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A B S T R A C T

Marine mammals play a critical role as sentinels for tracking the spread of zoonotic diseases, with viruses being
the primary causative factor behind infectious disease induced mortality events. A systematic review was con-
ducted to document marine mammal mortality events attributed to zoonotic viral infections in published liter-
ature across the globe. This rigorous search strategy yielded 2883 studies with 88 meeting inclusion criteria. The
studies spanned from 1989 to 2023, with a peak in publications observed in 2020. Most of the included studies
were retrospective, providing valuable insights into historical trends. The United States (U.S.) reported the
highest number of mortality events followed by Spain, Italy, Brazil and the United Kingdom. Harbor seals were
the most impacted species, particularly in regions like Anholt, Denmark and the New England Coast, U.S.
Analysis revealed six main viruses responsible for mortality events, with Morbillivirus causing the highest pro-
portion of deaths. Notably, the occurrence of these viral events varied geographically, with distinct patterns
observed in different regions. Immunohistochemistry emerged as the most employed detection method. This
study underscores the importance of global surveillance efforts in understanding and mitigating the impact of
viral infections on marine mammal populations, thereby emphasizing the necessity of collaborative One Health
approaches to address emerging threats at the human-animal-environment interface. Additionally, the potential
transfer of zoonotic viruses to aquatic organisms used in food production, such as fish and shellfish, highlights
the broader implications for food safety, food security and public health.

1. Introduction

Zoonoses (diseases that can spread from animals to humans) is one of
the five distinct pillars of the One Health action framework [1]. The One
Health concept aims to prevent and control zoonoses through collabo-
ration and communication among stakeholders involved in animal,
human and environmental health [2]. It is estimated that about 60% of
all emerging infectious diseases (EIDs) are zoonotic, with around 70%
spreading from wild animals [2–5]. It is documented that EID events
that originated from wildlife are significantly increasing temporally [5].
Drivers of increasing EID events include climate change, urbanization,
deforestation, unsustainable agricultural practices, trafficking and
eating of wildlife animals [6]. While the rise of zoonotic diseases in
terrestrial settings is evident, attributable to heightened interactions
between humans and animals, the extent of a comparable increase in
such diseases in marine environments remains less apparent. According
to a recent analysis, there has been a notable surge in infectious disease-
related mass mortality events (ID-MME) among marine mammals over

the past three decades, with viruses being identified as the primary
causative agents [7].

Several viruses are known to cause zoonotic diseases in marine
mammals. Calicivirus exemplifies a zoonotic virus that originates in the
ocean and has crossed over from sea lions to swine, causing vesicular
dermatitis and influenza-like illnesses in both marine mammals and
swine. [8–10]. Parapoxvirus is known to cause seal finger disease which
results in nodular lesions (abnormal growth) in the skin around the neck
and head in pinnipeds [11]. Additionally, first responders during Un-
usual Mortality Events (UME) have contracted sealpox from marine
mammals infected with parapoxviruses, resulting in symptoms like
contagious pustular dermatitis or lesions [12,13]. Since 1988, morbil-
liviruses have been responsible for more than half of ID-MMEs in marine
mammals, displaying symptoms such as skin lesions, pneumonia, brain
infections, and pup abortions [14,15]. While distemper viruses are not
typically transmissible to humans, evidence suggests that canine dis-
temper virus (CDV) can adapt to human cell receptors, indicating a
potential for zoonotic spillover [16,17]. Influenza A virus (IAV) ranks as
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the second leading cause of viral ID-MMEs in marine mammals, with
reports of harbor seal die-offs due to acute hemorrhagic pneumonia
dating back to 1979 [7,18]. Several cases of conjunctivitis resulting from
IAV spillover events from seals to humans were documented in 1981
[19]. Therefore, a systematic review on marine mammal mortality
events is essential to comprehensively understand the scope and impact
of zoonotic viruses in marine ecosystems, thereby informing effective
strategies for disease surveillance, prevention, and management.

Inhabiting diverse environments, capable of extensive travel and
long life-spans, marine mammals could serve as sentinel species for
identifying potential “hot spots” of zoonotic viral diseases, offering

valuable insights into various habitats [20]. Marinemammal fatalities or
strandings can serve as indicators that alert researchers to the potential
presence of diseases in wild animals that are otherwise challenging to
access [21]. Marine mammals are classified as “stranded” when
discovered either deceased on the shore or afloat in the water, or when
found alive on the beach but unable to return to the water [22]. Several
infectious disease agents, including phocine distemper virus (PDV)
responsible for an outbreak that resulted in over 18,000 harbor seal
deaths in Europe in 1988 [23], phocine herpesvirus (PhHV1) isolated
from harbor seals in 1985 [24], and Brucella bacteria in various species
[25,26], were initially identified in stranded marine mammals.

