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Abstract
Destruction of β‐cells in pancreas causes deficiency in insulin production that leads to
diabetes in the human body. To cope with this problem, insulin is either taken orally
during the day or injected into the patient's body using artificial pancreas (AP) during
sleeping hours. Some mathematical models indicate that AP uses control algorithms to
regulate blood glucose concentration (BGC). The extended Bergman minimal model
(EBMM) incorporates, as a state variable, the disturbance in insulin level during medi-
cation due to either meal intake or burning sugar by engaging in physical exercise. In this
research work, EBMM and proposed finite time robust controllers are used, including the
sliding mode controller (SMC), backstepping SMC (BSMC) and supertwisting SMC
(second‐order SMC or SOSMC) for automatic stabilisation of BGC in type 1 diabetic
patients. The proposed SOSMC diminishes the chattering phenomenon which appears in
the conventional SMC. The proposed BSMC is a recursive technique which becomes
robust by the addition of the SMC. Lyapunov theory has been used to prove the
asymptotic stability of the proposed controllers. Simulations have been carried out in
MATLAB/Simulink for the comparative study of the proposed controllers under varying
data of six different type 1 diabetic patients available in the literature.

1 | INTRODUCTION

Diabetes is one of the most persistent diseases to evolve from
numerous underlying processes in the human body. Diabetes
mellitus belongs to the group of metabolic diseases that occur
because of inadequate amounts of insulin to burn sugar,
impaired insulin functioning or both. There are two categories of
diabetes mellitus; type 1 diabetes, also known as insulin‐
dependent diabetes, which accounts for ≃5–10 per cent of the
incidence of diabetes within the human population, is caused by
the destruction of beta cells in pancreas or the failure of insulin
excretion, resulting in hyperglycaemia. On the other hand, when
the blood glucose concentration (BGC) falls below the normal
range, it is known as hypoglycaemia. Type 2 diabetes, which is
non‐insulin dependent, accounts for ≃90–95 per cent of the
incidence of diabetes within the human population. It is caused
by a chronic condition inwhich the glucose level builds upwithin
the bloodstream due to abnormalities in insulin function [1].

Diabetes with hyperglycaemia leads to deep‐rooted damage
to nerves, kidneys, blood vessels and heart and may lead to the

failure of some other organs, while hypoglycaemia diabetes can
cause confusion, shakiness or drowsiness [2]. Diabetes is not
only a life‐threatening disease but also an exponentially
increasing burden on the economy. Every year, billions of
dollars (US) are spent towards its cure. According to an eco-
nomic survey, in 2002 about 132 billion US dollars, and in 2012
around 245 billion US dollars, were spent towards the cure for
diabetes [3,4]. In Hungary, the predominance of diabetes
mellitus has increased over the years domestically and has hurt
the economy badly. According to the World Health Organi-
zation (WHO), such an economic burden can be reduced by
taking necessary action towards its cure [5].

The normal range of BGC for a healthy person is 70–
130 mg/dl. The BGC of a type 1 diabetic patient should be
monitored continuously and be brought down to the safe range.
In 2012, the WHO reported that around 1.5 million deaths were
caused by diabetes mellitus [6]. According to a predictive study,
the current number of diabetic patients may cross 300million by
2025 [7]. Diabetes mellitus threatens a life every 8 s and the loss
of a limb every 30 s. Monitoring BGC during daytime is easy but
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is not possible during night‐time. To overcome this problem,
artificial pancreas (AP) is the solution [8,9].

Designing a controller for AP has always been a chal-
lenging task because of variable meal disturbances during
medication. These disturbances can be caused by meal intake
or by burning sugar during and after physical exercise. AP is a
closed‐loop feedback system comprising three parts: sensor,
controller and insulin pump. BGC is measured with the help of
sensors, and the controller calculates the required amount of
insulin to feed into the patient's body, and then the insulin
pump injects the required amount of insulin into the body
[10,11]. The controller maintains the sugar‐insulin level at a
stable reference level within the safe range.

