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This study aims to assess the impact of microplastics (MPs) on erythrocytes using

eryptosis (apoptosis) and an erythron profile (poikilocytosis and nuclear abnormalities),

considered to be novel biomarkers in Nile tilapia (Oreochromis niloticus). In this study,

four groups of fish were used: The first was the control group. In the second group,

1 mg/L of MPs was introduced to the samples. The third group was exposed to 10

mg/L of MPs. Finally, the fourth group was exposed to 100 mg/L of MPs for 15 days,

following 15 days of recovery. The fish treated with MPs experienced an immense

rise in the eryptosis percentage, poikilocytosis, and nuclear abnormalities of red blood

cells (RBCs) compared with the control group in a concentration-dependent manner.

Poikilocytosis of MP-exposed groups included sickle cell shape, schistocyte, elliptocyte,

acanthocyte, and other shapes. Nuclear abnormalities of the MPs-exposed groups

includedmicronuclei, binucleated erythrocytes, notched, lobed, blebbed, and hemolyzed

nuclei. After the recovery period, a greater percentage of eryptosis, poikilocytotic cells,

and nuclear abnormalities in RBCs were still evident in the groups exposed to MPs when

crosschecked with the control group. The results show concerning facts regarding the

toxicity of MPs in tilapia.

Keywords: microplastics, poikilocytosis, apoptosis, tilapia, Oreochromis niloticus, erythrocytes

INTRODUCTION

Plastics consist of small monomers polymerized with supplements of additives, such as stabilizers,
plasticizers, and pigments (Xu et al., 2019). Approximately, 300 million tons of manufactured
plastics are used in industrial processes and food packing each year (PlasticsEurope., 2015). Most of
the plastic wastes are discarded in aquatic ecosystems, especially in developing countries (Karbalaei
et al., 2018).

There is a relatively high presence of microplastics (MPs) in freshwater bodies adjacent to the
highly populated urban areas (Eriksen et al., 2013; Yonkos et al., 2014; Zhao et al., 2014; Lasee
et al., 2017). Eriksen et al. (2013) found an approximate average value of MPs (mesh size 333mm)
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at 43,000 particles/km2 with the highest abundance areas
containing over 466,000 particles/km2 adjacent to the
major cities. Lasee et al. (2017) found that the average MP
concentrations in samples obtained from lakes ranged from
non-detectable (ND) to 5.51 ± 9.09 mg/L for varying size
fractions. Even though it seems that the MP concentrations
are directly proportional to the urban population, the research
showed relatively high concentrations of MPs in remote
freshwater environments with extremely low population density
and industrialization (Free et al., 2014; Yonkos et al., 2014;
Fischer et al., 2016). It has been hypothesized that the urban
water systems are immensely underrepresented in the MP life
cycle despite their potential to significantly alter the microbial
distributions by availing downstream transport and increased
levels of plastic-consuming microbes in these water systems
(McCormick et al., 2014).

The toxic effects of MPs on the aquatic organisms are
debatable and differ across the species according to the size
and type of MPs as well as the presence of heavy metals
and pesticides (Rainieri et al., 2018; Wu et al., 2019). In
fish, several adverse effects, include diminished predatory
prowess, endocrine inhibition, oxidative stress, hepatic stress,
and intestinal alterations (Rochman et al., 2013; Ferreira et al.,
2016; Pedà et al., 2016; Hamed et al., 2019a, 2020). Although
there are many pieces of research on the MPs effects on
fish, still, there is not enough information on the effect of
MPs on the alterations of blood cells and molecular damage
especially on the Nile tilapia (Oreochromis niloticus) (Hamed
et al., 2019a, 2020). Hematological, biochemical, and antioxidant
alterations recorded in the fish after exposure to MPs are
attributed to their toxic effects; however, little is known about
the damage mechanism inside the cells and tissues (Hamed
et al., 2019a, 2020). Understanding the mechanism of cellular
damage associated with MP exposure would help develop
protective treatments at both the cellular and tissue levels.
Blood and its constituents represent the first point of entry
for MPs in fish due to the direct contact between the gills
and contaminated water (Barboza et al., 2020). Accordingly,
the erythrocytes in target organs offer a unique tool for
assessing the cytotoxicity in fish (Fazio, 2019; Soliman and
Sayed, 2020). Eryptosis and erythron profiles (poikilocytosis
and nuclear abnormalities) of fish erythrocytes are valuable
biomarkers of the toxicity of different chemicals, pharmaceutical
residues, and ultraviolet radiation (Mekkawy et al., 2011; Morina
et al., 2012; Sayed et al., 2013, 2015, 2016, 2017; Sayed, 2016;
Sula et al., 2020). The internal health conditions of the fish
can be classified according to the indices iterating serum
biochemical, hematological, and immunological aspects (Edsall,
1999; Luskova et al., 2002). This allows using these alterations
to study the mechanisms underlying the hazardous effects
caused by pollutants (Luskova et al., 2002). The hematological
properties, such as red blood cell (RBC), hematocrit (Ht),
and hemoglobin (Hb) are vital indicators for the evaluation
of the health status of fish after being exposed to different
environmental stresses, bacterial infections, and chemical toxicity
(Kim et al., 2019, 2020). MP invades the circulatory system
of fish, causing lethal reactions and metabolic disorders, e.g.,

