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ABSTRACT: Randomization is used in experimental design to
reduce the prevalence of unanticipated confounders. Complete
randomization can however create imbalanced designs, for
example, grouping all samples of the same condition in the same
batch. Block randomization is an approach that can prevent severe
imbalances in sample allocation with respect to both known and
unknown confounders. This feature provides the reader with an
introduction to blocking and randomization, and insights into how
to effectively organize samples during experimental design, with
special considerations with respect to proteomics.
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■ INTRODUCTION

A vital part of experimental design consists of defining the
order of sample processing and, if necessary, the creation of
batches. The aim is then to avoid the introduction of
confounders that would bias the interpretation of the data.
One of the most famous examples of a confounded experiment
is the observation of “water memory” by Davenas et al.,1 i.e.,
the claimed ability of water to retain a memory of substances
previously dissolved in it, which could not be replicated in a
double-blinded experimental design,2 suggesting that the initial
data were the results of experimenter bias. Flaws in
experimental design and unintended confounding can also be
found in proteomics literature, as shown in, e.g., Sorace and
Zhan,3 Hu et al.,4 Morris et al.,5 and Mertens.6 Knowing how
to deal with the challenges of experimental design is therefore
central to achieving reproducible experiments. For a general
introduction to experimental design, see, for example, Box et
al.,7 Ruxton and Colegrave,8 Lawson,9 and for proteomics
specifically, see Burzykowski et al.10 and Maes et al.11

While some common confounders, like sample annotation,
date and order of processing, and their associated solutions are
generic, others are more field-specific. In proteomics, the use of
liquid-chromatography systems coupled to mass spectrometers
(LC-MS) notably poses major challenges in terms of long-term
performance and influence by outside factors.12 Similarly, there
can be differences introduced, notably during protein
digestion,13 peptide fractionation and enrichment,14 and data
interpretation.15 A good experimental design must therefore
take into account both generic and field-specific confounders,

which can be extremely complex in larger experiments. This is
especially challenging when experiments combine multiple
analytical readouts, and when the allocation of patients to
treatment arms and sample collection may be constrained.
Given the constraints of an experiment, the goal of defining

sample order and batches is to (a) minimize the influence of
anticipated confounders, (b) mitigate the risk that unantici-
pated confounders bias the interpretation of the results, and
(c) ensure that the results remain interpretable if something
does not go as planned and, for example, a batch is lost. While
not inherently different from experimental design in other
related fields, in our experience, block randomization is
currently not a widespread concept in the proteomics
community. Our aim with this feature is to introduce the
proteomics audience to this topic through small and simple
examples that the reader can easily extend to their own
experiments.
In the following we will assume the conceptually simplest

setting of label-free quantification without the use of reference
samples. The concepts and considerations are however
generally independent of the experimental setup. Special
considerations for labeled experiments, experiments with
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reference samples, and experiments with repeated measures are
provided at the end.

■ SAMPLE RANDOMIZATION

Deciphering the association between sample characteristics,
e.g., tumor types, and the proteome holds the key for improved
diagnostic and treatment of diseases. In this setting, protein
abundances are the responses, or outcome variables, of the
experiment, and the other variables in the model are the
explanatory variables.11,16,17 Often, one is interested in
studying the association of one or more explanatory variable(s)
with the response(s), while having to control for other
explanatory variables that are not of primary interest. The
explanatory variables of interest are also referred to as
treatment variables, e.g., treatment, disease status, or tumor
type.
The variables included in the model because they are

expected to potentially influence the outcome, although not
being of primary interest, are referred to as control variables,
and include properties such as enzyme batch, column, or day
of acquisition. Note that some variables may belong in either
category, depending on the goals of the experiment, e.g., age,
sex, and patient ancestry. If there is an association between
treatment and control variables, this can impair the ability to
estimate the effect of the treatment variable. In an extreme
case, if Controls are handled first, and Patients last, to what
extent are the observed differences between patients and
controls genuine and not artifacts introduced during sample
handling?
In addition to the monitored variables included in the