For automatic regulation of BGC in type 1 diabetes,
different algorithms, both linear and non‐linear, have been
proposed in the literature. A linear quadratic Gaussian
controller combined with insulin on board as a constraint,
called the automatic regulation of glucose algorithm, has been
proposed in [12]. Linear parameter‐varying is a model to design
control inputs for AP [13]. The linear quadratic regulator al-
gorithm has also been proposed to design a controller for type
1 diabetic patients in [14]. The conventional proportional–in-
tegral–derivative (PID) controller has been proposed to con-
trol the blood glucose level to achieve reduced steady‐state
error [15]. The oscillations that appear in the response of the
PID controller have been eliminated by the proportional de-
rivative controller [16]. The fuzzy controller has been imple-
mented in the literature with better results but is
computationally very costly [17,18]. To design linear control-
lers, linearised models must ensure local stability, as non‐linear
terms may be neglected only in a certain region very close to
the point of operation, whereas non‐linear controllers do not
need linearisation for their design and therefore can talk
globally. They perform quite a bit better even in the presence
of model variations, uncertainties, external disturbances and
non‐linearities. Among those using the extended Bergman
minimal model (EBMM), SMC has been proposed in [19] to
achieve robustness and the required design specification of
BGC but has an inherent chattering phenomenon in its
response. In the second‐order sliding mode controller
(SOSMC), real and supertwisting algorithms have been intro-
duced that steer system trajectories in the vicinity of the sliding
surface to obtain finite time convergence. SOSMC algorithms
have the advantages of insensibility to perturbations and
reduced chattering, which reflect their high convergence ac-
curacy and robustness [20,21]. The backstepping (BS)
controller has also been proposed to stabilise systems that have
a strict feedback form [22]. To improve the results for BGC
given by BS, the addition of an adaptive parameter has been
proposed that has better convergence time but overshoots/
undershoots [23,24].

The dynamics of diabetes mellitus type 1 are non‐linear. In
this paper, we have proposed three non‐linear‐based control-
lers including the SMC, supertwisting SOSMC and back-
stepping sliding mode controller (BSMC) for regulation of
BGC in type 1 diabetes through AP with the complete
mathematical derivation of each proposed controller.

Simulation results have been presented using MATLAB/
Simulink to check the comparative performance of the pro-
posed controllers. From information available in the literature,
we have simulated data for six different type 1 diabetic patients
using supertwisting SOSMC.

Salient features of this research paper are listed below:

� The key challenges are to develop robust controllers to
achieve better settling and convergence time with reduced
steady‐state error.

� Three robust non‐linear controllers have been proposed to
accommodate the effects of non‐linearities and variable
meal disturbance present in the system.

� The conventional SMC has been proposed for robustness,
but it exhibits an inherent chattering phenomenon.

� The supertwisting SOSMC has been proposed to achieve an
even better tracking response that reduces the chattering
effect.

� SMC has been merged with the BS algorithm, which makes
the controller robust to achieve the desired reference level
quite nicely.

� Stability analysis for each proposed controller has been
proved with the help of Lyapunov stability theory.

� Performance comparisons of the proposed controllers has
been made to deduce the outperforming controller among
those that have been proposed.

� Perturbation as Gaussian noise d(t) has been added in the
system, and the output performance of each has been
analysed to check their robustness.

� The proposed supertwisting SOSMC has also been analysed
using the varied data available in the literature of six type 1
diabetic patients.

The rest of the paper is organised as follows. The blood
sugar regulation system, non‐linear mathematical model and
problem statement are explained in Section 2. Section 3 de-
scribes the analysis and design of the proposed non‐linear
controllers for AP using the EBMM. Section 4 details all
simulation results, and finally, Section 5 concludes.

2 | NON‐LINEAR EXTENDED
BERGMAN MINIMAL MODEL FOR TYPE
1 DIABETIC PATIENTS

2.1 | Blood sugar regulation system

Secretion of insulin and glycogen plays an important role in the
regulation of blood sugar (glucose) within the human body.
BGC is considered normal when insulin and glycogen sustain a
state called ‘homeostasis’. When the BGC rises above the
normal range of 70–120 mg/dl, the pancreas secretes insulin to
burn excessive sugar. On the other hand, when the BGC falls
below the normal range, glycogen is released by the pancreas to
increase the glucose level in the blood as shown by Figure 1.
This balanced functioning prevents cell damage by providing
sufficient energy [25,26].
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2.2 | Mathematical model

The EBMM is a three‐state basic mathematical model pro-
posed by R. N. Bergman for type 1 diabetes mellitus incor-
porating the effect of the meal disturbance during medication
that is constant [27]. BGC is disturbed due to such meal
disturbance, the state of which should be considered dynamical
rather than static for accurate model behaviour [28]. The
EBMM presented in [29] is an extension of Bergman's minimal
model that incorporates meal disturbances as a state variable
and is obtained by the following set of equations:

