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Abstract: The Particle Swarm Optimization (PSO) and Support Vector Machines (SVMs) 

approaches are used for predicting the thermodynamic parameters for the 1:1 inclusion 

complexation of chiral guests with -cyclodextrin. A PSO is adopted for descriptor 

selection in the quantitative structure-property relationships (QSPR) of a dataset of 74 

chiral guests due to its simplicity, speed, and consistency. The modified PSO is then 

combined with SVMs for its good approximating properties, to generate a QSPR model 

with the selected features. Linear, polynomial, and Gaussian radial basis functions are used 

as kernels in SVMs. All models have demonstrated an impressive performance with R2 

higher than 0.8. 

Keywords: Particle Swarm Optimization; Support Vector Machines; QSPR; -cyclo-

dextrin inclusion complexes 
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1. Introduction 

 

-cyclodextrin (-CD) is a cyclic oligosaccharide that naturally contains seven glucose residues 

linked by (1-4)-glycosidic bonds, with a hydrophilic outer surface and a relative hydrophobic central 

cavity, which can form complexes with appropriate guest molecules. It has received increasing 

attention in the pharmaceutical field for modifying drug physicochemical properties, such as solubility, 

stability and bio-availability, reducing their toxicity and side effects, and suppressing unpleasant taste 

or smell [1,2]. 

The high interest in the stability constants of CD-host complexes has initiated the search for proper 

models for predicting these association constants or the related free energies of complexation. The aim 

is not only to select convenient CDs for the complexation of a particular compound, but also to get 

some insight into the physico-chemical parameters influencing the affinity between host and guest 

molecules. The availability of a large amount of experimental data led to several interesting predictive 

models. The inclusion reactions of a series of benzene derivatives were used for a correlation model 

[3]. Diverse experimental information was used to develop a prediction model for the free energy of 

complexation using several molecular descriptors [4-7]. A CoMFA approach was applied to the 

binding constants of some organic compounds and various CDs [8]. An analysis of the complexation 

of 30 carboxylic acids and their anions was performed using a two-parameter correlation model [9]. 

Artificial neural networks were also used to correlate some molecular descriptors with complexation 

constants [10,11]. The free energies of a larger dataset of compounds complexed with all natural CDs 

were considered using a molecular-size based model [12,13]. Energies obtained from molecular 

docking of the guest molecule to the CDs’ cavities were used for systematic investigations of the 

interaction of organic substances with CDs [14-16]. A model correlating physico-chemical parameters 

directly with the solubility of the complexes was also presented [17]. A newer improved empirical 

model has been published just recently [18]. Most of these investigations considered the “natural” 

CDs, and generally, models were obtained with sufficient predictive power. The molecular descriptors 

are substantially different for various CDs, indicating differences in reaction mechanisms, or as a 

consequence of the varying flexibility of the ring system. Not much has been done up to now for the 

prediction of interaction energies with modified CDs, or considering different CD derivatives. 

In this study, two novel approaches, Binary Particle Swarm Optimization (BPSO) [19] and Support 

Vector Machines (SVMs) [20] are used to predict the thermodynamic parameters for the 1:1 inclusion 

complexation of enantiomeric pairs of chiral guests with -CD. SVMs represent a relatively new type 

of learning machine. They were designed to minimize the structural risk by minimizing an upper 

bound of the generalization error rather than the training error. Therefore, the over-fitting problem in 

machine learning is solved successfully. Another outstanding property of SVMs is that a solution 

obtained is always unique and globally optimal. In this paper, SVMs are investigated for a quantitative 

structure-property relationship (QSPR) study, to reduce the complexity of QSPR modeling and utilize 

the attractive properties of: not requiring the gradient information, consistent results, and fast 

convergence. The PSO was used to choose a set of important features. 

Several factors such as number of atoms, van der Waals surface area, ionization potential, molecular 

weight, molar refractivity, atomic connectivity index, molecular flexibility, and angle bend energy, 

etc., influence thermodynamic properties. Only some of these factors strongly affect these 
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thermodynamic properties and are controlled or set up in advance. The selection of these parameters is 

traditionally conducted by multiple linear regressions, partial least squares, and principle component 

analysis methods. Consequently, their assumptions must be verified and validated before the 

developed model can accurately be used. This results in a predictive model which may compromise the 

quality of the obtained products and/or efficiency of the modeling process. 