model, other variables may also affect the results, such as
machine drift or environmental changes during the analysis.
Obviously one cannot control for all variables that may have an
influence on the response variable. By their nature, unobserved
variables cannot be included in the model as they are not
observed, and including too many variables in the model
reduces the power of the experiment. A high number of
samples combined with randomization provides a safeguard, in
the long run, against undue influence of unobserved
variables.7,18,19 For more details on the importance of

randomization in proteomics, please see Morris et al.5 and
Mertens.6

To illustrate the effects of randomized versus ordered
allocation, let us assume that we have ten patients receiving a
given Treatment and ten a Placebo, with the treatment resulting
in a minor mean increase in the analytical readoute.g., the
abundance of a given protein, see Figure 1. Figure 1A shows
the experimental setting for the ordered allocation with Placebo
subjects processed first, while Figure 1E shows the same
subjects in a complete randomized allocation. The “true”
protein abundance for each patient is plotted in Figure 1B and
F for the ordered and complete randomized allocations,
respectively. Note that, apart from the order of the samples,
these figures are exactly the same.
Now let us introduce a machine drift (Figure 1C,G) that

causes the mass spectrometer to detect slightly less of the
protein over time. For the ordered allocation, the observed
protein abundances show almost no difference between the
two group means (Figure 1D). Conversely, the difference in
group means for the randomized allocation is nearly the same
as the “true” difference (Figure 1H), and only has added
variance caused by the machine drift (Figure 2). Note that if
the groups were reversed in the ordered sample allocation
scheme, the group mean difference would have been
exaggerated instead.

■ BLOCK RANDOMIZATION
Complete randomization can produce severely imbalanced
sample allocations, e.g., randomly assigning all subjects
receiving treatment to one batch and all subjects receiving
placebo to another batch. Then, batch and treatment are
completely confounded, and it is impossible to perform an
analysis with regards to the treatment. In such a situation it is
not uncommon to resort to adjusting batches and sample
ordering manually, or simply “randomize until it looks good”.
Both of these procedures are poorly reproducible, and
potentially introduce unintended biases. A structured way to
solve this problem is to rather rely on block randomization.20

As a simple example, let us revisit the experimental setting
from Figure 1. To ensure that both treatments are equally
represented throughout the run, we make ten blocks of two

Figure 1. Randomization to account for machine drift. (A, E, I) Sample allocation order for 10 subjects receiving placebo (black figures, subjects
1−10) and treatment (red figures, subjects 11−20); ordered allocation (A), complete randomization (E), and block randomization (I). (B, F, J)
True abundance for the subjects if there would be no machine drift; ordered allocation (B), complete randomization (F), and block randomization
(J), (identical except for the sample order). (C, G, K) Simulated machine drift, identical for all three settings. (D, H, L) Observed abundances =
true abundance + machine drift; ordered allocation (D), complete randomization (H), and block randomization (L). Dashed lines indicate the
group means for each setting.
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subjects: one Treatment and the other Placebo. These are the
smallest blocks we can make where each treatment is
proportionally represented. The order of the treatments within
the blocks (Treatment first or Placebo first) is chosen randomly
for each block. Finally the subjects are randomly assigned to
the blocks (see the right panels of Figure 1). Thus, we group
small, representative subsets of the experiment together (the
blocks), but within the blocks the order of the treatments is
random, and within these constraints the assignment of
subjects to blocks is also random. Consequently, while in
complete randomization all sample sequences are possible,
block randomization returns a sample sequence from a subset
of all possible sequences where, by design, biases introduced by
sequential processing are distributed as evenly as possible over
the treatment groups.
In practice, it is not always possible or preferable to have the

same number of subjects in all groups of the treatment
variable(s).18,19 The block randomization procedure with
groups of different sizes is only slightly different. As before,
first, blocks of samples where each group is proportionally
represented are created. For example, if one group is twice as
large as the other group, each block would consist of three
subjects, one of the smaller group and two of the larger group
(Figure 3A). When the groups do not have a small common
divisor, one can create blocks of different sizes. For example, in
a nine vs ten setting, one would make eight blocks consisting of

one subject of each group, and one block with the remaining
three subjects (Figure 3B). In an experiment with multiple
treatment levels, e.g., Placebo, Treatment 1, and Treatment 2,
the blocks would consist of subjects from all treatments. As
previously, the blocks are put in random order, the order of the
treatments within the blocks is chosen randomly for each
block, and subjects are finally randomly allocated according to
their characteristics.