_x1 ¼ −p1ðx1 −GbÞ − x1x2 þ x4 ð1Þ

_x2 ¼ −p2x2 þ p3ðx3 − IbÞ ð2Þ

_x3 ¼ −p4ðx3 − IbÞ þ uðtÞ ð3Þ

_x4 ¼ −p5x4 ð4Þ

where x1, x2, x3 and x4 are BGC, remote insulin concentration,
plasma insulin concentration and meal disturbance, respec-
tively, and u(t) is the control input law for external insulin
infusion. The details of the other model parameters are given
in Table 1 in Section 4.

2.3 | Problem statement

Keeping the BGC of type 1 diabetic patients in the normal
range has always been a complex problem because it may be
controlled by manual intake of insulin whenever the sugar level
rises during daytime, but such control is not feasible during
sleeping hours. During the night, there must be an automated
system to control and regulate BGC in the patient body. AP
helps to maintain and regulate BGC in diabetic patients by
automatically injecting the required amount of insulin into the
body. Precise information about BGC must be given to the AP,
which uses control algorithms to infuse a controlled amount of
insulin into the patient body. AP uses a sensor for this purpose,
and the controller calculates the exact amount of insulin to
inject and guides the insulin pump to inject that amount of
insulin into the body of the patient. As the model given by
Equations (1)–(4) is non‐linear, designing a non‐linear
controller can ensure global asymptotic stability. The pro-
posed closed‐loop control scheme for an AP is shown in
Figure 2.

3 | ROBUST CONTROL ALGORITHMS
DESIGN

3.1 | Sliding mode‐controller design

The SMC is robust against external disturbances for dynamical
non‐linear systems. It should be designed with the aim that all
dynamical states of the system should converge to the sliding
surface S = 0 as shown by Figure 3.

In the SMC, the control law consists of two control parts;
the nominal part un helps the trajectory of the system converge
on the equilibrium point, while the switching control law us
ensures that when the trajectory reaches the sliding surface, it is
kept on the sliding surface until it falls at the origin. In the
traditional SMC, the chattering phenomenon appears in
the form of oscillations around the sliding surface due to the
switching of us [30]. The overall control law can be defined as

F I GURE 1 Pancreas controlling blood glucose level in the human
body

TABLE 1 Non‐linear model parameters

Model parameters and descriptions

Parameters Parameter description Parameter values

p1 Glucose effectiveness 0 min−1

p2 Insulin action delay 0.015 min−1

p3 Patient parameter 0.13 � 10−4 mUl−1 min−2

p4 Insulin decline rate 0.021 min−1

p5 Meal disturbance 0.05 min−1

Ib Plasma insulin basal 7 mUl−1

Gb Plasma glucose basal 80 mg dl−1

F I GURE 2 Closed‐loop control system for artificial pancreas
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uðtÞ ¼ un þ us

where

un ¼
1→ON when s > 0
0→OFF when s < 0

�

and

us ¼ signðsÞ

For the state variable x1 to track its desired blood glucose
value, the error signal is defined as

e1 ¼ x1 − x1ref ; ð5Þ

where e1 is the difference of BGC x1 to its reference value x1ref.
To deal with the error signal given by Equation (5), the sliding
surface for the SMC can be defined as

Γ1 ¼ €e1 þ s1 _e1 þ s0e1 ð6Þ

where s1 and s0 are positive constants. By taking the time de-
rivative of Γ1, we obtain

_Γ1 ¼ e
…
1 þ s1€e1 þ s0 _e1 ð7Þ

Now computing the first, second and third derivatives,
respectively, with regard to the time of Equation (5), we obtain

_e1¼ _x1 − _x1ref ¼ _x1
€e1 ¼ €x1 − €x1ref ¼ €x1
e
…
1 ¼ x

…
1 − x…1ref ¼ x

…
1 ð8Þ

where x1ref is constant, so x
…
1ref ¼ 0. By using Equation (8), _Γ1

can be written as

_Γ1 ¼ x
…
1 þ s1€x1 þ s0 _x1 ð9Þ

Now differentiating Equation (1) to the third derivative, we
obtain

x
…
1¼ p21 _x1 þ 2p1ð _x1x2 þ x1 _x2Þ − p1 _x4 þ p1Gb _x2 þ _x1x22
þ2x1x2 _x2 − _x2x4 − x2 _x4 þ p2ð _x1x2 þ x1 _x2Þ − p3ð _x1x3Þ
−p3x1ð−p4ðx3 − IbÞÞ − p3x1uðtÞ þ p3Ib _x1 − p5 _x4 ð10Þ