With the increasing need for more accurate and practical evaluation QSPR models, techniques in 

artificial intelligence, particularly Artificial Neural Networks (ANNs), are receiving more attention in 

industry and academia today because they can be used to learn relationships between thermodynamic 

properties and their parameters. However, a number of parameters such as network topology, learning 

rate, and training methods have to be fine-tuned before they are deployed successfully. Furthermore, 

drawbacks like local optima, overfitting, and long learning time tend to occur. 

Theoretically, the aforementioned shortcomings of ANNs have been countered by the development 

of Support Vector Machines. Unlike ANNs which minimize empirical risk, SVMs are designed to 

minimize the structural risk, by minimizing an upper bound of the generalization error, rather than the 

training error. Therefore, the overfitting problem in machine learning is solved successfully. Another 

outstanding property of SVMs is that the task of training SVMs is mapped to a uniquely solvable 

linearly constrained quadratic programming problem. This produces a solution that is always unique 

and globally optimal. They have been extended to solve regression problems as well. 

In this paper, Support Vector Regression (SVR), which is based on Support Vector Machines, is 

investigated as an alternative technique for QSPR prediction. It has shown very good results for 

function approximation of Quantitative Structure-Activity Relationships (QSAR) [21]. The SVR 

retains much of the elegance of the SVMs, such as good generalization and global optimal properties, 

and has no normal distribution assumption requirement. The linear approximation is a fundamental 

concept of SVR. Its extension to a nonlinear case is achieved by using the mechanism of inner-product 

kernel to avoid the problem of dimensionality. To speed up its regression, the use of a proper kernel is 

calculated in advance. Even though this kernel computation requires large memory space, various 

problem optimizations have already been proposed [22,23]. 

Since SVM can build a very reliable QSPR model based on the training data, it is incorporated in 

our feature selection process. The Pearson correlation coefficient (R) is then treated as the objective 

function for a formulated optimization problem. Our previous paper [21] presented a similar approach 

by attempting to optimize R for predictive QSPR model building with a combined Feed-Forward 

Neural Network and a Particle Swarm Optimization. The PSO also showed good performance and was 

suitable for use with the found model, where no explicit relation between inputs and outputs was 

available. With attractive properties of no requirements for gradient information, consistent results, fast 

convergence, and successful applications in [24-28], PSO is then selected as an optimizer in this work. 

Therefore, the purpose of this study was to develop a procedure that can determine key features for 

predicting complexation thermodynamic parameters of -CD complexes with enantiomeric pairs of a 

chiral guest. 
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2. Methodology 

 

The proposed methodology consists of two parts: feature selection and QSPR modeling. First, a 

machine learning technique called Support Vector Machines (SVMs) is used to capture characteristics 

of QSPR and their factors, because of the SVMs’ superior properties of generalization and global 

optima. They are next incorporated in an optimization problem so that a relatively new, effective, and 

efficient optimization algorithm, Particle Swarm Optimization (PSO), is applied to find key 

parameters. The cooperation between both techniques can produce a very good predictive QSPR 

model. 

 

2.1. Support Vector Machines Based QSPR Model 

 

SVMs represent a relatively new type of learning machine. They are an approximate 

implementation of the method of structural risk minimization, which attempts to minimize the 

generalization error, which occurs when the machines are tested with unseen data. The generalization 

error rate is bounded by the sum of a pair of competing terms, the training error rate and the 

confidence interval, which depends on the Vapnik-Chervonenkis (VC) dimension. Hence, the VC 

dimension and the training error (empirical risk) are both minimized at the same time. To realize this 

in SVMs, a structure is imposed on the set of hyperplanes, by trying to obtain the weight vector w 

having the minimum Euclidean norm. Coupled with dual transformations, the optimization model 

yields a global optimum. These key properties really separate the SVM from other learning machine 

algorithms. 