■ ACCOUNTING FOR CONTROL VARIABLES
The previous examples included two groups of subjects where
the treatment was assumed to be the only difference, and
where all samples could be processed at the same time. Most
experiments have to account for control variables when
estimating the treatment effects. Some common control
variables are technical in nature, such as protease batches,
freezer locations, and biobanks, but sample characteristics such
as sex, age, and patient ancestry also commonly fall into this
category. As the complexity of the design increases, it is
common that not all samples can be processed at the same
time in the same way at the same location. The sets of samples
created by this process are referred to as batches, and this
becomes yet another control variable to account for.
It is important to distribute, as best one can, the different

levels of the treatment variables equally over the different levels
of the control variables. In case of substantial confounding, as
when most of the subjects receiving Placebo are Female and
most of those receiving the Treatment are Male, it can become
impossible to estimate the treatment effect. Similarly, when all
Treatment subjects are in one batch and all Placebo in the other,
batch and treatment are confounded and without a batch-
independent reference it is not possible to distinguish the
treatment effect from a possible batch effect. Thus, it is
important to account for control variables in the experimental
design and in the sample organization, and this can also be
achieved using block randomization.
As a simple example, let us reuse the experimental setting

from Figure 1, but this time split the experiment into two
batches, e.g., due to different days of processing. Given that
both treatment groups have ten subjects each, it is possible to
divide both treatment groups into two subgroups of equal size.
The first batch, Batch A, consists of five randomly chosen
subjects from the Treatment group plus five randomly chosen
subjects from the Placebo group, while the second batch, Batch
B, consists of the remaining subjects (Figure 4A). The
randomization scheme is then exactly as before, except that
half of the randomized blocks are now assigned to Batch A, and
the other half to Batch B.
Assume that for some unknown reason, something is

different for the second batch, resulting in increased protein
abundance measurements (Figure 4C). Each batch can now be
seen as a separate experiment: the difference between
treatment and placebo can be calculated in Batch A, and
similarly in Batch B (Figure 4D). In both batches the treatment
effect is close to the “true” difference (Figure 4B), even though
the measured abundances are different.
When the experiment consists of multiple batches, they will

undergo the same experimental protocol at different points in
time and/or space. Every step of the protocol may then
introduce variation that is specific for each batch. If samples are
moved across batches between processing steps, each
processing step has its own specific sample-to-batch allocation.
Then, each processing step will have its own batch effect, and

Figure 2. Boxplots for the true and observed protein abundances
simulated in Figure 1. Black boxes (left) indicate Placebo, red boxes
(right) indicate Treatment. The “true abundance” is what would have
been measured without the machine drift (Figure 1, second row). The
“ordered allocation”, “complete randomization”, and “block random-
ization” is as depicted in Figure 1D, H, and L, respectively.

Figure 3. Examples of block randomization. (A) 16 subjects receiving
placebo (black, subjects 1−16) and eight treatment (red, subjects
17−24), results in eight blocks of three subjects, each containing two
Placebo and one Treatment. Subjects are randomly assigned to a block
and the order within each block is randomized. (B) 10 subjects
receiving placebo (black, subjects 1−10) and nine treatment (red,
subjects 11−19), results in one block of three subjects, containing two
Placebo and one Treatment, and eight blocks of two subjects,
containing one Placebo and one Treatment. The block containing
three subjects is randomly placed among the other blocks. Subjects
are randomly assigned to a block and the order of the subjects within
each block is randomized.
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each of these will have to be estimated, unnecessarily
increasing the complexity of the model. It is instead
recommended to keep the same batches throughout the
experiment, so that possible batch effects from different
processing steps are combined into one overall batch effect.
If different processing steps of the protocol have different