If we denote

ϒðtÞ ¼ p21 _x1 þ 2p1ð _x1x2 þ x1 _x2Þ − p1 _x4 þ p1Gb _x2 þ _x1x22
þ 2x1x2 _x2 − _x2x4 − x2 _x4 þ p2ð _x1x2 þ x1 _x2Þ
− p3ð _x1x3Þ − p3x1ð−p4ðx3 − IbÞÞ þ p3Ib _x1 − p5 _x4 ð11Þ

then Equation (10) becomes

x
…
1 ¼ ϒðtÞ − p3x1uðtÞ ð12Þ

Using Equation (12) in Equation (33), we have

_Γ1 ¼ ϒðtÞ − p3x1uðtÞ þ s1€x1 þ s0 _x1 ð13Þ

To make _Γ1 negative definite, we use

_Γ1 ¼ −KjΓ1j
αsign

Γ1

ϕ

� �

ð14Þ

where K is the positive design coefficient, and ϕ is the small
number used to remove chattering and α is between 0 and 1,
while |Γ1|

α ensures the convergence of the system trajectories
to siding surface Γ1 = 0.

Comparing Equations (13) and (14) gives

−KjΓ1j
αsign

Γ1

ϕ

� �

¼ ϒðtÞ − p3x1uðtÞ þ s1€x1 þ s0 _x1 ð15Þ

Consider a positive definite Lyapunov candidate function
as

V 1 ¼
1
2
Γ2
1 ð16Þ

Differentiating Equation (16) with respect to time yields

_V 1 ¼ Γ1 _Γ1 ð17Þ

Using the value of _Γ1 from Equation (14) obtains

_V 1 ¼ Γ1 −KjΓ1j
αsign

Γ1

ϕ

� �� �

ð18Þ

F I GURE 3 Phases of sliding mode controller
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as

Γ1

ϕ
sign

Γ1

ϕ

� �

¼
Γ1

ϕ

�
�
�
�

�
�
�
� ð19Þ

so Equation (18) becomes

_V 1 ¼ −KjΓ1j
αϕ

Γ1

ϕ

�
�
�
�

�
�
�
�¼ −KjΓ1j

αϕ
jΓ1j

ϕ
ð20Þ

and because |ϕ| = ϕ and ϕ > 0, we have

_V 1 ¼ −KjΓ1j
αþ1

ð21Þ

So, the time derivative of the Lyapunov candidate function
_V 1 given by Equation (21) is proved to be negative definite.
Hence, the system is globally asymptotically stable.

Rewriting Equation (15) and solving it, we obtain the
control input u(t) as

uðtÞ ¼
1
p3x1

ϒðtÞ þ s1€x1 þ s0 _x1 þ KjΓ1j
αsign

Γ1

ϕ

� �� �

ð22Þ

where nominal control un is

un ¼
1
p3x1
½ϒðtÞ þ s1€x1 þ s0 _x1�

and switching control us is

us ¼
1
p3x1

KjΓ1j
αsign

Γ1

ϕ

� �� �

The controller u(t) given by Equation (22) is the required
control input to make the system track BGC to its reference
value using the first‐order SMC. Since the state variable x1
represents BGC, it is supposed to be a higher value, and
the proposed controller brings it down to the safe range of
70–120 mg/dl. It always remains a positive value and never
reaches zero because BGC at zero means the death of a
patient, which restricts the control input from becoming
infinite.