In regression problems, the problem of approximating the following set of data 
      n

ll yy ,,,, 11 xx   with a linear function bf  xwx ,)( , where  bn ,w , and 

.,.  represents dot product, is taken into consideration. The xi is the set of descriptors, and yi is the 

output, which is the thermodynamic value. The -insensitive loss function proposed by Vapnik [20] is 

commonly incorporated with SVMs (-SVR) to create sparseness in the support vectors and to embed 

the robustness of the Huber’s loss function. This means that f(x) is allowed to vary at most  deviation 

from the target, and is as flat as possible, simultaneously. If the deviations are larger than the  
specified, this implies a bad fit and this function is proportionally penalized with constant C. This 

constant C determines the tradeoff between the training errors and model complexity. The flatness test 

of f(x) is accomplished by searching for the smallest w. Hence, a formulation of -SVR is described 

by: 
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Everything above  is captured in slack variables i and everything below - is captured in slack 
variables 

i . This -insensitive loss function,


 is defined as: 
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Using the Lagrangian multipliers and the Karush-Kuhn-Tucker (KKT) conditions, the following 

dual problem is obtained:  
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Transforming into dual form yields a quadratic programming problem with linear constraints and a 

positive definite Hessian matrix. This leads to a global optimum. A nonlinear form is usually required 
to adequately model data. Hence, a nonlinear mapping,  , is used to map data from an input space 

into a higher dimensional intermediate space, where linear regression is performed. Consequently, 
complications result in the complexity of   and the problem of dimensionality in Equation (3). To 

alleviate these difficulties, the inner-product kernel is then introduced as follows: 

  )(),(, jijiK xxxx  . 

The dimensionality of the intermediate space is thus hidden from the remaining computations. 

Some of the most widely used kernels, such as linear, polynomial, and Gaussian radial basis functions 

(RBF), were tested in this study. The kernel function is employed in the optimization models above by 
replacing .,.  with  .,.K . This adds the capability to approximate both linear and nonlinear 

functions. 

In summary, the main advantages of SVR are implicit mapping by using kernels in handling 

nonlinear data, convexity of quadratic optimization, and generalization properties. In addition, 

distribution of the data is not necessarily assumed in advance, which makes it very promising for real-

world problems. 

 

2.2. Particle Swarm Optimization 

 

PSO was introduced by Kennedy and Eberhart [19] to imitate social behavior of animals such as 

birds flocking in searching for food. Each particle flies in hyperspace searching for the best solution by 

adjusting position and velocity based on its own flying experience (pbest) and its companions’ 

experience (gbest). The inertia weight w was later introduced to improve the PSO optimizer. It is very 

attractive because the requirements of gradient information are not needed. Hence, it is unaffected by 

discontinuities of the objective function. The equations used consist of flexible and well-balanced 

mechanisms to enhance the global and local exploration abilities. These allow a thorough search and 

simultaneously avoid premature convergence. In addition, PSO uses probabilistic rules for a particle’s 
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movements. Therefore, it is quite robust for local optima. The standard PSO consists of the following 

steps [19,29]: 

 

1. Initialize a population of I particles with random positions and velocities in D dimensions. 

2. Evaluate the desired optimization function in D variables for each particle. 

3. Compare the evaluation with the particle’s previous best value, pbest[i]. If the current value is 

better than pbest[i], then pbest[i] = current value and the pbest location, pbestx[i][d], is set to the 

current location in d-dimensional space. 

4. Compare the evaluation with the swarm’s previous best value, (pbest[gbest]). If the current value 

is better than pbest[gbest]), then gbest = current particle’s array index. 

5. Change the velocity and position of the particle according to the following equations, 

respectively: 

V[i][d] =  V[i][d] + c1*rand()*(pbestx[i][d] – presentx[i][d]) + 

c2*rand()*(pbestx[gbest][d] – persentx[i][d]) 
(4),

presentx[i][d] = presentx[i][d] + V[i][d]     (5). 

6. Loop to step 2 until a stopping criterion, a sufficiently good evaluation function value, or a 

maximum number of iterations, is met.  

In feature selection, the input presented to the regression modeling is in the form of a table where 

the rows represent chemical compounds and the columns are the molecular descriptors. Each 

compound contains a value for each corresponding factor. How accurately a QSPR model can predict 

the biological activity of the compounds depends on their values in a subset of the selected features. 