size constraints, i.e., one step requires more batches than
another, being able to combine the smaller batches into larger
batches without having to split the smaller batches is ideal. For
example, when one experimental step can process 12 samples
at once, while another step can process 24 samples at once,
two batches from the first step can be combined for the second
processing step. When this is not possible, it makes most sense
to set up the batches according to the smallest constraints, and
keep these batches throughout.
As a general advice, to reduce the complexity of

experimental design, execution, and downstream analysis, it
is recommended to keep the distribution of control variables as
simple as possible. Note that this also applies to sample
characteristics such as sex, age, and patient ancestry. For
example, if one has to use two batches and is not interested in
the association of the response with the sex of the patients, it is
perfectly fine, and even recommended, to process Male and
Female samples separately, hence confounding batch allocation
with sex, thus reducing the complexity of the model.
It is important to underline that the control variables have to

be part of the statistical model when analyzing the results, for
example by fitting a linear model. If a control variable is not
included in the model, one is in essence assuming that there is
no difference between the batches, potentially leading to
increased variance in the estimates for the variables of interest.
On the other hand, every variable added to the model incurs a

cost. With two batches, estimating the batch effect costs one
degree of freedom, with each additional batch costing yet
another degree of freedom. Each degree of freedom used in
estimating variables is essentially adding noise, and thus it is
important to not make too many and/or small batches.7

■ MULTIPLE TREATMENT VARIABLES

When the effect of an explanatory variable, e.g., sex, on the
response is of interest, it must be considered as one of the
treatment variables. Similar considerations then hold as for the
control variables, i.e., to be able to estimate the effect of the
treatment variables, they should not be confounded with each
other, nor with the control variables.
In a setting with multiple treatment variables, one can also

be interested in estimating interactions between the treatment
variables. These interactions then become another treatment
variable, and it is important to make sure that these are also
not confounded with any of the other variables. Hence, with
sex and treatment as the treatment variables, one has to make
sure that the effects of both separately and their interaction can
be estimated. For this, all combinations of sex and treatment
should be present in the experiment. Additionally the
comparison between these combinations should not be
confounded by a control variable. Here again, the latter can
be achieved using block randomization.
For example, given 24 patients equally divided into two

treatment levels, Placebo and Treatment, and two sexes, Female
and Male, there are now four groups of six subjects
representing each treatment−sex combination (1: Placebo
Female, 2: Placebo Male, 3: Treatment Female, 4: Treatment
Male). To make sure that the groups are balanced over the
experimental design, we make six blocks of four subjects, one
of each group, and within each block we randomly order the
groups. Subsequently, we randomly allocate subjects to the
blocks based on their group.
In case all samples cannot be processed together, one first

creates the batches, and subsequently performs block random-
ization within each batch. For example, say we have to process
the above samples in two batches. Given that we are interested
in all comparisons between the treatment−sex combinations,
we make two batches of 12 samples, each batch containing
three subjects of each group (Figure 5). This way, the batches
are balanced in terms of the subject-characteristics that we use
in the analytical model.
In contrast to the case where sex is a control variable, putting

all Males in one batch and all Females in the other should now
clearly be avoided: sex and batch would be complete
confounders, rendering impossible the comparison between
Males and Females. Similarly, the interaction between sex and
treatment would be lost.
With an increasing number of variables, the model becomes

increasingly constrained. Given that one always has only a
limited number of samples, variables thus need to be
prioritized. The general advice from Box et al.7 “Block what
you can and randomize what you can’t”, implies that there is
only so much one can control for. Especially in proteomics
studies, with generally large heterogeneity between subjects,
one has to be careful not to block so heavily, and to include so
many variables, that some combinations of treatment and
control variables occur in only a very limited subset of subjects.

