial parts ethanol

daidzein, daidzin,
glycitein, glycitin,
genistein, genistin

10–100 µg/mL
RT-PCR,
Western
blotting

Reduced
expression: TYR [70]

Pueraria montana
(Lour.)

Merr./Fabaceae
stems n-

hexane 12 compounds 50 µg/mL RT-PCR Reduced
expression: TYR [71]

Rhododendron
weyrichii

Maxim./Ericaceae
Durande

flowers ethanol p-coumaric acid 25–200 µg/mL Western
blotting

Reduced
expression: TYR,
TYRP-1, TYRP-2

[72]

Sorghum bicolor (L.)
Moench/Poaceae

whole
plant ethanol

1-O-ca
eoylglycerol, dica

eoylglycerides,
1,3-O-dica

eoylglycerol,
p-coumaroyl-ca

eoylglycerol,
feruloyl-ca

eoylglycerol,
Tricin, 9-

hydroxyoctadecadienoic
acid

2–10 µg/mL Western
blotting

Reduced
expression: MITF,

TYRP-1,
[73]

Vernonia
anthelmintica (L.)

Willd./Asteraceae

whole
plant ethanol

15 compounds
(mainly

flavonoids)
20 µg/mL Western

blotting
Increased

expression: TYR [74]

Table 3. Modulation on gene expression related to melanogenesis in B16 melanoma cells by isolated
plant compounds.

Name of
Species/Family Part of Plant Compounds Concentration Methods Effects Ref.

Acanthopanax
koreanum

Nakai/Araliaceae
roots acanthoic acid 25–100 µg/mL Western

blotting

Reduced
expression: TYR,
TYRP-1, TYRP-2

[75]

Artemisia capillaris
Thunb./Asteraceae whole plant leukodin 37.5–150 µg/mL Western

blotting

Reduced
expression:

TYRP-1, TYRP-2
[57]

Artemisia capillaris
Thunb./Asteraceae whole plant

isofraxidin 7-O-(6′-O-p-
coumaroyl)-β-

glucopyranoside
25 µg/mL RT-PCR

Increased
expression: MITF,

TYR
[76]

Artemisia capillaris
Thunb./Asteraceae

leaves and
stems

4,5-O-dicaffeoylquinic
acid 25 µg/mL RT-PCR

Reduced
expression:

TYRP-1
[77]
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Table 3. Cont.

Name of
Species/Family Part of Plant Compounds Concentration Methods Effects Ref.

Caesalpinia sappan
L./Fabaceae heartwood sappanone A 4.4 µg/mL RT-PCR Reduced

expression: TYR [78]

Crocus sativus
L./Iridaceae stigmas crocetin 0.5–32 µg/mL Western

blotting
Reduced

expression: MITF [79]

Cuscuta chinensis
Lam./Convolvulaceae whole plant polysaccharide 40–160 µg/mL Western

blotting

Reduced
expression: MITF,

TYR, TYRP-1
[80]

Ephedra sinica
Stapf/Ephedraceae roots ephedrannins A and B A: 18–72 µg/mL;

B: 1.85–7.4 µg/mL RT-PCR Reduced
expression: TYR [81]

Fragaria × ananassa
(Duchesne ex

Weston) Duchesne ex
Rozier/Rosaceae

calyx oleanolic acid 12.5 µg/mL Western
blotting

Reduced
expression: TYR,
TYRP-1, TYRP-2

[82]

Isodon trichocarpus
(Maxim.)