Hence, the selection of each column or feature is treated as a binary number. A numerical value of zero 

is used to represent that the corresponding descriptor is not selected for QSPR modeling. Otherwise, a 

numerical value of one is assigned. This binary problem calls for some modification of the original 

PSO. Thus presentx[i][d], which represents the value stored by the ith particle in the dth dimension, can 

only take on a binary value, instead of a real valued number. This indicates whether the dth feature is 

selected or not. Note that the D dimensions above are equal to the total number of descriptors. After 

the update step (Equation (5)), presentx[i][d] is discretized to a binary value by using probabilistic 

selection or roulette wheel selection. The fractional values of presentx[i][d] are treated as probability 

thresholds to determine subset membership. Each dimension or feature of the particle is assigned a 

slice of a roulette wheel whose size is proportional to presentx[i][d]. The subset is assembled by 

spinning the wheel and selecting the features to which the wheel’s marker points. This process is 

repeated k times, which are the predefined number of selected features. The chosen descriptors are 

then set to 1 and the remaining parameters are set to 0. The actual probabilities, pid, are computed as 

follows: 
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where xid is the fractional coordinates presentx[i][d] after the update step (Equation (5)), and a is a 

scaling factor or selection pressure and is set to 2. This binary PSO (BPSO) still presents the same 

advantages as the original PSO. The near-optimal solutions are found much faster, compared with the 
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performance of a random search or an exhaustive search. This allows BPSO to perform feature 

selection efficiently in datasets with large numbers of descriptors. The objective function evaluated by 

the BPSO is the Pearson correlation coefficient that measures the quality of QSPR model with the 

selected features: 
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where N is the number of training compounds for regression and iy and iŷ are the measured and the 

predicted activities of the ith compound, respectively. 

 

2.3. Chiral Guest Dataset and Descriptor Generation 

 

The complex stability constant (ln K), the standard free energy (ΔG°), the enthalpy (ΔH°) and the 

entropy change (TΔS°) for the 1:1 inclusion complexation of enantiomer pairs of 74 selected chiral 

compounds with -CD were taken from the experiments of Rekharsky and Inoue [30]. The values are 

given in Table 1. The guest structures were constructed by using the HyperChem program and fully 

geometrically optimized at the HF/3-21G level by the Gaussian03 program [31]. Two hundred 

structural properties were calculated by the Molecular Operating Environment (MOE) program 

package [32]. Descriptors are categorized by class: 2D descriptors (2D) are calculated from purely 

atomic and connectivity properties, internal 3D descriptors (i3D) use 3D coordinate information about 

each molecule, and external 3D descriptors (x3D) use absolute 3D atomic coordinate information, but 

also require an absolute frame of reference (such as, the molecules docked into the same receptor). The 

chiral guest dataset consisted of 56 compounds for training the models and 18 compounds for testing 

the quality of models. 

Table 1. Experimental Thermodynamic parameters: ln K (M-1), ΔG° (kJ mol-1),        

ΔH° (kJ mol-1) and TΔS° (kJ mol-1) of 74 chiral compounds in 1:1 inclusion complexation 

with -CD taken from Ref. [30] and the values from the best prediction QSPR models with 

four features. 

cmp guest 
Experimental Calculation b 

ln K ΔG° ΔH° TΔS° ln K ΔG° ΔH° TΔS° 

1 N-acetyl-D-phenylalanine 4.11 -10.18 -8.14 2.04 4.43 -11.61 -8.82 0.78 

2 N-acetyl-L-phenylalanine 4.21 -10.44 -8.17 2.27 4.43 -11.61 -8.82 0.78 

3 N-acetyl-D-tryptophan 2.54 -6.30 -25.50 -19.20 2.54 -6.94 -24.09 -17.72 

4a N-acetyl-L-tryptophan 2.84 -7.04 -23.80 -16.80 2.54 -6.94 -24.09 -17.72 

5 N-acetyl-D-tyrosine 4.83 -11.97 -16.70 -4.70 4.65 -11.48 -15.77 -3.92 

6 N-acetyl-L-tyrosine 4.87 -12.07 -17.10 -5.00 4.65 -11.48 -15.77 -3.92 

7 (1R,2S)-2-amino-1,2-

diphenylethanol 

4.01 -9.90 -10.00 -0.10 3.84 -9.35 -10.11 0.65 

8a (1S,2R)-2-amino-1,2-

diphenylethanol 

3.83 -9.50 -10.00 -0.50 3.84 -9.35 -10.11 0.65 
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Table 1. Cont. 