Fig. 1. PRISMA review process flow chart generated by Covidence.
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Recognizing areas experiencing a rise in ID-MMEs and/or mortality
“hot spots” are essential for applying the Generalizable One Health
Framework (GOHF) [27]. This framework offers a structured five-step
approach to prevent and control zoonotic viruses, thereby mitigating
the risk of outbreaks. Over the years, several viruses have been impli-
cated in marine mammal mortalities, primarily morbilliviruses and
Influenza A [7,28]. To identify additional viruses accountable for the
majority of ID-MMEs and their implications for specific marine mammal
species, a critical step involves thoroughly examining existing literature
from diverse sources. This process aids in prioritizing a list of zoonotic
diseases among marine mammals that pose significant concerns to
various global populations.

Zoonotic viruses found in marine mammals, such as morbilliviruses
and influenza viruses, can potentially be transferred to other aquatic
organisms used in food production and aquaculture through shared
marine environments and direct contact. These viruses can contaminate
water bodies, which are then inhabited by fish and shellfish farmed for
human consumption [29]. The transmission can occur through the
shedding of viral particles by infected marine mammals, which can then
be ingested or come into contact with aquaculture species, leading to
outbreaks within these populations [30]. Utilizing marine mammals as
sentinel species to monitor regions with increased zoonotic viral out-
breaks is essential for safeguarding food production [20,31]. A recent
study showed that metagenomic sequences of fecal and serum samples
frommarine mammals aligned with sequences of viral families known to
cause mortality events in fish and bivalves [32]. Marine mammals, due
to their position in the marine food web and their interactions with
various marine environments, can provide early warning of the presence
of pathogens and their transmission pathways [20]. This proactive
approach allows for the timely implementation of biosecurity measures
and surveillance protocols in aquaculture industries, thereby reducing
the risk of zoonotic virus transmission to food production systems and
ultimately protecting public health.

In addition to pinpointing zoonotic viruses posing the highest risk to

diverse marine mammal populations, it is crucial to acknowledge
commonly utilized laboratory techniques. This recognition is essential
for developing effective One Health plans, protocols, and procedures for
zoonotic viral disease detection and mitigation [27]. Previous reviews
on marine mammal viruses either focused on disease manifestations,
disease drivers, one particular virus of concern or marine mammal
species, are out dated, or were not written systematically according to
the Preferred Reporting Items for Systematic reviews and MetaAnalysis
(PRISMA) [7,11,28,33–45]. To analyze viruses responsible for zoonotic
mortality events in marine mammals and their detection methods, we
conducted a systematic literature review, scrutinizing the scope and
details of relevant information available in existing literature up to
2023. Therefore, the aims of this review were to (i) compile instances of
virus mortality events in marine mammals worldwide, pinpointing re-
gions of heightened occurrence and areas with underreported events,
(ii) determine the predominant viruses responsible for these mortality
events up to 2024, (iii) assess the prevalent viral detection techniques
utilized during such incidents, and (iv) ascertain the marine mammal
species most impacted by these virus-induced mortality events.

2. Methods

2.1. Literature search strategy and selection

This review was performed according to the PRISMA guidelines [35]
using the Covidence systematic review software [46]. We searched
PubMed, Web of Science, and Scopus in July 2022 and updated this once
in September 2023 to capture current references. These queries were
performed without any time restrictions and only published articles
limited to the language English were accepted. The search terms used
were input as: (“marine mammal”) OR (“whale”)) OR (“dolphin”)) OR
(“porpoise”)) OR (“pinniped”)) OR (“cetacean”)) OR (“seal”)) OR (“sea
lion”)) OR (“walrus”)) OR (“sirenian”)) OR (“manatee”)) OR
(“dugong”)) OR (“fissiped”)) OR (“polar bear”)) OR (“sea otter”)) AND

Fig. 2. Total virus-caused marine mammal mortalities separated by species common name.
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(“zoonotic”)) OR (“epizootic”)) AND (“virus”)) AND (“mortality”). The
criteria for article inclusion in this review was that the study included a
virus mortality event that involved a marine mammal. Titles and ab-
stracts were initially screened by two authors (KV and HW) in Covidence
for inclusion criteria and the articles that were deemed eligible were
exported into End Note v20.5 to retrieve the full text format. Conflicts
between the authors during the initial screening process were tracked
using Covidence and resolved by excluding articles that (i) no marine
virus mortality event occurred, (ii) no viral testing was conducted, iii) no
marine mammal death, and (iv) the article was a review article. All
eligible full text articles were imported back into Covidence for full text
review and data extraction.