Figure 4. Randomized batch allocation. (A) Sample allocation order
for subjects receiving placebo (black, subjects 1−10) and treatment
(red, subjects 11−20). (B) True abundance if no batch effect. Dashed
lines indicate group means for all placebo subjects and all treatment
subjects, considered to be the true group means. (C) Simulated batch
effect. (D) Observed abundances = true abundance + batch effect.
Dashed lines indicate group means within the batches.

Journal of Proteome Research pubs.acs.org/jpr Perspective

https://dx.doi.org/10.1021/acs.jproteome.0c00536
J. Proteome Res. 2021, 20, 122−128

125

https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00536?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00536?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00536?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00536?fig=fig4&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00536?ref=pdf


■ FURTHER CONSIDERATIONS
The strategies outlined for the theoretical settings above can
easily be extended to more elaborate situations. However, as
for all methods, implementing block randomization can quickly
become challenging in real-world situations. In this section,
special considerations are introduced for situations where the
reality of the experiment poses challenges in experimental
design.
Continuous Variables and Fuzzy Categories

Most of the variables inspected so far have divided the samples
into nonoverlapping categories, this will however not always be
the case. Often, variables are continuous or categories are
overlapping, such as age or disease state, respectively. In both
cases categorization is commonplace, but can be problematic.
Categories that span a large number of values can lead to
relatively large differences between subjects within a category,
while the differences between subjects at the edges of
neighboring categories will be small. On the other hand, in a
large enough study the randomization should mitigate this
problem. Additionally, a substantial number of subjects per
category is a requirement to still be able to randomize subjects.
If each subject ends up being its own category, randomization
will no longer be possible.
In cases where categorization is problematic, one can

perform matching for the purposes of blocking, i.e., subjects
that are similar according to a given variable, e.g., age or
disease state, but belong to different groups with respect to all
other variables, are treated as a single group for the purposes of
block randomization (see for example Sekhon21). Note that
the categorized version is solely created for block allocation,
and the final analysis still uses the original variable.
Repeated Measures

In experiments with repeated measures, such as longitudinal
experiments or dose−response curves, an extra dimension has
to be taken into account when creating batches. For
experiments where each subject has multiple samples, taken
under different conditions (e.g., treatments or time points), the
main goal is to detect differences within subjects, e.g., how a

disease progresses or the influence of different treatments. One
should then treat all the samples from a subject as similarly as
possible, and (where possible) process them in one batch.
When the samples are exactly the same, e.g., with replicate
samples at a certain dose/dilution, the opposite applies, as the
main goal is then to detect differences between the doses.
Differences between samples at the same dose are then
considered as noise. In this case, one should therefore spread
the samples from a particular dose over as many batches/
replicates available.
Batch Size Being Smaller than the Number of Groups

When the number of variables increases, the batch size may
become smaller than the number of groups. It then becomes
important to distribute samples across batches in a way that
makes it possible to calculate the differences of interest. For
example, comparing four cell types, but having a batch size of
three, it is impossible to put all cell types together in one batch.
Then one would need to create a balanced set of batches, each
including three of the four cell types, yielding four different
batches (Figure 6). To create a balanced setting, one needs

three samples of each cell type. Ideally, if every cell type has the
same number of samples and the number of samples of each
cell type is a multiple of three, one can create the same number
of each of the batches (e.g., five replicates of batch A, five
replicates of batch B, etc.). Hence all pairs of cell types will
occur together in a batch the same number of times.7

As the number of groups to compare grows and/or the block
size becomes smaller, one will need an increasing number of
replicates to create balanced settings. This generally means that
one has to prioritize some group-comparisons over others. The
more often a pair of groups occurs together in a batch, the
better one can estimate the given difference. On the other
hand, when a pair of groups never occurs together in a batch,
but share a batch with a common other group, the difference
can be calculated through this common other group. For
example, with three cell types (A, B, and C) and a batch size of
two, and the main interest is to compare one cell type against
the other two, it could be possible to mainly have batches with
A vs B and A vs C. The comparison between B and C can still
be made, although the power for that comparison will be much
lower. For general strategies on how to construct batches in a

Figure 5. Example of block randomization with two variables and two
batches. Treatment variables are treatment and sex, with treatment
having two levels: Placebo (black) and Treatment (red). All
combinations of treatment variables are represented by one subject
in each block. Within these constraints subjects are randomly assigned
to a block and the order of the subjects in each block is randomized.