9 (R)-benzyl glycidyl ether 5.46 -13.52 -9.20 4.30 5.21 -13.45 -9.58 4.22 

10 (S)-benzyl glycidyl ether 5.43 -13.50 -9.30 4.20 5.21 -13.45 -9.58 4.22 

11 2,3-O-benzylidene-D-threitol 4.76 -11.81 -7.56 4.25 4.70 -12.05 -7.98 3.30 

12 2,3-O-benzylidene-L-threitol 4.74 -11.76 -7.49 4.27 4.70 -12.05 -7.98 3.30 

13a (2R,3R)-3-benzyloxy-1,2,4-butanetriol 4.42 -10.95 -8.07 2.90 4.79 -10.23 -7.23 2.90 

14 (2S,3S)-3-benzyloxy-1,2,4-butanetriol 4.44 -11.01 -7.79 3.20 4.79 -10.23 -7.23 2.90 

15 O-benzyl-D-serine 4.26 -10.57 -8.90 1.70 4.25 -9.67 -9.46 2.74 

16a O-benzyl-L-serine 4.23 -10.50 -9.20 1.30 4.25 -9.67 -9.46 2.74 

17 N-t-Boc-D-alanine 5.97 -14.80 -9.70 5.10 6.11 -14.00 -9.94 5.16 

18 N-t-Boc-L-alanine 5.91 -14.64 -9.80 4.80 6.11 -14.00 -9.94 5.16 

19 N-t-Boc-D-alanine methyl ester 6.49 -16.09 -13.82 2.30 6.40 -14.95 -12.37 2.43 

20 N-t-Boc-L-alanine methyl ester 6.36 -15.77 -12.80 3.00 6.40 -14.95 -12.37 2.43 

21a N-t-Boc-D-serine 5.72 -14.19 -11.00 3.20 5.33 -13.67 -11.20 2.95 

22 N-t-Boc-L-serine  5.65 -14.01 -10.60 3.40 5.33 -13.67 -11.20 2.95 

23 (R)-3-bromo-8-camphorsulfonic acid 8.23 -20.41 -30.10 -9.70 8.03 -19.49 -29.63 -9.67 

24a (S)-3-bromo-8-camphorsulfonic acid 8.20 -20.32 -29.60 -9.30 8.03 -19.49 -29.63 -9.67 

25 (R)-3-bromo-2-methyl-1 propanol 4.96 -12.29 -9.30 3.00 4.97 -12.47 -10.07 2.65 

26 (S)-3-bromo-2-methyl-1 propanol 4.94 -12.25 -10.10 2.20 4.97 -12.47 -10.07 2.65 

27 (R)-3-bromo-2-methylpropionic acid 

methyl ester 

5.58 -13.80 -12.05 1.80 5.50 -13.90 -12.45 2.40 

28 (S)-3-bromo-2-methylpropionic acid 

methyl ester 

5.60 -13.90 -12.40 1.50 5.50 -13.90 -12.45 2.40 

29a (R)-camphanic acid 5.18 -12.85 -17.80 -5.00 5.23 -15.01 -19.07 -6.17 

30 (S)-camphanic acid 5.33 -13.22 -17.70 -4.50 5.23 -15.01 -19.07 -6.17 

31 (1R,3S)-camphoric acid 2.94 -7.30 -15.50 -8.20 3.02 -8.52 -13.02 -6.63 

32a (1S,3R)-camphoric acid 3.18 -7.90 -8.30 -0.40 3.02 -8.52 -13.02 -6.63 

33 (R)-camphorquinone-3-oxime 7.87 -19.50 -27.10 -7.60 7.62 -19.33 -27.04 -6.91 

34 (S)-camphorquinone-3-oxime 7.80 -19.34 -27.20 -7.90 7.62 -19.33 -27.04 -6.91 

35 (R)-10-camphorsulfonic acid 6.34 -15.70 -20.70 -5.00 6.46 -15.44 -20.53 -5.74 

36 (S)-10-camphorsulfonic acid 6.19 -15.35 -19.50 -4.20 6.46 -15.44 -20.53 -5.74 

37a N-Cbz-D-alanine 5.00 -12.40 -8.90 3.50 4.81 -12.64 -8.69 2.17 

38 N-Cbz-L-alanine 4.99 -12.37 -10.00 2.40 4.81 -12.64 -8.69 2.17 

39 (1R,2R)-trans-1,2-cyclohexanediol 4.44 -11.01 -3.98 7.03 4.66 -12.04 -4.54 7.43 

40a (1S,2S)-trans-1,2-cyclohexanediol 4.45 -11.04 -4.21 6.83 4.66 -12.04 -4.54 7.43 