Now the SMC in case of disturbance/noise can be analysed
by adding Gaussian noise d(t) in Equation (1) of the system as
follows:

_x1n ¼ ½−p1ðx1 −GbÞ − x1x2 þ x4� þ dðtÞ ð23Þ

where d(t) satisfies the following inequality:

dðtÞ ≤ K ð24Þ

where K is the value of design coefficient used in the control
input. The sliding surface for the SMC in case of noise is same as
defined by Equation (6) while the error signal can be written as

e1n ¼ x1n − x1ref n ð25Þ

where x1n is the BGC in the presence of noise and x1refn is the
reference value with noise. Now by repeating the same process
as done above for designing the SMC, the value of control
input u(t) in the presence of external disturbance can be
defined as

uðtÞ ¼
1
p3x1

ϒðtÞ þ s1€x1n þ s0 _x1n þ KjΓ1j
αsign

Γ1

ϕ

� �� �

ð26Þ

3.2 | Supertwisting controller design

The conventional SMC results in inherent chattering
phenomenon which is countered by the supertwisting SMC
algorithm. The supertwisting SMC is capable of twisting all the
system trajectories around the origin in finite time which gives
chattering free convergence more rapidly. The BGC of type 1
diabetic patient needs to be kept in the safe range by con-
trolling high BGC so, for such control problem the error signal
for BGC can be written as

e2 ¼ x1 − x1ref ð27Þ

The systems with relative degree of one can be continu-
ously controlled by the supertwisting SOSMC such that the
error signal must approaches to zero. To get relative degree
equals to one, the sliding surface for supertwisting SOSMC can
be defined as

Γ2 ¼ €e2 þ s3 _e2 þ s2e2 ð28Þ

where s2 and s3 are real constants. The Lyapunov candidate
function for the sliding surface Γ2 given by Equation (28) can
be written as

V 2 ¼
1
2
Γ2
2 ð29Þ

Differentiating Equation (29) with respect to time yields

_V 2 ¼ Γ2 _Γ2 ð30Þ

By taking time derivative of the sliding surface given by
Equation (28), we have

_Γ2 ¼ e
…
2 þ s3€e2 þ s2 _e2 ð31Þ
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Now computing the first, second and third derivative,
respectively, with regard to the time of Equation (27), we obtain

_e2 ¼ _x1 − _x1ref ¼ _x1
€e2 ¼ €x1 − €x1ref ¼ €x1
e
…
2 ¼ x

…
1 − x…1ref ¼ x

…
1 ð32Þ

where x1ref is constant, so x
…
1ref ¼ 0. By using Equation (32),

_Γ2 can be written as

_Γ2 ¼ x
…
1 þ s3€x1 þ s2 _x1 ð33Þ

Inserting the value of x
…
1 from Equation (12) into Equa-

tion (33), we obtain

_Γ2 ¼ ϒðtÞ − p3x1uðtÞ þ s3€x1 þ s2 _x1 ð34Þ

The supertwisting SOSMC comprises the two control laws
un and us as elaborated by Figure 3. The nominal control law
un can be obtained from Equation (34) as

un ¼
1
p3x1
ðϒðtÞ þ s3€x1 þ s2 _x1Þ ð35Þ

The phenomenon of chattering is observed in the tradi-
tional SMC in the form of oscillations around the sliding
surface. The supertwisting SOSMC can deal with chattering by
filtering out most of this phenomenon by having the second‐
order SMC control law. The non‐linear first‐order differential
equation can be defined as [31]

gðtÞ ¼ _Γ2 þ β1jΓ2j
0:5
þ β2 ∫ signðΓ2Þdt ð36Þ

where β1, β2 > 0, and

signðΓ2Þ ¼
−1 when Γ2 < 0
1 when Γ2 > 0

�

The first derivative and solution of Equation (36) will
converges to zero in finite time if the design parameters
β1 ≥ 0.5(T)0.5, β2 ≥ 4T and |g(t)| ≤ T, where T is the real
positive number [32]. The switching control law for super-
twisting SOSMC can be defined as [33]

us ¼
1
p3x1
ðβ1jΓ2j

0:5signðΓ2Þ þ β2 ∫ signðΓ2ÞdtÞ ð37Þ

By combining the nominal and switching control laws from
Equations (35) and (37), respectively, we have the final control
law u(t) as

uðtÞ ¼
1
p3x1

�
ϒðtÞ þ s3€x1 þ s2 _x1 þ β1jΓ2j

0:5signðΓ2Þ

þ β2 ∫ signðΓ2Þdt
�

ð38Þ

Now the time derivative of the Lyapunov candidate func-
tion, which is _V 2 from Equation (30), can be updated using
Equation (34) in it, and we obtain

_V 2 ¼ Γ2ðϒðtÞ − p3x1uðtÞ þ s3€x1 þ s2 _x1Þ ð39Þ

By using u(t) from Equation (38) in Equation (39), the
expression of _V 2 can be written as

_V 2 ¼ −β1jΓ2j
0:5
jΓ2j − β2 ∫ sign Γ2ð ÞdtÞ ð40Þ

Hence, the time derivative of the Lyapunov candidate
function _V 2 is proved to be negative definite, which means
that the supertwisting SOSMC will ensure convergence of
BGC to the reference level x1ref in finite time. Consequently,
the error signal e2 for BGC approaches zero even in the
presence of all external disturbances. As _V 2 is negative defi-
nite, so global asymptotic stability of the system is ensured.