Figure 6. Four possible (ordered) batch compositions with four
groups and a batch size of three. Each color indicates a cell type. Each
cell type occurs in a batch alongside each other cell type exactly twice.
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way that the differences of interest are estimable, see, e.g.,
Lawson9 or Box et al.7

Mitigation of Batch Effects Using Reference Samples

An approach that maintains comparability between samples is
to introduce a common reference. For example, in targeted
proteomic analyses, one spikes a known amount of the heavy
version of a peptide/protein, for use as a reference to infer the
concentration of the peptide/protein present in each sample,
and hence compare the abundance of the specific peptide/
protein across the samples.11,22

A similar approach can also be used in untargeted settings,
both with and without labels,12,23,24 where one sample is used
as a standard throughout the experiment. Having a common
reference makes samples more easily comparable across the
different settings (e.g., batches, days of analysis, and instru-
ments) by providing a common baseline. However, this only
works for processing steps that the reference sample shares
with the other samples in the relevant batch, and poses
challenges in terms of missing value and dynamic range that
are beyond the scope of this article.
The inclusion of a common reference sample is especially

important when doing longitudinal/time-series experiments
where samples are extracted from patients at multiple time-
points. One could consider processing all of the samples at the
same time, i.e., at the end of the study, but this unfortunately
results in storage time being completely confounded with the
time between the samples, thus making it impossible to
distinguish the treatment effect from the storage effect (see, for
example, refs 6, 25). Processing the samples as they become
available can however introduce other confounders, e.g.,
machine performance or batches of chemicals. The solution
is to process the samples at set time-points, and apply the same
common reference sample across the entire experiment. The
common reference sample then has to be present in every
batch and its placement in the batch ought to be randomized.
The use of common reference samples can alleviate many

challenges concerning batch effects. However, it is not always
possible or desirable to include a common reference. For
example, there may be constraints with regards to the available
resources, e.g., the acquisition of heavy peptides for absolute
quantification in targeted studies can be very expensive, and
similarly, for large studies that run for an extended period of
time, it is often not feasible to create a reference sample with a
comparable composition relative to the experimental samples
and that is large enough to last through the entire study.

■ CLOSING REMARKS

Proteomics has many aspects that ought to be taken into
account when designing and planning experiments. The
complexity of the samples, the proteome, and the analytical
techniques employed make proteomics experiments partic-
ularly challenging. Especially in larger studies, the labor
intensive sample preparation often means that the experiment
has to be split into multiple batches. It is therefore important
to design the experiment in such a way that variables and
batches are not confounding. Each batch should as much as
possible be its own small experiment. When the size of the
batches is insufficient to achieve this, it is essential to make
sure that the utilized experimental design can give answers to
the scientific questions asked. To ensure this, and minimize the
bias due to unobserved variables as much as possible, one
should therefore block variables and randomize subjects, in the

different batches, and use this restricted random allocation to
process samples in the lab and on the mass spectrometer.
It is important to underline that the challenges posed by the

handling of multiple variables can only be answered if the
scientific project is rigorously defined, with response, treat-
ment, and control variables clearly identified before the
samples are collected. Given the multidimensional and
multidisciplinary nature of modern omics projects, it is
essential that experts with the necessary expertise are involved
early in the experimental design, to prevent confounding
effects. Finally, while considerations of power are beyond the
scope of this article, it cannot be stressed enough that an
adequate number of samples is paramount, both for correct
experimental design and to ensure that the research questions
can be answered.
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