41 (R)-1-cyclohexylethylamine 5.80 -14.37 -7.85 6.50 5.59 -14.24 -7.94 6.15 

42 (S)-1-cyclohexylethylamine 5.79 -14.36 -7.87 6.50 5.59 -14.24 -7.94 6.15 

43 O,O'-dibenzoyl-D-tartaric acid 3.47 -8.60 -7.00 1.60 3.39 -7.95 -6.32 2.02 

44 O,O'-dibenzoyl-L-tartaric acid 3.00 -7.40 -4.90 2.50 3.39 -7.95 -6.32 2.02 
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45a Gly-D-Phe 3.85 -9.54 -7.93 1.60 3.96 -10.44 -11.79 1.74 

46 Gly-L-Phe 3.99 -9.89 -8.59 1.30 3.96 -10.44 -11.79 1.74 

47 (R)-hexahydromandelic acid 6.47 -16.05 -5.61 10.44 6.11 -14.54 -5.92 9.37 

48a (S)-hexahydromandelic acid 6.40 -15.87 -5.36 10.51 6.11 -14.54 -5.92 9.37 

49 (1R,2R,5R)-2-hydroxy-3-pipanone 7.77 -19.30 -19.50 -0.20 8.05 -19.47 -19.79 -1.12 

50 (1S,2S,5S)-2-hydroxy-3-pipanone 7.75 -19.20 -20.00 -0.80 8.05 -19.47 -19.79 -1.12 

51 (R)-mandelic acid 2.40 -5.90 -4.90 1.00 2.20 -5.63 -5.17 1.11 

52 (S)-mandelic acid 2.20 -5.40 -4.60 0.80 2.20 -5.63 -5.17 1.11 

53a (R)-mandelic acid methyl ester 4.20 -10.42 -7.80 2.60 4.13 -10.17 -6.94 -0.86 

54 (S)-mandelic acid methyl ester 4.28 -10.60 -8.20 -2.40 4.13 -10.17 -6.94 -0.86 

55 (R)-α-methoxyphenylacetic acid 2.40 -5.90 -4.40 1.50 2.79 -7.68 -6.63 1.75 

56a (S)-α-methoxyphenylacetic acid 2.30 -5.70 -5.10 0.60 2.79 -7.68 -6.63 1.75 

57 (R)-α-methoxy-α-

trifluoromethylphenylacetic acid 

5.16 -12.80 -17.48 -4.70 5.45 -13.14 -16.92 -4.19 

58 (S)-α-methoxy-α-

trifluoromethylphenylacetic acid 

4.95 -12.27 -16.35 -4.10 5.45 -13.14 -16.92 -4.19 

59 D-phenylalanine amide 4.62 -11.44 -10.00 1.40 4.66 -11.71 -10.01 0.87 

60 L-phenylalanine amide 4.69 -11.63 -10.60 1.00 4.66 -11.71 -10.01 0.87 

61a D-phenylalanine methyl ester 2.40 -5.90 -5.60 0.30 3.16 -7.07 -3.56 0.58 

62 L-phenylalanine methyl ester 2.48 -6.20 -5.00 1.20 3.16 -7.07 -3.56 0.58 

63 (R)-2-phenylbutyric acid 4.54 -11.26 -9.79 1.50 4.77 -12.20 -9.15 1.81 

64a (S)-2-phenylbutyric acid 4.55 -11.29 -9.91 1.40 4.77 -12.20 -9.15 1.81 

65 (R)-3-phenylbutyric acid 6.00 -14.86 -8.62 6.24 5.22 -14.41 -8.72 5.34 

66 (S)-3-phenylbutyric acid 6.06 -15.03 -8.68 6.35 5.22 -14.41 -8.72 5.34 

67 (R)-1-phenyl-1,2-ethanediol 4.13 -10.23 -7.54 2.69 3.85 -9.42 -6.96 2.24 

68 (S)-1-phenyl-1,2-ethanediol 4.14 -10.26 -7.30 2.96 3.85 -9.42 -6.96 2.24 

69a (R)-phenyllactic acid 4.48 -11.10 -9.34 1.80 5.06 -10.83 -8.09 2.99 

70 (S)-phenyllactic acid 4.42 -10.95 -8.65 2.30 5.06 -10.83 -8.09 2.99 

71 (R)-2-phenylpropionic acid 3.53 -8.74 -8.81 -0.10 4.06 -8.72 -8.84 1.18 

72a (S)-2-phenylpropionic acid 3.58 -8.88 -8.69 0.20 4.06 -8.72 -8.84 1.18 

73 (1R,2R,3S,5R)-pinanediol 8.77 -21.74 -20.40 1.30 8.67 -21.18 -20.19 2.03 

74 (1S,2S,3R,5S)-pinanediol 8.76 -21.71 -20.30 1.40 8.67 -21.18 -20.19 2.03 
a Compounds in test set; b The descriptors in the QSPR models are provided in Table 4. 