Kudô./Lamiaceae
aerial parts enmein, isodocarpin,

nodosin, oridonin 1–3 µg/mL RT-PCR
Reduced

expression: TYR,
TYRP-1, TYRP-2

[83]

Jatropha multifida
L./Euphorbiaceae stems Secoisolariciresinol 6.25–200 µg/mL RT-PCR Reduced

expression: TYR [84]

Kaempferia parviflora
Wall. ex

Baker/Zingiberaceae
rhizomes

5-hydroxy-7,3′,4′-
trimethoxyflavone,

5,7,3′,4′-
tetramethoxyflavone,

5,3′-
dihydroxy-3,7,4′-

trimethoxyflavone and
5-hydroxy-3,7,3′,4′-

tetramethoxyflavone

3–30 µg/mL RT-PCR
Reduced

expression: TYR,
TYRP-1, TYRP-2

[85]

Limonium tetragonum
(Thunb.) Bul-

lock/Plumbaginaceae
whole plant

myricetin 3-galactoside
and quercetin

3-O-galactopyronaside
10 µg/mL Western

blotting

Reduced
expression:

TYRP-1, TYRP-2
[65]

Persicaria amphibia
(L.) Delar-

bre/Polygonaceae
whole plant epicatechin-3-O-

gallate 25–200 µg/mL Western
blotting

Reduced
expression: MITF,

TYR, TYRP-1,
TYRP-2

[86]

Pteris dispar
Kunze/Pteridaceae leaves

ent -11α-hydroxy-15-
oxo-kaur-16-en-19-oic

acid
10 µg/mL

RT-PCR,
Western
blotting

Reduced
expression: TYR [87]

Pyracantha
angustifolia (Franch.)

C.K.Schneid./Rosaceae

leaves, twigs,
and fruits β-D-glucosylester and

cimidahurinine
10–100 µg/mL Western

blotting

Reduced
expression:

TYRP-1, TYRP-2
[88]

Stewartia
pseudocamellia

Maxim.
twigs

stewartianol and
stewartianol-

3-O-glucoside
20–80 µg/mL Western

blotting
Reduced

expression: MITF [89]

Stewartia
pseudocamellia

Maxim.
twigs

stewartianol and
stewartianol-

3-O-glucoside
20–80 µg/mL Western

blotting
Reduced

expression: MITF [89]

Tetragonia
tetragonoides (Pall.)
Kuntze/Aizoaceae

whole plant ferulic acid 5–20 µg/mL Western
blotting

Reduced
expression: MITF,

TYR
[90]

Vitellaria paradoxa
C.F.Gaertn./Sapotaceae fruit glucosylcucurbic acid

and cucurbic acid 30–100 µg/mL Western
blotting

Reduced
expression: MITF,

TYR, TYRP-1,
TYRP-2

[91]

Weigela subsessilis
(Nakai) L.H.

Bailey/Caprifoliaceae
aerial parts

loniceroside A,
loniceroside

L
1–20 µg/mL Western

blotting

Increased
expression: MITF,

TYR
[92]
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5.1. cAMP/PKA Signaling Pathway

The neuromodulating peptide α-MSH is released by keratinocytes after stimulation
with pro-inflammatory cytokines or UV light. The junction of ligand to MCR1 located on
the melanocyte cell surface activates adenylyl cyclase, responsible for the synthesis of cAMP.
Increased cAMP levels cause stimulation of PKA. Both the cAMP level and melanin produc-
tion are increased following treatment of B16 melanoma cells with 1,5-dicaffeoylquinic acid
isolated from Vernonia anthelmintica seeds [93]. Phyllostachys nigra stem extracts were found
to have an anti-melanogenic effect in B16 melanoma cells by decreasing intracellular cAMP
and PKA levels [94], as did Dendropanax morbiferus leaves [95] and Lotus seedpod extract [96].
Among single-derived compounds, bisabolangelone, a sesquiterpene derivative, isolated
from Angelica koreana roots [97] and arctigenin, a lignan, from Arctium lappa seeds inhibit
cAMP-dependent PKA activation [98].