endocrine disorders, oxidative stress, gene expression, and
immune responses (Ma et al., 2020). Fish-absorbed MPs diffuse
into the blood system through the cell membrane, causing
accumulation in the body. Hence, the hematological aspects can
be sensitive indicators of MP exposure in fish (Scanes et al.,
2019). Hamed et al. (2019a) stated that the blood properties,
e.g., hemogloboin, RBCs, and hematocrit, of O. niloticus were
altered after being exposed to MP. This phenomenon caused
the blood hemodilution after tissue damage and MP toxicity–
induced hemolysis.

TheNile tilapia is a prominent fish in aquaculture today. It acts
as a valuable experimental model in toxicological studies since
it can be easily manipulated and observed under experimental
conditions (Soliman, 2017). To the best of our knowledge, this
is the first study that aims to examine the cytotoxicity of MPs in
tilapia using novel biomarkers, such as eryptosis, poikilocytosis,
and nuclear abnormalities of RBCs.

MATERIALS AND METHODS

MPs and Stock Preparation
Microplastics were virgin powder with irregular-shaped particles
(more than 90% of MPs and 100 nm in size) purchased
from Toxemerge Pty Ltd (Australia). MPs characterization
occurred per the procedures described in Hamed et al. (2019a).
The stock solution was prepared as per the manufacture
protocol, stored at a temperature of 4◦C in the dark.
The stock solution (2.5 g MP/L) was mixed with purified
water (Milli-Q). Then, it was sonicated before each use.
A further diluted solution for the test concentrations was
prepared from this stock right before the beginning of
each experiment.

Fish Exposure
Early juvenile male tilapia (n = 120 fish, weight 4.35 ±

0.067 g, total length 3.28 ± 0.12 cm) was transported into aired
tanks from the Aquaponic Unit at Al-Azhar University to the
Laboratory of Fish Biology (Faculty of Science, Assiut University,
Egypt). The fish (fed a commercial pellet diet with 3% of
body weight per day) were acclimatized for 2 weeks in good-
quality water within terms of parameters, such as conductivity
(260.8µ M/cm), pH (7.4), dissolved oxygen content (6.9 mg/L),
temperature (28.5◦C), NH4 (<1 mg/L), NO−3(<1 mg/L), and
NO−2 (<1 mg/L), and photoperiod (12:12 h light:dark). The fish
were divided into four groups of 30 individuals each (10 per each
replicate): a control group and three groups treated with MPs
at concentrations of 1, 10, and 100 mg/L for 15 days followed
by 15 days of recovery, according to a method described by
Katzenberger and Thorpe (2015). During the exposure period,
the water was renewed daily (40%) to reduce the impurities from
metabolic wastes and MPs were re-dosed daily, while during the
recovery period, the water was renewed daily to diminish the
impurities from metabolic wastes without the dosing of MPs.

At the end of the experiment, six fish from each group were
randomly handpicked and anesthetized using ice to lessen stress
(Hamed et al., 2019a). The blood samples taken from the caudal
vein for blood smears were used for eryptosis and erythron
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FIGURE 1 | Percentage of apoptotic cells of early-juvenile tilapia (Oreochromis niloticus) exposed to microplastics (MPs). Data are presented as mean ± SE. Bars with

different superscript letters are significantly different (P < 0.05) (n = 6).