Now the supertwisting SOSMC in the case of disturbance/
noise is analysed in the presenceofGaussiannoised(t) in the state
variable x1. Considering Equations (23), Equation (24) and the
sliding surface the same as Γ2, the error signal can be written as

e2n ¼ x1n − x1ref n ð41Þ

where x1n is the BGC in the presence of noise, and x1refn is the
reference value with noise. Now by repeating the same process
as above for designing the supertwisting SOMC, the value of
control input u(t) in the presence of external disturbance can
be defined as

uðtÞ ¼
1
p3x1

ϒðtÞ þ s3€x1n þ s2 _x1n þ β1jΓ2j
0:5signðΓ2Þ

�

þ β2 ∫ signðΓ2Þdt
�

ð42Þ

3.3 | Backstepping sliding mode controller
design

Strict feedback from the system is required to derive the
controller expression by defining error functions for all the
state variables and proving them negative definite using
Lyapunov stability theory. BS is a recursive technique that gives
the asymptotic stability of the system. To enhance the per-
formance of BS and add robustness, the SMC is merged with
the BS algorithm. The error z1 for tracking of BGC in the
presence of Gaussian noise is defined as

z1 ¼ x1n − x1ref n ð43Þ
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When the BGC x1n tracks the reference value x1refn, the
error z1 converges to zero. By taking the time derivative of z1
and using Equation (23), we have

_z1 ¼ _x1n − _x1ref n
_z1 ¼ ½−p1ðx1 −GbÞ − x1x2 þ x4� þ dðtÞ − _x1ref n ð44Þ

The Lyapunov function candidate to analyse the stability of
z1 is defined as

V 1 ¼
1
2
z21 ð45Þ

To get asymptotic stability, the time derivative of V1 must
be proved to be negative definite. Now by computing the time
derivative of V1, we have

_V 1 ¼ z1 _z1 ð46Þ

The error for the state variable x2 can be defined as

z2 ¼ x2 − σ2 ð47Þ

where σ2 is the first virtual control law. We can also write
Equation (47) as

x2 ¼ z2 þ σ2 ð48Þ

When the state variable x2 tracks σ2, the error z2 converges
to zero. By substituting x2 from Equation (48) in Equation
(44), we obtain

_z1 ¼ ½−p1ðx1 −GbÞ − x1ðz2 þ σ2Þ þ x4� þ dðtÞ − _x1ref n ð49Þ

Now by using _z1 from Equation (49) in Equation (46), _V 1
can be written as

_V 1 ¼ ½z1ð−p1ðx1 −GbÞ − x1ðz2 þ σ2Þ þ x4�

þ dðtÞ − _x1ref nÞ ð50Þ

The prove that the virtual control law σ2 ensures that _V 1 is
negative definite, we put

½−p1ðx1 −GbÞ − x1ðz2 þ σ2Þ þ x4� þ dt − _x1ref n

¼ −k1z1 ð51Þ

where k1 is a positive constant. The virtual control σ2 from
Equation (51) can be defined as

σ2 ¼
1
ðx1Þ
ð½−p1ðx1 −GbÞ − x1z2 þ x4�

þ dðtÞ − _x1ref n þ k1z1Þ
ð52Þ

By using the value of σ2 in Equation (50), we have

_V 1 ¼ −k1z21 − z1z2x1 ð53Þ

To check convergence of both the errors z1 and z2 to zero,
we take the second Lyapunov candidate function as

V 2 ¼ V 1 þ
1
2
z22 ð54Þ

By computing time derivative of V2, we have

_V 2 ¼ _V 1 þ z2 _z2 ð55Þ

By taking time derivative of Equation (47) and using
Equation (2), we have

_z2 ¼ _x2 − _σ2
_z2 ¼ − p2x2 þ p3ðx3 − IbÞ − _σ2

ð56Þ

To introduce the SMC in the BS algorithm, the sliding
surface variable Γ3 can be defined as