PKA entails phosphorylation at Ser133 of cAMP-response element binding protein
(CREB) and subsequent activation of MITF expression. The extracts that up-regulate pig-
ment formation are Melia azedarach bark [99] and Dalbergia odorifera fruit [100]. In B16
melanoma cells, they increase the intracellular cAMP level and PKA activity, translat-
ing to increased phosphorylation of CREB, its downstream signaling protein, followed
by up-regulation of MITF and TYR expression. However, no effects on MAPKs were
observed. Moreover, CREB was activated by cirsimaritin, a dimethoxyflavone, isolated
from the branches of Lithocarpus dealbatus [101], hesperetin, a flavanone glycoside, from
Citrus sinensis, Citrus aurantium and Citrus reticulata extract [102] and scopoletin, a hydrox-
ycoumarin, from the aerial parts of Cirsium setidens [103]. The opposite effect on phos-
phorylation of PKA and CREB are interfered with by Nelumbo nucifera leaf extract [104].
Rhodiola rosea root extract [105], Elaeagnus umbellate branches and leaves [106], Oenothera
laciniata extracts [107] and Kadsura coccinea roots, stems, leaves, fruits [108] extracts in-
hibited the phosphorylation of CREB followed by downregulation of MITF and TYR
expression. Similar inhibitory effects on CREB exerts isoorientin, a flavone glycoside,
derived from Gentiana veitchiorum flowers [109], polysaccharide from Morchella esculenta
fruits [110], loganin, an iridoid monoterpenoid, from Cornus officinalis [111], kaempferol-7-O-
β-D-glucuronide, flavonol glucoside, and tilianin, a flavonoid glycoside, isolated from aerial
parts Cryptotaenia japonica [112], moracin J, a 2-arylbenzofuran flavonoid, from leaves of
Morus alba [113], and 6-O-isobutyrylbritannilactone from the flowers of Inula britannica [114].
This pathway is also suppressed by Phoenix dactylifera seed extract that decreased the ex-
pression of MC1R [115].

5.2. MAPKs Signaling Pathway

Both α-MSH-MC1R and SCF-c-KIT junction may modulate the MAPKs pathway.
MAPKs regulate cell proliferation, differentiation, motility and survival by converting
extracellular signals into intracellular cellular responses. The best-studied Ser/Thr kinases
in this family are extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-
terminal kinases 1–3 (JNK 1 to -3), and p38 (α, β, γ, and δ). Each of these groups consists of
a set of three sequentially acting kinases: MAPK, MAPK kinase (MAPKK) and MAPKK
kinase (MAPKKK). Activation of MAPKKK leads to phosphorylation and activation of
MAPKK, which in turn activates MAPK through dual phosphorylation of Thr residues
within the Thr-X-Thr motif located in the activation loop of the kinase domain [116].

It is assumed that the increased level of cAMP triggered by MC1R activation is fol-
lowed by induction of ERK in a cell-type seemed to be mediated by B-RAF, such as
melanoma cells [117]. cAMP levels seemed to have the opposite effect on p38 activity.
The effect of cAMP on the JNK signaling cascades has been less explored; however, in the
majority of cells, increased cAMP levels appeared to modulate JNK activity [118].

SCF is a growth factor secreted by human keratinocytes and fibroblasts under UV radi-
ation [119,120]. It is believed to be involved in the dimerization and autophosphorylation
of the c-KIT receptor by binding to the extracellular domain, thus activating it. Phosphory-
lation at Y703 and Y936 induce MAPKs. Following activation, the c-KIT phosphorylates
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the small GTPase (Ras), which in turn induces proto-oncogene serine/threonine-protein
kinase (Raf-1) followed by the MAPKs signaling pathway [121].

Activated p38 induces melanogenesis via CREB phosphorylation followed by MITF
activation and TYR expression. Activation of ERK phosphorylates MITF at Ser73, leading
to its degradation via ubiquitination and thus inhibiting melanogenesis. JNK activation
may modulate melanogenesis through phosphorylation of CREB-regulated transcription
co-activator 3 (CRTC3)-dependent MITF expression [122,123].