FIGURE 2 | Apoptosis detection in early-juvenile tilapia (O. niloticus) after exposure and the recovery to control conditions and MPs at 1, 10, and 100 mg/L. The cells

fluorescing light green after staining with acridine orange was considered apoptotic, while normal cells were pale green. Red circles indicate apoptotic cells and yellow

circles indicate nonapoptotic cells. (Scale bar = 50µm).
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TABLE 1 | Percentage of poikilocytosis cells (altered erythrocytes) of juvenile Nile tilapia (O. niloticus) after exposure for 15 days to microplastics (MPs) and recovery for

15 days.

Exposure period Recovery period

Control 1 mg/L of MPs 10 mg/L of MPs 100 mg/L of MPs Control 1 mg/L of MPs 10 mg/L of MPs 100 mg/L of MPs

Hemolyzed cell 0.7 ± 0.2a 1.7 ± 0.3a 6.7 ± 0.3b 21.7 ± 0.6c 0.3 ± 0.2a 2.2 ± 0.3b 5 ± 0.4c 12.8 ± 0.5d

Sickle cell 1.2 ± 0.2a 3.8 ± 0.6b 6.8 ± 0.5c 15.5 ± 0.4d 0 ± 0a 3 ± 0.4b 3.8 ± 0.4b 10.2 ± 0.5c

Odd shapes 0 ± 0a 4.3 ± 0.5b 9.3 ± 0.7c 23.2 ± 0.7d 0 ± 0a 2.8 ± 0.3b 8.4 ± 0.4c 14.7 ± 0.3d

Schistocyte 0.7 ± 0.2a 4.5 ± 0.4b 6.5 ± 0.4c 20.2 ± 0.7d 0.7 ± 0.2a 4 ± 0.6b 6.6 ± 0.5c 13.3 ± 0.5d

Acanthocyte 1.2 ± 0.2a 5.4±1.0b 10.8 ± 0.5c 19.2 ± 0.7d 0.7 ± 0.2a 5 ± 0.3b 8.8 ± 0.4c 16.7 ± 0.6d

Rouleaux 0.2 ± 0.17a 2 ± 0.5b 1.7 ± 0.3b 6.3 ± 0.3c 0 ± 0a 1 ± 0.3b 1.6 ± 0.2b 4.1 ± 0.3c

Teardrop shape 1.2 ± 0.2a 5.3 ± 0.95b 8.8 ± 0.5c 19.2 ± 0.5d 0.8 ± 0.3a 4.3 ± 0.4b 6.4 ± 0.5c 14.2 ± 0.3d

Filamented 0.5 ± 0.3a 4.3 ± 0.6b 4.3 ± 0.5b 10.3 ± 0.7c 0.5 ± 0.2a 3.3 ± 0.5b 6 ± 0.3c 7.5 ± 0.4d

Heinz bodies 0.2 ± 0.2a 3.3 ± 0.5b 6.2 ± 0.5c 10.7 ± 0.4d 0.5 ± 0.2a 1.8 ± 0.3b 3.8 ± 0.4c 5.3 ± 0.4d

Elliptocyte 1.3 ± 0.2a 3.3 ± 0.3b 6.2 ± 0.4c 19.8 ± 0.8d 0.7 ± 0.3a 3.5 ± 0.4b 7 ± 0.3c 9.5 ± 0.4d

Heart shaped 0 ± 0a 0.5 ± 0.2a 4.8 ± 0.9b 13.5 ± 0.4c 0.5 ± 0.2a 0.8 ± 0.2a 2 ± 0.3b 8.3 ± 0.6c

Eccentric nuclei 1.2 ± 0.2a 5.2 ± 0.4b 9 ± 0.6c 12.7 ± 0.3d 0.7 ± 0.3a 2 ± 0.3b 6.2 ± 0.4c 10 ± 0.6d

Crenated cell 1 ± 0.4a 5 ± 0.4b 16.2 ± 0.9c 21 ± 0.6d 0.8 ± 0.2a 3.7 ± 0.3b 9.4 ± 0.5c 17 ± 0.4d

Kidney shaped 0.7 ± 0.2a 2.8 ± 0.6b 4 ± 0.5b 13 ± 0.5c 0.2 ± 0.2a 1.3 ± 0.2b 3.8 ± 0.4c 10 ± 0.6d

Red cell agglutinate 0.3 ± 0.2a 0.3 ± 0.2a 1.7 ± 0.3b 9.3 ± 0.4c 0 ± 0a 0.2 ± 0.2a 2.2 ± 0.4b 2.8 ± 0.3b