2.2. Data extraction and synthesis

A data extraction template was created in Covidence to extract all
relevant data. The following information was extracted from the eligible
publications: Covidence identification number, study identification,
title, publication year, journal name, retrospective study (yes or no),
location of mortality event (s) (country and region), longitude, latitude,
date the mortality event occurred, marine mammal taxonomic group
(cetacean, pinniped, fissiped, and/or sirenian), marine mammal com-
mon name, marine mammal scientific name (genus and specie), total
mortality count, virus genus, virus species or strain, detection method(s)
and source of virus transmission (unknown, avian, aerosol, cross-species

transmission or endemic). Cetaceans include whales, dolphins and
porpoises; pinnipeds include seals, sea lions, and walruses; fissipeds
include polar bears and sea otters; sirenians include dugongs and man-
atees. A study was considered retrospective if it was published within 5
years after the marine mammal mortality event. If longitude and latitude
were not clearly stated in the methods section of the journal articles,
then it was extrapolated using Google Maps [47] from the region listed.
Summary statistics and figures were computed using R v4.3.2 [48].
Figures and maps were produced using the packages, ggplot2 [49] and
tidyverse [50] for R and Tulane Universities’ ArcGIS online Portal
(https://tulane.maps.arcgis.com/apps/mapviewer/index.html).

3. Results

3.1. Selected studies

The search strategy is summarized in Fig. 1. The database search
retrieved 2883 studies with 1692 from Scopus, 602 fromWeb of Science
and 589 from PubMed. After exclusion of 734 duplicates, 2149 studies
were screened with 1993 studies deemed irrelevant. A total of 156
studies were assessed for eligibility and 68 studies were excluded. A total
of 88 studies [51–138] were included in the systematic review and de-
tails of the included studies are shown in supplementary_material_2.xlsx
file. Those studies were published from 1989 to 2023, with the most
virus-caused marine mammal mortality publications occurring in 2020

Fig. 3. World map of total virus-caused marine mammal deaths (in log) by marine mammal type. The green dot sizes in the figure legend correspond to the total log
marine mammal deaths from 0 to 4.22608. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[65,66,75,79,80,82–85] (Fig. S1). There was a noticeable gap in publi-
cations between 2001 and 2006 and 2006–2009. Only 41% of the 88
studies were considered as retrospective studies [54,55,58,60,
66,68,70–74,76,78–80,82,84,85,91–95,97,98,100,102–104,108,110,
114–116,119,124,125,127,129,138], while 59% were non-retro
spective [51–53,56,59,61,62,64,65,67,69,75,77,81,83,86–90,96,99,
101,105–107,109,111–113,117,118,120–123,128,130–137].

3.2. Occurrence of marine mammal mortality events caused by viruses

A total of 30 countries reported virus-caused mortality events with a
total of 124,094 marine mammal deaths. These countries included
Australia, Azerbaijan, Belgium, Brazil, Bulgaria, Canada, Denmark,
Ecuador, France, Germany, Greece, Ireland, Israel, Italy, Japan,
Kazakhstan, Mauritius, Netherlands, Peru, Poland, Portugal, Romania,
Russia, Spain, Sweden, Taiwan, Thailand, Ukraine, United Kingdom (U.
K.), and United States (U.S.) (Fig. S2). Within the 88 studies, the U.S.
reported the most marine mammal mortalities (24%)
[51,57,61,66,68,76,78,82,84,101,103,114,115,117,120,122,124–127
,129], followed by Spain (20%) [52,62,63,70,71,74,79,83,93–95,
102,108,125,128,130], Italy (15%) [73,80,86,87,97,99,105,110–112,
131,132,135], Brazil (8%) [60,72,75,81,90,96], UK (6%) [55,65,
67,77,91], Australia (5%) [100,106,113,138], Netherlands (5%)
[64,85,91,107], Denmark (3%) [53,69,91], Germany (3%) [56,85,115],
Ireland (3%) [125,134], Russia (3%) [54,59,123], Canada (2%)
[67,129], and Portugal (2%) [92,102]. The other 12 countries not listed