P38 positively regulates melanin synthesis in the B16 melanoma cell line [2]. In this
line, Polygonum multiflorum root extract was found to up-regulate p38 phosphorylation, thus
activating melanogenesis [124]; the same effects were observed for Vernonia anthelmintica
seed extract [125] and Annona squamosa leaf extract [126]. In contrast, treatment with
Cuscuta japonica seed extract [127], Morinda citrifolia fruit and leaf extract [128], Dendropanax
morbiferus leaf extract [95] or Lotus seedpod extract [96] were found to downregulate p38
phosphorylation and thus inhibit melanogenesis. Similar effects are demonstrated by the
polysaccharide from Morchella esculenta fruits [110], methyl 3,5-di-caffeoylquinate from the
stems and leaves of Erigeron annuus [129] and moracin J, a 2-arylbenzofuran flavonoid,
from Morus alba leaves [113].

ERK negatively regulates melanin synthesis in the B16 melanoma cell line. ERK
may be suppressed by Ardisia crenata leaf and small branch extract [130] and by lu-
penone, a triterpenoid, isolated from Erica multiflora leaf [131]. In contrast, ERK may
be upregulated, and melanogenesis suppressed, by Astragalus membranaceus whole plant
extract [132], Aster yomena callus pellet extract [133], Melochia corchorifolia whole plant
extract [134], Artemisia capillaris whole plant extract [135], Orostachys japonicus whole
plant extract [136], and Aster spathulifolius leaf extract treatment [137]. Similar effects
are also triggered by 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol isolated
from Juglans mandshurica fruits [138], 1-O-acetylbritannilactone from Inula britannica flow-
ers [139], zerumbone, a sesquiterpenoid, from Zingiber officinale [140], octaphlorethol A, a
phenolic compound, from Ishige foliacea [141], 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-
1,3-propanediol from Juglans mandshurica fruits [138], loganin, an iridoid monoterpenoid,
from Cornus officinalis [111], neobavaisoflavone, a 7-hydroxyisoflavone, from aerial parts of
Pueraria lobata [142], 6-O-isobutyrylbritannilactone from Inula britannica flowers [128] and
quercitrin, a quercetin O-glycoside, from Lindera obtusiloba leaves [143].

Arctium lappa leaf extract was found to inhibit melanogenesis in B16 melanoma cells
by regulating JNK phosphorylation [144].

Many studies have examined the influence of plant extracts and isolated compounds
on various MAPKs in B16 melanoma cells. Extracts derived from Artocarpus communis
heartwood [145], Phyla nodiflora aerial part [146] and Oenothera laciniata [107] were found to
modulate ERK and JNK phosphorylation, resulting in anti-melanogenic effects. Similar
results were obtained for kaempferol-7-O-β-D-glucuronide and tilianin, a flavonoid glyco-
side isolated from the aerial parts of Cryptotaenia japonica [126]. Penthorum chinense whole
plant extract [147], Kaempferia galanga whole plant extract [148] and Phragmites communis
leaf extract [149] were found to modulate both p38 and JNK phosphorylation, followed by
reduced melanin production, in B16 melanoma cells. This phosphorylation was also modu-
lated by norartocarpetin, a flavone, obtained from Artocarpus communis heartwood [150].
Argania spinosa fruit extract [151] upregulates melanogenesis through the modulation of
p38 and ERK signaling. Among single-derived compounds this effect was obtained for
cynarine, a hydroxycinnamic acid derivative, extracted from Vernonia anthelmintica [93] and
hesperetin, a flavanone glycoside, from Citrus sinensis, Citrus aurantium and Citrus reticulata
extract [102]. Eupafolin, a flavone, isolated from the aerial part of Phyla nodiflora was found
to suppress melanogenesis via p38 and ERK modulation in B16 cells [152]. Paederia foetida
whole plant extract was found to modulate the activity of all MAPKs, resulting in inhibited
melanin production [153]; this was also observed for Rosa gallica petal extract [154] as
well as dihydromyricetin, a flavanonol, isolated from the leaves and stems of Ampelopsis
grossedentata [155].