Microcytic 1.3 ± 0.2a 4.8 ± 0.5b 10.3 ± 0.5c 18.3 ± 0.5d 0.3 ± 0.2a 1.7 ± 0.2b 7.4 ± 0.5c 13.2 ± 0.5d

Macrocytic 0.3 ± 0.2a 0.8 ± 0.3a 3.2 ± 0.4b 12.3 ± 0.4c 0.2 ± 0.2a 0.3 ± 0.2a 1.8 ± 0.3b 6.5 ± 0.4c

Data are represented as means ± SE. The values with different superscripted letters during the exposure period in the same row for each parameter are significantly different (P < 0.05)

(n = 6).

The values with different superscripted letters during the recovery period in the same row for each parameter are significantly different (P < 0.05) (n = 6).

TABLE 2 | Percentage of nuclear abnormalities of red blood cells (RBCs) of juvenile Nile tilapia (O. niloticus) after exposure for 15 days to MPs and recovery for 15 days.

Exposure period Recovery period

Control 1 mg/L of MPs 10 mg/L of MPs 100 mg/L of MPs Control 1 mg/L of MPs 10 mg/L of MPs 100 mg/L of MPs

Micronuclei 1.3 ± 0.2a 5.8 ± 0.3b 9.7 ± 0.4c 15.2 ± 0.4d 1.7 ± 0.2a 4.7 ± 0.3b 6.8 ± 0.3c 9.7 ± 0.3d

Binucleated 1 ± 0.3a 2.3 ± 0.3b 4.8 ± 0.5c 12.3 ± 0.5d 0.7 ± 0.2a 2 ± 0.4b 3.8 ± 0.3c 7.2 ± 0.3d

Blebbed nuclei 0.3 ± 0.2a 1.8 ± 0.3b 4.2 ± 0.3c 8 ± 0.4d 0.3 ± 0.2a 0.8 ± 0.3a 2.3 ± 0.3b 5.2 ± 0.3c

Notched nuclei 0.3 ± 0.2a 2.2 ± 0.5b 6.2 ± 0.5c 13.2 ± 0.3d 0.3 ± 0.2a 1.5 ± 0.2b 2.3 ± 0.2c 6 ± 0.5d

Lobed nuclei 0.3 ± 0.2a 1.8 ± 0.3b 3.8 ± 0.3c 8 ± 0.4d 0.3 ± 0.2a 1.3 ± 0.3b 2.5 ± 0.2c 4.2 ± 0.3d

Hemolyzed nuclei 1.2 ± 0.2a 2. ± 0.3a 5.3 ± 0.4b 13.2 ± 0.6c 0.7 ± 0.2a 1.7 ± 0.2b 3.3 ± 0.3c 8 ± 0.4d

Data are represented as means ± SE. The values with different superscripted letters during the exposure period in the same row for each parameter are significantly different (P < 0.05)

(n = 6).

The values with different superscripted letters during the recovery period in the same row for each parameter are significantly different (P < 0.05) (n = 6).

profiles (to measure poikilocytosis and nuclear abnormalities).
The experimental setup and fish handling were approved by
the Research Ethics Committee of the Faculty of Science, Assiut
University, Assiut, Egypt.

Erythrocyte Programmed Cell
Death (Eryptosis)
Eryptosis was detected following the procedures described
by Sayed et al. (2016). In brief, the blood smears were
prepared and stained with acridine orange, and RBCs were then
observed under a fluorescence microscope (Zeiss Axioplan2)
equipped with a digital 3 CCD color video camera (Sony, AVT-
Horn, Japan).

Erythron Profiles (Poikilocytosis and
Nuclear Abnormalities of RBCs)
The blood smears were assorted, stained with hematoxylin and
eosin, handpicked, classified with codes, randomized, and scored
blindly for erythrocyte alterations and nuclear abnormalities.
For every group, 10,000 cells (1,000 per slide minimum) were
analyzed at 100×magnification for MN and altered RBCs in the
varying groups. The criteria of observation for MN counts were
previously detailed by Al-Sabti and Metcalfe (1995) and Schmid
(1975).