 

2.4. QSPR Models 

 

The PSO was adopted for major descriptor selection in QSPR of the chiral guest dataset. Swarm 

parameters are 50 particles and 100 iterations. The iterative PSO attempts to select the key features that 

maximize the Pearson correlation coefficient (R), resulting in a QSPR model developed by SVMs. The 

linear approximation is a fundamental concept of SVMs. Some of the most widely used kernels, such 

as linear, polynomial, and Gaussian radial basis functions (RBF) were tested in this study. This adds 
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the capability to approximate both linear and nonlinear functions. Both PSO and SVMs were 

implemented in MATLAB 7.0.4 running on a Pentium IV (2.4 GHz) computer. The correlation 

coefficient for all PSO-SVM models are the average values from 10 calculations. 

 

3. Results and Discussion 

 

Table 2 shows that the PSO-SVMs with three different kernels give very good results. All models 

have demonstrated an impressive performance with R2 for training set (R2
Training) higher than 0.8. The 

nonlinear kernels give better results than the linear function for the training chiral guest dataset. The 

polynomial kernel, with R2
Training between 0.9991 and 0.9994, has better calibration correlation 

coefficients than the Gaussian RBF kernel, whereas the Gaussian RBF gives much better predictions 

than those obtained with the polynomial SVM. These agree with our previous work [33], in which K 

and ΔH° of the given enantiomer pair dataset were predicted best with a Gaussian RBF kernel. 

 

Table 2. The average predictive ability of PSO-SVMs QSPR models with 8 descriptors. 

SVMs 
ln K ΔG° ΔH° TΔS° 

R2
Training R2

Testing R2
Training R2

Testing R2
Training R2

Testing R2
Training R2

Testing 

Linear 0.8201 0.6666 0.8239 0.6349 0.9048 0.8455 0.8220 0.8257 

Polynomial 0.9993 0.7358 0.9994 0.8213 0.9992 0.8432 0.9991 0.8251 

Gaussian RBF 0.9983 0.9762 0.9987 0.9713 0.9983 0.9350 0.9986 0.8853 

 

The numbers of descriptors in the QSPR models of these thermodynamic properties are further 

investigated by using the Gaussian RBF kernel, which gives the best outcome for the chiral guest 

dataset. The statistics for all PSO-SVM models are given in Table 3. Models with four features also 

provide satisfactory predictive abilities when compared to the eight feature models. The best prediction 

performances of the individual models are presented in Table 4. 

Table 5 presents the selected descriptors in the best prediction QSPR models. All models were 

developed with four 2D descriptors, which use the atoms and connection information of the molecule 

for the calculation. This illustrates that the molecular size and shape factors are important for the 

thermodynamic properties of 74 chiral compounds in 1:1 inclusion complex with -CD. The plots of 

the best QSPR models with 4 features for ln K, ΔG°, ΔH° and TΔS° by PSO-SVM integration against 

the experimental values are shown in Figure 1. 

 

Table 3. The average predictive ability of PSO-SVM with Gaussian RBF kernel models. 

Number of 

descriptors 

ln K ΔG° ΔH° TΔS° 

R2
Training R2

Testing R2
Training R2

Testing R2
Training R2

Testing R2
Training R2

Testing 

8 0.9983 0.9762 0.9987 0.9713 0.9983 0.9350 0.9986 0.8853 

7 0.9977 0.9534 0.9981 0.9778 0.9978 0.9325 0.9981 0.8936 

6 0.9963 0.9629 0.9967 0.9039 0.9966 0.9271 0.9967 0.8868 

5 0.9869 0.9292 0.9872 0.9507 0.9932 0.9142 0.9919 0.8812 

4 0.9534 0.9020 0.9496 0.8498 0.9820 0.8563 0.9572 0.8707 
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Table 4. Descriptors in the best predictive ability of PSO-SVM with Gaussian RBF kernel 

models. 