Molecules 2022, 27, 4360 13 of 21

5.3. PI3K/AKT Signaling Pathway

MC1R activated by α-MSH, as well as c-KIT activated by SCF, can also modulate the
PI3K/AKT pathway: a very important process regulating cell proliferation and survival. It
has been shown that MC1R activation followed by induction of cAMP leads to the inhibi-
tion of PI3K activity and of AKT phosphorylation and activity. Inactive AKT is unable to
phosphorylate glycogen synthase kinase 3 beta (GSK3β) [156–158]; this phosphorylation
is needed for β-catenin accumulation, followed by translocation to the nucleus. This in
turn stimulates MITF activity and TYR gene expression. SCF is believed to be involved in
the dimerization and autophosphorylation of the c-KIT receptor by binding to the extra-
cellular domain, thus activating it, phosphorylation at Y721 and PI3K pathway induction.
Activated AKT phosphorylate GSK3β becomes inactivated and targeted for proteasomal
degradation [121,159].

In B16 melanoma cells, Musa sapientum peel extract [160], Aster yomena callus pellet ex-
tract [133] and Orostachys japonicus whole plant [136] treatment reduced phosphorylation of
AKT, and these might act as anti-melanogenesis agents. Upregulation of AKT by Phragmites
communis leaf extract [149], Aster spathulifolius leaf extract treatment [137] and Ginkgo biloba
leaf extract [161] may also inhibit melanin synthesis. Among plant-derived compounds,
1-O-acetylbritannilactone obtained from Inula britannica flowers [139], eupafolin, a flavone,
isolated from aerial part of Phyla nodiflora [152] and 6-O-isobutyrylbritannilactone from
the flowers of Inula britannica have been found to increase AKT signaling in B16 cells [114].
GSK3β activation is stimulated by hesperetin, a flavanone glycoside, from Citrus sinensis,
Citrus aurantium and Citrus reticulata extract [102], an agent with melanogenic potential;
and is also inactivated by isoorientin, a flavone glycoside, derived from Gentiana veitchio-
rum flowers, and neobavaisoflavone, a 7-hydroxyisoflavone, from aerial parts of Pueraria
lobata [142], agents with whitening potential [109].

5.4. In Vivo Studies

In some studies, given above, in vivo analyses were also conducted in addition to
the in vitro study and evaluation of signaling pathway modulation by plant extracts and
compounds isolated from plants. The melanocyte activity and the distribution of melanin
granules were decreased in UVB-irradiated C57BL/6 mice treated with Aster spathulifolius
leaf extract. Mice were exposed to UVB radiation at a dose of 100 mJ/cm2 for 10 days.
Extract was orally administered for 9 weeks at 35, 70 and 140 mg/kg concentrations [137].
Nelumbo nucifera leaf extract reduced skin melanogenesis induced by UVB radiation in
guinea pigs. The animals were exposed to UVB radiation three times a week for two weeks.
The total UVB dose was 500 mJ/cm2 per exposure. Then, 1 or 2% of extract was given
topically to the UVB-irradiated regions the next day [96]. Treatment of subjects with skin
pigmentation with Aster yomena callus pellet extract-containing cream formulations resulted
in 3.33%, 7.06%, and 8.68% improvements in melanin levels at 2, 4, and 8 weeks, respectively.
These results suggest that Aster spathulifolius, Nelumbo nucifera and Aster yomena extracts
might be vulnerable and promising therapeutics as agents for hyperpigmentation [133].