above were reported in 1% of the publications. The top 10 countries
with the most virus-caused marine mammal mortalities were, Denmark,
U.S., Spain, Portugal, Italy, Germany, U.K., France, Brazil, and Australia
(Table S1). Denmark and the U.S. had the highest mortalities at 68390
(55%) and 47,996 (38%), respectively, with harbor seals (Phoca vitulina)
being the most impacted from both countries (89.7%) (Table S1). Anholt
and the New England Coast were specific locations where the most
marine mammal viral mortalities occurred in Denmark and the U.S.,
respectively.

Harbor seals (Phoca vitulina) (92.2%) were reported to have the most
mortalities caused by viruses, followed by striped dolphins (Stenella
coeruleoalba) (1.7%), bottlenose dolphins (Tursiops truncatus) (1.1%),
common dolphins (Delphinus delphis) (1%), grey seals (Halichoerus gry-
pus) (0.9%), Mediterranean striped dolphins (Stenella coeruleoalba)
(0.73%), sea otters (Enhydra lutris) (0.46%), Guiana dolphins (Sotalia
guianensis) (0.28%), Indio-Pacific bottlenose dolphins (Tursiops aduncus)
(0.21%), and Cuvier’s beaked whales (Ziphius cavirostris) (0.21%)
(Fig. 2). Most of the seal deaths concentrated around the North Amer-
ican and Northern Europe regions, while dolphin and whale deaths
concentrated around Southern U.S., Southern Brazil, and Southern Eu-
ropean countries (Fig. 3). Pinnipeds (seals, sea lions, and walrus’) suf-
fered the most mortalities at 92.3%, with seals being the most affected
group at 91.5% (Figure’s S3 & S4). The highest mortalities occurred in
1988 for pinnipeds, followed by 2004 for cetaceans (whale, dolphin and
porpoise), and 2002 for fissipeds (sea otters) (Fig. 4). The highest
mortalities from the different marine mammal taxonomic groups were

Fig. 4. Total virus-(in log) caused marine mammal mortalities (in log) separated by mortality event start date and taxonomic group.
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Harbor seals (114,435 mortalities) for pinnipeds, stripped dolphins
(Stenella coeruleoalba) (2065 mortalities) for cetaceans, and sea otters
(Enhydra lutris) (572 mortalities) for fissipeds.

3.3. Viral etiology agents and their detection methods

From all the 88 included studies, a total of six viruses caused marine
mammal mortality events. These viruses includedMorbillivirus, Influenza
A, Herpesvirus, Adenovirus, and Parvovirus. Morbilliviruses caused the
most marine mammal mortalities at 62%, followed by Influenza A at
35%, Herpesvirus at 3%, Anellovirus at 0.05%, and Parvovirus at 0.003%,
Morbillivirus/Adenovirus (co-infection) 0.003%, respectively (Fig. S4).

Parvovirus caused higher mortalities in seals,Morbillivirus/Adenovirus
(co-infection) in otters,Morbillivirus in seals and dolphins, Influenza A in
seals, Herpesvirus in seals, and Anellovirus in seals (Fig. 5). Morbillivirus
(88.6%) caused the most mortalities in Denmark, Influenza A (99.9%) in
the USA, Herpesvirus (49.9%) in the USA, Morbillivirus/Adenvovirus
(51.3%) (co-infection) in the USA, Anellovirus (100%) in the USA, and
Parvovirus (100%) in the Netherlands (Table S2). Most of the deaths
caused by Morbillivirus occurred around the Northeastern and southern
U.S., Southern Brazil, Northern and Southern European countries
(Fig. S6). Different strains and subfamilies caused mortalities from their
respective viral genus or species. Canine distemper virus (CDV) was the
most abundant species from Anellovirus, followed by phocine-
herpesvirus-1 (PhHV-1) for Herpesvirus, H7N7 for Influenza A, cetacean
morbillivirus (CeMV) for Morbillivirus, CDV and cetacean adenvirus-2
(CAdV-2) of Morbillivirus/Adenovirus co-infection, and seal
annellovirus-3 (SeAV3) for Parvovirus (Fig. 6). Note that most of the
Morbillivirus strains or subfamilies were unknown or not reported in the
selected studies. 100% of the Influenza A viruses came from avian
sources with H7N7 causing the most mortalities in Harbor seals (Phoca
vitulina) on the New England Coast (USA) in 1979. 50.1% ofMorbillivirus

mortalities came from unknown sources, while 32.8% were cross-
species transmission, 16.8% were endemic and 0.32% were aerosol.
For Herpesvirus, 89.1% were from unknown sources, 10.8% were cross-
species transmission and 0.179% were endemic. All other viruses were
100% from unknown sources.