 

Number of 

descriptors 
R2

Training R2
Testing 

Descriptors in the model 

I II III IV V VI VII VIII 

ln K 8 0.9982 0.9903 2 20 31 76 80 143 164 185 

7 0.9982 0.9922 2 12 90 94 122 144 164 

6 0.9968 0.9879 3 20 30 94 140 167 

5 0.9929 0.9829 3 20 27 59 134 

4 0.9641 0.9530 12 79 114 134 

ΔG° 8 0.9985 0.9924 3 11 28 79 94 112 136 144 

7 0.9978 0.9928 2 9 111 123 129 133 140 

6 0.9969 0.9894 3 12 94 124 133 140 

5 0.9935 0.9849 3 20 27 59 134 

4 0.9688 0.9281 20 72 94 122         

ΔH° 8 0.9987 0.9510 28 54 76 83 124 173 181 186 

7 0.9977 0.9385 20 79 91 140 143 153 187 

6 0.9965 0.9417 2 21 27 112 154 176 

5 0.9943 0.9374 16 36 79 91 122 

4 0.9794 0.9408 20 21 30 36         

TΔS° 8 0.9986 0.8949 3 23 36 44 94 112 114 159 

7 0.9982 0.9371 9 20 33 100 122 158 199 

6 0.9952 0.8991 9 12 93 94 154 164 

5 0.9868 0.9079 6 30 39 76 90 

4 0.9754 0.9113 8 76 114 129         

 

Table 5. The selected descriptors in four feature QSPR models. 

No. Class Description 

8 2D Weiner polarity number 

12 2D PEOE Charge BCUT (3/3) 

20 2D Molar Refractivity BCUT (3/3) 

21 2D PEOE Charge GCUT (0/3) 

30 2D Molar Refractivity GCUT (1/3) 

36 2D Atom information content (mean) 

50 2D Number of chiral centers 

72 2D Total positive partial charge 

76 2D Total positive 0 van der Waals surface area 

79 2D Total positive 3 van der Waals surface area 

94 2D Fractional positive van der Waals surface area 

114 2D Third alpha modified shape index 

122 2D Number of H-bond donor atoms 

129 2D van der Waals polar surface area 

134 2D Bin 3 SlogP_(0.00, 0.10] 
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Figure 1. Plots of calculated thermodynamic parameters by PSO-SVM with Gaussian RBF 

kernel models with 4 features, versus the experimental values: (a) complex stability 

constant (ln K), (b) standard free energy (ΔG°), (c) enthalpy (ΔH°) and (d) entropy change 

(TΔS°). 

(a) 

(b)  

 

(c)  (d)  

 

Even though PSO-SVM methods are not able to explain the values of descriptors in the models, the 

maximum outlier from the QSPR models can point out the error of the experimental data. In ΔH° and 

TΔS° predictions by four features, PSO-SVM models indicate that cmp. 32 is the maximum outlier. 

Considering the values in Table 1, experimental results show that ΔH° of cmp. 31 (1R, 3S-camphoric 

acid) and cmp. 32 (1S, 3R-camphoric acid) are -15.5 and -8.3 kJ mol-1, and TΔS° are -8.3 and 0.4 kJ 

mol-1, respectively. The experimental results have different values for this enantiomeric pair, whereas 

the PSO-SVM models have identical results: ΔH° = -13.02 kJ mol-1and TΔS° = -6.63 kJ mol-1. 

 

4. Conclusions 

 

This work demonstrated that the combination of PSO and SVMs can be applied to effectively and 

efficiently select major features in QSPR modeling of the thermodynamic parameters of 1:1 inclusion 

complexation of enantiomeric pairs of chiral guests with -CD. This responds to the needs of drug 

designers for prediction of the thermodynamic parameters of new compounds in complexation with  

-CD. The method was based on a discrete binary modification of PSO. The fitness function was the 
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Pearson correlation which was curve fitted by SVMs. The modified PSO appeared to be an effective 

and efficient algorithm, which robustly finds near-optimal and consistent results with short computer 

code and simple mathematical operators, while converging rather quickly. The SVMs showed 

excellent performance in predicting ln K, ΔG°, ΔH° and TΔS°, by considering major selected features. 

The combination of the adopted methods showed satisfactory results with the large dataset. 
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