Statistical Analysis
All data were assessed in SPSS (SPSS 1998, SPSS Inc., Chicago,
IL, USA) at p < 0.05. Data were subjected to a Shapiro–Wilk
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test for normality and Levene’s test for homogeneity of variances
utilizing the one-way ANOVA test. Should there be variance
equality, Fisher’s least significant difference post-hoc test was
employed to crosscheck the treated groups against the control
group. Should there be variance inequality, Dunnett’s post-hoc
test instead employed to crosscheck the treated groups against
the control group.

RESULTS

Erythrocyte Programmed Cell
Death (Eryptosis)
The percentage of apoptotic cells increased significantly in
the MPs-exposed groups compared with the control group
in a concentration-dependent manner (Figure 1). RBCs of
the control group appeared normal with pale-green nuclei
(Figure 2), while those of the MPs-exposed groups appeared
apoptotic with luminous light-green nuclei (Figure 2). After
the recovery period, a higher percentage of apoptotic cells was
observed in the MPs-treated groups compared with the control
group in a concentration-dependent manner (Figures 1, 2).

Erythron Profiles (Poikilocytosis and
Nuclear Abnormalities of RBCs)
Exposure to 1, 10, and 100 mg/L of MPs was associated with a
significant rise in the percentage of poikilocytosis and nuclear
abnormalities of RBCs compared with the control group in
a concentration-dependent manner (Tables 1, 2). The blood
smears of the control group contained normal erythrocytes
ellipsoidal in shape with a centrally located ellipsoidal nucleus
(Figure 3A). The blood smears of the fish exposed to MPs at
1 mg/L displayed poikilocytosis of the erythrocytes (Figure 3B)
in the form of teardrop-like cells (Tr) with pointed apices,
sickle cells (Sk), elongated crescent-shaped RBCs, and cells with
eccentric nuclei (deviating or departing from the center of the
cell). The alterations of RBCs in fish exposed to MPs at 10
mg/L (Figures 3C,D) included Tr, sickle cells, eccentric nuclei,
filamented cells, acanthocytes (Ac), spiculated red cells with a
few projections of varying sizes and surface distributions, kidney-
shaped cells (Kn), elliptocytes (slightly oval to cigar-shaped
with blunt ends), and crenated cells (Cr), spherical red cells
covered with short and pointed projections. In addition, the
alterations of RBCs in the fish exposed to MPs at 100 mg/L
(Figures 3E,F) included eccentric nuclei, filamented cells, sickle
cells, Cr, Kn, elliptocytes, Ac, heart-shaped cells, and schistocytes
(fragmented RBCs).

The major nuclear abnormalities of RBCs in fish exposed
to MPs at 1 mg/L (Figures 4B,C) showed micronuclei (Mn),
a round cytoplasmic inclusion with a diameter one-tenth to
one-third that of the primary nucleus, and binuclei (Bin). The
alterations of the nuclei of RBCs in fish exposed to MPs at 10
mg/L (Figures 4D–G) included Mn, Bin, Kn, notched Nuclei
(Non), and the cells with clear slits that extend well into the
nuclear envelope. Moreover, the alterations of nuclei of RBCs in
the fish exposed to MPs at 100 mg/L (Figures 4H–L) included
Non, irregular nuclei (Irn), elongated nuclei (En), Kn, Bin, lobed

nuclei (Lon), and large evaginations of the nuclear envelope with
no clear shape or definition. After the recovery period, a higher
percentage of poikilocytosis and nuclear abnormalities of RBCs
were found in the MP-treated groups compared with the control
group in a concentration-dependent manner (Tables 1, 2 and
Figures 3G–J, 4A–H).

DISCUSSION

Microplastics influenced a significant surge in apoptotic cells
percentages, which is in accordance with a report by Gökçe et al.
(2018), who observed that polyvinyl chloride (PVC)MPs induced
apoptosis in zebrafish (Danio rerio) embryos in a dose-dependent
manner. Moreover, Xu et al. (2019) reported that the two types
of polystyrene nanoparticles (PS-NP25 and PS-NP70) caused an
immense increase in apoptosis in human lung epithelial cells. Qu
et al. (2019) found that the amino-modified nano polystyrene
enhanced the stimulation of apoptosis compared with pristine
nano polystyrene in germlines of the nematode Caenorhabditis
elegans. Sökmen et al. (2020) reported that 20 nm polystyrene
plastics can bioaccumulate brain tissue and cause apoptosis in
zebrafish embryos.