Γ3 ¼ x3 − σ3 ð57Þ

where σ3 is the second virtual control law. We can also write
Equation (57) as

x3 ¼ Γ3 þ σ3 ð58Þ

When the state variable x3 tracks σ3, the error Γ3 converges
to zero. By substituting x3 from Equation (58) in Equation
(56), we obtain

_z2 ¼ −p2x2 þ p3ðΓ3 þ σ3Þ − p3Ib − _σ2 ð59Þ

Now by using _V 1 from Equation (53) and _z2 from Equa-
tion (59) in Equation (55), respectively, _V 2 can be written as

_V 2 ¼ − k1z21 − z1z2x1 þ z2ð−p2x2 þ p3ðΓ3 þ σ3 − IbÞ − _σ2Þ

_V 2 ¼ − k1z21 þ z2ð−p2x2 þ p3ðΓ3 þ σ3 − IbÞ − _σ2 − z1x1Þ
ð60Þ

To prove that the virtual control law σ3 ensures that _V 2 is
negative definite, we put

−p2x2 þ p3ðΓ3 þ σ3 − IbÞ − _σ2 − z1x1 ¼ −k2z2 ð61Þ

where k2 is a positive constant. The virtual control σ3 from
Equation (61) can be defined as

σ3 ¼
1
p3
ð−k2z2 þ p2x2 − p3ðΓ3 − IbÞ þ _σ2 þ z1x1Þ ð62Þ
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By using the value of σ3 in Equation (60), we have

_V 2 ¼ −k1z21 − k2z22 þ z2Γ3p3 ð63Þ

By taking time derivative of the sliding surface S from
Equation (57) and using Equation (3), we have

_Γ3 ¼ _x3 − _σ3
_Γ3 ¼ − p4ðx3 − IbÞ þ u − _σ3

ð64Þ

To check the convergence of the errors z1, z2 and the
sliding surface Γ3 to zero, we take the composite Lyapunov
candidate function as

V 3 ¼ V 2 þ
1
2
Γ2
3 ð65Þ

By computing time derivative of V3, we have

_V 3 ¼ _V 2 þ Γ3 _Γ3 ð66Þ

Now by using _V 2 from Equation (63) and _Γ3 from
Equation (64) respectively, _V 3 can be written as

_V 3 ¼ − k1z21 − k2z22 þ z2Γ3p3 þ Γ3ð−p4ðx3 − IbÞ þ u − _σ3Þ

_V 3 ¼ − k1z21 − k2z22 þ Γ3ðz2p3 − p4ðx3 − IbÞ þ u − _σ3Þ

ð67Þ

The control law u(t) given by Equation (68) is the required
BSMC controller that makes _V 3 negative definite and is
given by

uðtÞ ¼ −k3Γ3 − z2p3 þ p4ðx3 − IbÞ þ _σ3 − KsignðΓ3Þ ð68Þ

where k3 is a positive constant and the nominal control un is

un ¼ k3Γ3 − z2p3 þ p4ðx3 − IbÞ þ _σ3

and switching control us is

us ¼ −KsignðΓ3Þ

By using actual control law u(t) from Equation (68) in
Equation (67), we have

_V 3 ¼ −k1z21 − k2z22 − k3Γ2
3 ð69Þ

Hence, the time derivative of composite Lyapunov candi-
date function _V 3 for the errors z1, z2 and the sliding surface Γ3
is proved negative definite which ensures asymptotic stability

of the system as all the errors converge to zero and BGC x1
tracks the reference value.

4 | SIMULATION RESULTS

The proposed SMC, supertwisting SOSMC and SMC BS
controllers given by Equations (26), (38) and (68), respectively,
using EBMM have been simulated in the MATLAB/Simulink
environment for observing their comparative performance for
the regulation of the BGC in a type 1 diabetic patient. The
horizontal x‐axis represents time (seconds), while the verti-
cal y‐axis represents BGC (mg/dl). The safe range for BGC is
70–120 mg/dl, and for the tracking of BGC, the reference level
x1ref = 80 mg/dl is considered. The parametric values used for
the simulation results are detailed in Table 1. The same para-
metric values are used in [34], and the same data set has been
chosen for each simulation in this article because the results are
comparable when the same data set is used for comparing
them with each other.