For identification of the etiology agents, immunohistochemistry
(IHC) (27%) was the most employed detection method followed by
histology (15%), pathology (14%), immunoperoxidase staining (14%),
and sequencing (13%), respectively (Fig. S5). Studies that used histo-
logical methods but did not include an antibody-based immune-stain
were designated under “histology.” PCR was mostly used to detect
Anellovirus and Herpesvirus, while reverse-transcriptase PCR (RT-PCR)
was used to detect Morbillivirus. Histology was mostly used to detect
Morbillivirus/Adenovirus, while sequencing was mostly used to detect
Influenza A. For Parvovirus histology was the most used method
(Table S3).

4. Discussion

Despite the observed rise in virus-associated mortality events among
marine mammals, this systematic review indicates that only 30 coun-
tries documented such incidents. Notably, Mexico, Central American
nations, Chile, China, India, several Southeast Asian countries, all
countries in Africa and the Middle Eastern countries did not report any
instances of marine mammal mortalities, despite their oceanic prox-
imity. Most of the seal, whale and dolphin mortality events were re-
ported in Europe and North America. It could be that these countries
have excessive marine mammal stranding networks [140], while other
parts of the world lack such networks. The lack of reporting could lead to
underreporting of ID-MMEs. It is important to point out that this review
exclusively considered publications from peer-reviewed journals,
potentially resulting in an underestimation of virus-caused marine

Fig. 5. Total number (in log) of marine mammal mortalities caused by different virus genus and/or species separated by marine mammal type.
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mammal mortalities. A considerable number of events could be reported
in other databases or reports (i.e. federal or state morbidity and mor-
tality reports) rather than in published literature [140]. Other factors
may contribute to the underreporting of marine mammal deaths by
several countries, such as, constrained resources [36], absence of robust
data management systems [140], insufficient awareness regarding the
significance of ID-MMEs [141], regulatory gaps [142], and limited in-
ternational collaborations [140].

Seals, in particular harbor seals, exhibited the highest occurrence of
mortalities among all 88 published literatures, with fatalities attributed
to all viruses except Adenovirus. Harbor seals have one of the widest
pinniped distribution in coastal areas across the world [143], and are
documented to haul-out (temporarily leave the water) up to 12 h a day
[144], which may increase their chances of coming into contact with
infected terrestrial animals or contaminated urban stormwater run-off.
Phylogenetic analysis of the seal parvovirus (SeAV3) [107], detected
in the brain of a harbor seal from Pieterburan Netherlands, showed the
closest similarity with Chipmunk parvovirus [107] suggesting terrestrial
zoonotic viral transfer. Additional support for terrestrial zoonotic
transmission was observed in the phylogenetic analysis of seal anello-
virus (SealAV), revealing resemblances to sea lion anellovirus and three
feline anelloviruses [114]. The phocid herpesvirus-1 (PhHV-1, subfam-
ily Alphaherpesvirinae) detected in harbor seals from Washington, USA
[66] was first isolated in 1985 in the Netherlands and is associated with
mortalities in neonates from rehabilitation facilities in the northeastern
Pacific [145], further displaying how far these zoonotic viruses can
spread from one continent to another.

The most mortalities in harbor seals were caused by Morbillivirus
[53,61,67,69,78,91,110,133,134] and Influenza A [51,57]. Canine dis-
temper virus (CDV), phocine distemper virus (PDV) and cetacean dis-
temper virus (CeMV) were the Morbillivirus strains causing harbor seal
mortalities. PDV was the etiologic agent causing the largest mortality of
harbor seals in 1988 from Danish island of Anholt [146]. Several hy-
potheses as to why this large mortality event occurred include: (i) high
temperatures caused a large population of seals to congregate on land
facilitating rapid transmission of pathogens [147], (ii) cross-species

transmission from infected seal populations [148], (iii) toxic algal
blooms [147], and (iv) marine pollution [149]. This outbreak still re-
mains the largest within our included publications with origins of
possible cetacean and/or canine [134]. Influenza A H7N7 strain caused
the highest harbor seal death in 1979 followed by H3N8 in 2011, both
originating from avian origin in New England, USA [51,57]. The H7N7
strain has been implicated in high poultry mortality events causing
significant economic losses [139,150,151]. The frequent outbreaks of
Influenza in the Pacific Northeast necessitate consistent surveillance of
wild bird populations, as strains have the potential to transmit to
humans and seriously impact food production. This was evidenced
during the 1979 outbreak when individuals handling infected seals
contracted conjunctivitis [19].