Several studies reported the existence of mechanisms for
apoptosis induction in cells, but details of these mechanisms
are not clear. For example, Yirong et al. (2020) found that di
(2-ethylhexyl) phthalate can induce apoptosis by stimulating an
oxidative burst of neutrophils in carp (Cyprinus carpio). This
apoptosis was explained by Walpitagama et al. (2019), who
supported the assumptions of reactive oxygen species (ROS)–
prompted apoptosis demonstrated in our previous study (Hamed
et al., 2020). In addition, polystyrene upregulated the expression
levels of pro-apoptotic proteins, which are strictly linked to
the commencement of cell apoptosis (Xu et al., 2019; Yirong
et al., 2020). In the present study, we observed that most of
the characteristics of apoptosis reported in the previous studies,
such as RBC shrinkage, nuclear and DNA damage, and cell-
membrane alteration in erythrocytes (Lang et al., 1998; Bortner
and Cidlowski, 1999, 2004; Maeno et al., 2000; Okada et al.,
2001; Yu et al., 2001; Javadov and Karmazyn, 2007). These
results indicate that the mechanism responsible for apoptosis
in erythrocytes may involve alterations of cell components,
especially ion channels (Föller et al., 2008). On the other hand,
no significant differences were evident between PVC and Mater-
Bi micro-debris–exposed groups and control groups concerning
apoptosis in Dreissena polymorpha (Magni et al., 2020).

In this study, MPs influenced an immense surge in the
percentage and nuclear abnormalities of poikilocytosis cells in
RBCs compared with the control group. To the best of our
knowledge, this is the first study to illustrate the effect of MPs
on the poikilocytosis of RBCs. We concluded that MPs or their
additives interact with erythrocytes and limit the dehydrogenase
of delta-aminolevulinic acid and induce the interruption of
plasma membranes, producing abnormally shaped blood cells
(poikilocytosis) (Hamed et al., 2019b). The higher production
of ROS in erythrocytes could offer a reasonable explanation for
this phenomenon; it could be caused by the direct interaction
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FIGURE 3 | Hematoxylin and eosin-stained blood smears from juvenile O. niloticus showing I; MP exposure: normal erythrocytes (A), deformed ones after exposure

to MPs at 1 mg/L for 15 days (B), deformed ones after exposure to MPs at 10 mg/L for 15 days (C,D), and deformed ones after exposure to MPs at 100 mg/L for 15

days (E,F) and II; recovery period: normal erythrocytes (G), deformed ones after recovery from exposure to MPs at 1 mg/L for 15 days (H), deformed ones after

recovery from exposure to MPs at 10 mg/L for 15 days (I), and deformed ones after recovery from exposure to MPs at 100 mg/L for 15 days (J). Tr, tear-drop cell; Cr,

crenated cell; Ac, acanthocyte; Ecn, eccentric nucleus; Kn, kidney shape; Hr, heart shape; Eli, elliptocytes; odd, odd shape; FL, filamented; Shc, schistocytic and Sk,

sickle cell.

between MPs and erythrocyte plasma membranes (da Costa
Araújo et al., 2020a).

In our results, the nuclear abnormalities of RBCs included
Mn, binucleated erythrocytes, notched, lobed, blebbed, and
hemolyzed nuclei. A higher percentage of nuclear abnormalities
(and Mn in particular) were observed inMytilus galloprovincialis
mussels after exposure to the polyethylene and polystyrene MPs
(Avio et al., 2015) and benzo(a)pyrene and/or benzo(a)pyrene-
contaminated low-density polyethylene (Pittura et al., 2018).
Polyethylene MPs induced nuclear anomalies, e.g., Mn, NoN,
blebbed, binucleated or multilobed nuclei, kidney-shaped nuclei,
eccentric nuclei, and nuclear vacuoles in erythrocytes of Danio

rerio after feeding on fry of Poecilia reticulate as well as in
erythrocytes of Physalaemus cuvieri tadpoles (da Costa Araújo
et al., 2020b).