Figure 4 has been drawn for the comparative performance
of the supertwisting SOSMC and SMC for tracking BGC. It
can be observed from the graph that the SMC undergoes a
larger undershoot and takes more time to settle down in steady
state, whereas the supertwisting SOSMC gives better tracking
response with a negligibly small undershoot and negligible
chattering phenomenon.

Figure 5 shows the comparison of the supertwisting
SOSMC and BSMC. From the graph it can be observed that
the supertwisting SOSMC and BSMC have nearly similar times
of convergence, but the BSMC undergoes slightly larger
chattering than that of the proposed supertwisting SOSMC.
Both track the reference value quite nicely.

A comparison of the supertwisting SOSMC and PID
controller is made in Figure 6, which shows that the PID
undergoes an oscillatory response with larger undershoots/
overshoots, has very large settling time and has some steady‐
state error in comparison with the supertwisting SOSMC. So
it can be clearly observed that the performance of the PID
controller is not satisfactory when compared with the super-
twisting SOSMC in terms of oscillations, steady‐state error,
undershoots/overshoots and convergence time.

Comparisons of all the proposed controllers are given in
Figure 7 for their comparative behaviour. It can be observed
clearly from the graph that the supertwisting SOSMC performs
better, with a convergence time of 6.66 min and no chattering
phenomenon. The BSMC has a convergence time of 6.7 min at
the expense of a slightly large undershoot. The SMC has
convergence time of 15 min with larger undershoot and
chattering phenomenon. The PID controller has oscillatory
behaviour with larger undershoots/overshoots with conver-
gence time of 20.83 min and also has some steady‐state error.
The improvement made by the supertwisting SOSMC can be
observed from its tracking response even in the presence of
dynamical meal disturbances and Gaussian noise in view of all
the comparison parameters. Hence, it can be deduced from the
above performance comparison that the supertwisting SOSMC
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outperforms all the other proposed controllers in view of all
performance evaluation parameters. A brief performance
comparison of all the controllers under discussion is numeri-
cally detailed in Table 2.

Figure 8 demonstrates the control input signal (which is the
required amount of insulin to be injected into the patient body)
by using the supertwisting SOSMC. To avoid over‐dosage of
insulin infusion at different periods, the output of the
controller is regulated by a saturation block in system response.
The first pulse in the control signal causes the BGC to fall
from higher to lower level, and then another pulse is injected
by the controller to achieve the reference position. Then the
output of the supertwisting SOSMC goes to zero when the
BGC reaches the reference level of 80 mg/dl.

To observe the tracking response of the proposed super-
twisting SOSMC under different parametric conditions, we
have considered the data of six different type 1 diabetic
patients available in the literature [35] mentioned in Tables 3
and 4.

Figure 9 shows that the supertwisting SOSMC effectively
monitors and tracks the reference level of BGC for the data of

three patients very nicely without undergoing chattering and
steady‐state errors. This performance of the supertwisting
SOSMC ensures that it can handle the parametric variations of
data of different type 1 diabetic patients without exhibiting any
effect in its response, which reflects its robustness for such
conditions.

5 | CONCLUSION

Herein, we have considered the EBMM for type 1 diabetic
patients and proposed three non‐linear controllers—the SMC,
supertwisting SOSMC and BSMC—for automatic stabilisation
of BGC for AP. Global asymptotic stability of the proposed
controllers has been proved using Lyapunov theory. The per-
formance of each proposed controller has been analysed by the
simulation results in MATLAB/Simulink in the presence of
perturbation as Gaussian noise. It is observed from the results
that the reference level is maintained perfectly by the proposed
robust non‐linear controllers even in the presence of dynamical
meal disturbances or burning sugar by physical exercise during

F I GURE 4 Comparison of supertwisting second‐order sliding mode
controller and sliding mode controller

F I GURE 5 Comparison of supertwisting second‐order sliding mode
controller and backstepping sliding mode controller

F I GURE 6 Comparison of supertwisting second‐order sliding mode
controller with proportional–integral–derivative controller

F I GURE 7 Comparison of proposed second‐order sliding mode,
backstepping sliding mode, and supertwisting second‐order sliding mode
controllers with proportional–integral–derivative controller
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medication. The proposed supertwisting SOSMC controller
outperforms the SMC, BSMC and PID in terms of settling
time, chattering, transients, under/overshoots and steady‐state
error. In the future, the supertwisting SOSMC with parametric
adaption can also be implemented to improve its response and
get more robustness with the data of more type 1 diabetic
patients.
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