The most employed method of viral detection to identify the etiology
agents was IHCwhich allows for visualization of protein expression from
tissue samples using specific antibodies to target certain viral antigens;
prior knowledge of the targeted protein antigen is needed to develop
antibodies to develop such assays. This method is qualitative, can be
time consuming and maybe subjective in result interpretation [152].
Other methods, such as sequencing or quantitative PCR (qPCR) may be
needed to quantify or confirm qualitative viral results produced by IHC
tissue testing. Sequencing can be used to identify newly emerging viral
pathogens within marine mammal populations that may go undetected
using IHC or PCR based methods, because prior knowledge of the viral
target amplification genetic region or antigen is needed to develop such
assays. Metagenomic sequencing, in particular, can be utilized as a tool
to detect novel viruses in marine mammals and humans, and it can also
be employed across various food industries to enhance food safety and
security [153–155]. In addition, nearly half of the studies included in
this review were classified as retrospective studies. Enhancing the
monitoring of viral outbreaks leading to mortality events in marine
mammals, with the potential to spill over to other organisms, necessi-
tates the development of more rapid detection methods. This is crucial
for achieving amore comprehensive One Health surveillance of zoonotic
viral diseases.

Fig. 6. Proportion of virus strains and/or subfamilies to their corresponding virus genus or species (x-axis). BWMV: beaked whale morbillivirus; CDV: canine
distemper virus; CAdv-2: Canine adenovirus type 2; CeMV: cetacean morbillivirus; H3N8: influenza A virus subtype H3N8; H5N1: influenza A virus subtype H5N1;
H5N8: influenza A virus subtype H5N8; H7N7: influenza A virus subtype H7N7; PDV: phocine distemper virus; PhHV-1: phocine herpesvirus-1; SealAV: novel seal
anellovirus; SeAV3: seal annellovirus 3; ZcAv: novel California sea lion anellovirus.
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5. Conclusions

Collecting data on marine mammal mortality events is crucial for
identifying trends and potential viral hotspots, especially within the
framework of One Health surveillance and food safety. This approach
recognizes the interconnectedness of human, animal, and environmental
health, emphasizing the importance of monitoring and addressing
health issues at their interface. Marine mammals serve as sentinel spe-
cies, providing early warnings of environmental changes and potential
health threats that could affect humans and other animals in the same
ecosystems. Surveillance of marine mammal mortality events not only
protects these vulnerable species but also provides insights into zoonotic
diseases that may pose risks to human populations while protecting food
production and aquaculture. While IHC has been the most employed
method for viral detection in marine mammals, its limitations necessi-
tate the adoption of more precise and robust molecular diagnostic tools.
IHC, though valuable for visualizing protein expression, is qualitative,
time-consuming, and may be subjective in result interpretation. Mo-
lecular diagnostic approaches such as qPCR and sequencing offer sig-
nificant advantages. qPCR provides quantitative data, allowing for a
more precise measurement of viral loads, and can confirm the presence
of specific viral pathogens with high sensitivity and specificity.
Sequencing enables the identification of novel and emerging viral
pathogens that might be missed by IHC or even qPCR, which rely on
prior knowledge of the viral genome or antigens. Integrating molecular
diagnostics into routine surveillance can enhance the detection of viral
outbreaks in marine mammal populations and other marine organisms,
providing a more comprehensive understanding of viral diversity and
evolution. This is particularly important given the zoonotic potential of
many marine mammal viruses. Molecular diagnostics can facilitate a
more rapid and accurate identification of viral pathogens, enabling
timely interventions to prevent the spread of infections within marine
ecosystems and to other species, including humans. Establishing global
marine mortality response networks is crucial to effectively mitigate the
spread of viruses. Advancing diagnostic approaches by incorporating
molecular techniques will significantly improve our ability to monitor
and respond to these events, strengthening One Health surveillance ef-
forts and better protecting marine mammal populations, human health,
food safety, food security and overall ecosystem stability.
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