The nuclear anomalies may be a product of aneuploidy or
disruption of cytokinesis (da Costa Araújo et al., 2020a) as
well as the elimination of amplified genes (Crott et al., 2001).
Strunjak-Perovic et al. (2009) reported that the nuclear anomalies
may result from gene mutations in the nuclear lamina of the
nucleus. Moreover, da Costa Araújo et al. (2020a) found that the
genotoxicity of polyethylene MPs on erythrocytes was indirectly
induced by the formation of free radicals that interfere with
DNA integrity, and our previous study linking oxidative stress in
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FIGURE 4 | Hematoxylin and eosin-stained blood smears from juvenile (O. niloticus) showing nuclear abnormalities, I; MP exposure: normal erythrocytes (A),

deformed ones after exposure to MPs at 1 mg/L for 15 days (B,C), deformed ones after exposure to MPs at 10 mg/L for 15 days (D–G), and deformed ones after

exposure to MPs at 100 mg/L for 15 days (H–L) and II; recovery period: normal erythrocytes after recovery from exposure to MPs for 15 days (A), the deformed ones

after recovery from exposure to MPs at 1 mg/L for 15 days (B), deformed ones after recovery from exposure to MPs at 10 mg/L for 15 days (C–E), and deformed

ones after recovery from exposure to MPs at 100 mg/L for 15 days (F–H). Bn, blebbed nucleus; En, elongated nucleus; Non, notched nucleus; Mn, micronucleus;

Bin, bionuclei; Kn, kidney-shaped nucleus; Irn, irregular nucleus; Lon, lobed nucelus; Rox, rouleaux shape; Eln, elongated nucleus.

tilapia with exposure to MPs (Hamed et al., 2020) reinforces this
conclusion. On the contrary, no significant differences between
PVC andMater-Bi micro-debris–exposed groups and the control
group were found in Dreissena polymorpha Mn (Magni et al.,
2020).

After the recovery period, a higher percentage of apoptotic
cells and poikilocytosis and nuclear abnormalities of RBCs were
still observed in the MP-treated groups in a dose-dependent
manner. This could be attributed to the fact that apoptosis is
generally believed to be irreversible (Tang et al., 2012).

In addition, Gagnaire et al. (2013) showed that the depleted
uranium surged ROS production in adults and larvae even at the
low concentrations and the depuration period for adult D. rerio.
In addition, Stankevičiute et al. (2016) found that Mn incidences
were found to immensely surge after a 4-day recovery in all

the tissues. Blood erythrocytes maintained noticeable recovery
of all analyzed geno-cytotoxicity endpoints after 8 and 12 days
in the 0.25 group; however, the recovery was observed after
12 days of depuration in the liver and kidney erythrocytes.
Martins et al. (2018) relayed that the inflammation and formation
of hyperplastic foci in fish epithelia showed slower recovery
and unexpected increased expression of a ras family oncogene
homolog following depuration. Removing the chemical intruders
could enhance tissue recovery, though it does not completely
clear the molecular and histopathological endpoints commonly
related to neoplasia. Détrée and Gallardo-Escárate (2018) stated
that during the period of recovery, a contrasting response
was found with the activation of apoptotic processes and the
upregulation of immune receptors and stress-related proteins
(glutathione peroxidase, hsp70) in mussels previously exposed
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to MPs. This states that the physiological stress and physical
damages induced by MPs persist after an event of exposure. A
30-day depuration period induces a tendency to recover initial
values of biomarkers determinations in the fish liver of sea
bream after long-term exposure to virgin and seawater affected
by a MPs enriched–diet. Yet, it seems to suffice for its complete
normalization (Capó et al., 2021).

In contrast, Solomando et al. (2021) surmised that the liver
and blood biomarkers of Sparus aurata managed to recover
during the period of depuration, with the majority reaching
levels close to those of the control group after long-term
exposure to MPs. In addition, Iheanacho and Odo (2020)
observed that Clarias gariepinus fed a diet containing PVC
particles (0, 0.5, 1.5, and 3.0%) for 30 days, presented a
reduction in erythrocyte mean cell volume, neutrophil counts,
cell hemoglobin, and induced oxidative stress in brain and gills.
For 45 days, a depuration period allowed the recovery of most of
the analyzed parameters.

CONCLUSION

The fish RBCs can be sensitive and reliable biomarkers for the
measurement of the cytotoxic and genotoxic effects of MPs.
Exposure of tilapia to MPs induces apoptosis, poikilocytosis,
and nuclear abnormalities of RBCs. Following the period of
recovery, almost all the detected variances were still evident in

the MP-treated groups in a dose-dependent manner. This could
be attributed to the fact that these changes are generally believed
to be irreversible or the necessity of a longer recovery period for
the fish.
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