Studies based on single compounds indicate that arctigenin from Fructus arctii demon-
strated antimelanogenic activity using zebrafish embryo. Arctigenin was added directly in
fish water at final concentrations of 1, 10, and 100 µM [98]. The same result was obtained
for the zebrafish embryo treated with 10, 50, or 100 µM 6-O-isobutyrylbritannilactone
from Inula britannica [114]. In addition, a similar result was also observed for the ze-
brafish embryo treated with 75, 150 and 300 µg/mL heteropolysaccharide from Morchella
esculenta [110]. The embryos had significantly reduced pigmentation in the arctigenin,
6-O-isobutyrylbritannilactone and heteropolysaccharide-treated specimens. In conclusion,
the results suggest that these compounds have potential as a skin-whitening agent for
hyperpigmentation.
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6. Mechanisms of Melanogenesis-Related Signaling Pathway Modulation by Plant
Extracts and Single-Derived Compounds in B16 Cells Stimulated by UV Radiation

Exposure to UV radiation has deleterious effects on human skin followed by acute
and chronic skin damage. It also generates the production of ROS and proinflammatory
cytokines. Both experimental and epidemiological data indicate that the melanin present in
skin plays an important role in photoprotection.

UV radiation interferes directly with macromolecules, including proteins, lipids and
nucleic acids. Interactions with nucleic acids in skin cells may contribute to DNA damage.
If these mutations occur in genes responsible for the regulation of repair processes, cell
cycle or apoptosis, they may subsequently initiate oncogenic transformation.

UVA can generate ROS, which are capable of inducing oxidative DNA damage: singlet
oxygen activity and type 1 photosensitization reactions result in oxidative modifications of
nitrogenous bases, mainly guanine. If not repaired, 7,8-dihydro-8-oxoguanine lesions are
formed leading to mutations. The major mutations are the G -> A transition and the G -> T
transversion. Cyclobutanopyrimidine dimers (CPDs) may also form.

UVB leads to the formation of photoproducts such as CPDs and pyrimidine 6-4
pyrimidones in DNA due to the activation of a photochemical reaction, usually occurring
between adjacent pyrimidine nucleotides. If left unrepaired, they can lead to mutations,
including C -> T and CC -> TT transition mutations, and oncogenesis [162].

UV radiation exposure induces DNA damage in keratinocytes and activates the p53
tumor suppressor protein, which can bind to and activate the pro-opiomelanocortin (POMC)
promoter. It can also induce production of subunit melanogenic peptides, including α-MSH
which binds to the MCR1 on melanocytes, thus stimulating the expression of genes involved
in melanin production [163].

Certain plant extracts and isolated plant compounds are able to inhibit UV-induced
melanogenesis, as observed in stimulated B16 melanoma cells. Psidium guajava leaf [164]
and Foeniculum vulgare fruit [165] extracts block the activity of TYR and calcium release-
activated calcium channel protein 1 (ORAI1). The ORAI1 channel is also inhibited by
valencene, a sesquiterpene, isolated from the rhizomes of Cyperus rotundus [166].

UV radiation directly induces intracellular calcium signaling in melanocytes, mediated
in part by the ORAI1 channel. In addition, UV radiation stimulates melanocytes through
compounds such as endothelin 1 (ET-1) released by keratinocytes. Activation of the ET-1
receptor also triggers intracellular calcium signaling, mediated by ORAI-1. Increased
calcium levels activate TYR, resulting in melanin production. Therefore, ORAC channel
antagonists play a key role in inhibiting UV-induced melanogenesis [167,168].

7. Conclusions

Plant extracts or isolated plant compounds, including in particular phenolics and
terpenes may act as activators or inhibitors of key signaling pathways, such as cAMP/PKA,
MAPKs and PI3K/AKT in melanocytes. Such modulation influences the expression of
proteins, including master regulator of melanogenesis-MITF. Therefore, natural chemicals
may serve as useful ingredients for reducing skin pigmentation or activating pigment
formation. However, despite the very high potential of plant-derived molecules, proposals
for the future work include improved exploration of the signaling pathways that may be
modulated by phytochemicals in the melanogenesis process as well as better evaluation of
their effects on living organisms.
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