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11.1 Introduction

Discussions of spatial analysis generally refer to the study of any infor-
mation that includes a geographic dimension. In other words, it studies
information that is spatially identifiable and, thus able to be mapped. This
is independent of whether a given analysis is qualitative or quantitative.

The spatial analysis of geographic data with geographic information
systems (GIS) seeks to describe, evaluate, and understand processes occur-
ring in geographic space and possibly using that understanding to inform
decision-making [1]. The GIS analyst incorporates co-incident variables
and other subject matter in spatiotemporal models. GIS is an information
system to capture, manage, manipulate, analyze, model, and represent
geographic, spatial, and georeferenced data. By working with varied data
layers, we can identify correlations between spatially distributed variables.
In this work we highlight the diverse use of these tools for studying the
COVID-19 pandemic.

Studies of the pandemic in the spheres of medicine, mathematics, so-
cial sciences, as well as interdisciplinary synergies include geographic
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components. The various geographic facets of these studies are addressed
by the spatial analysis tools presented in this chapter.

The fields of medicine and health are not new to GIS [2–4]. In the midst of
the COVID-19 global health crisis, health systems depend to a large extent
on contact tracing to prevent COVID-19 propagation. Within this frame-
work, GIS, and spatial analysis tools have been especially designed for the
study and execution of nonpharmaceutical intervention strategies [5].

GIS has numerous uses specific to the field of public health [6–8]. It is
used to monitor the epidemiological evolution of the disease and create
explanatory maps for distribution and communication. It is involved in
the spatial surveillance of the disease and rapid detection, understanding
the dynamics of the pandemic, studying and controlling outbreaks, and
for identifying problems of a spatial nature. It is used to improve public
safety, such as by responding effectively to health emergencies, antici-
pating logistical needs and distributing resources, and strategizing policy
measures. Furthermore, researchers use spatial analysis to contextualize
and understand coincident variables and make predictive models.

Specific to this review, we highlight the spatial analysis tools (GIS,
spatial statistics, remote sensing, GPS) that have seen the most use in
addressing the COVID-19 pandemic. We focus on papers published in
the second half of 2020. This allows us to compare with previous work
including reviews or reflections on the utility of this technology for pan-
demic research [5–7,9–14]. Only months ago, due to logistics, novelty and
lack of research, we had far less information. We have seen an enormous
increase in publications related to the COVID-19 pandemic. In just a few
months the number of studies using spatial analysis has greatly multiplied.
To conduct this review, we consulted ScienceDirect, Web of Science, and
Google Scholar, identifying 114 articles on the topics of COVID-19, GIS,
spatial statistics and their specific tools, as are presented in the following
pages. The order of appearance was determined based on the respective
volume of work addressing COVID-19.

11.2 Spatial analysis tools

11.2.1 Spatial statistics in GIS for COVID-19

One of the most commonly used spatial analysis methods is ordinary
least squares (OLS). OLS is a form of global multiple linear regression that
minimizes the sum of squares of the vertical distances between the data
values and those of the estimated model [15]. It indicates the strength and
the average meaning of the independent variables [16] and, as such, is
essentially one-size-fits-all [17]. It is has been used for analyses of socio-
economic variables [18–20], urban environments [17,21–23], and social
vulnerability [24,25], among others.
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Certain cases require refining a geographically weighted regression
(GWR) model, using the variables previously included in the OLS regres-
sion. In the case of Karaye and Horney [24] , for example, this is caused by
the nonstationary vulnerability to COVID-19 among U.S. counties.

GWR regression creates a local model and calculates the parameters
for all points of the sample considering the spatial variation in the re-
lationships [26,27]. It considers nonstationary variables (such as climate,
demographic factors, and characters of the physical context) and models
the local relationships between those predictors and the patterns under
study. Although GWR is a useful exploratory technique, its utility as a
predictive tool is controversial (Statistics solutions). It facilitates analysis of
spatial variation in a phenomenon in a given place [28] , following Tobler’s
first law of geography (1970) that “everything is related to everything else,
but near things are more related than distant things.”

Murgante et al. [28] look for geographic parallels between affected areas
in the valley region of Po and the metropolitan region of Wuhan. They
find that both pollution and land use play important roles in explaining
the distribution of COVID-19 in the two regions. Wu et al. [17] use GWR
for each study site, basing the local regression on data from adjacent
neighborhoods, thus estimating local regression coefficients for each of the
predictor variables [16]. Mansour, Al Kindi, Al-Said, Al-Said, and Atkinson
[29], in Oman, correlate sociodemographic variables with COVID-19.

Iyanda et al. [18] note that GWR has encountered recent critiques given
its inability to address spatial multicolinearity, its inability to mitigate for
spatial and atypical autocorrelation, and its bandwidth with a single core
that fails to consider the size of geographic units. This last major weakness
of GWR, which assumes that all the processes being modeled operate at the
same spatial scale, lead to the development of multiscale geographically
weighted regression (MGWR) [27,30]. The latter model allows different
processes to operate at different spatial scales. Iyanda et al. [18] use MGWR
with socio-demographic variables and out-of-pocket expenditure at the
global level. Mollalo, Vahedi, and Rivera [31], on the other hand, use it for a
local-level examination of the spatial nonstationarity between 35 environ-
mental, socioeconomic, topographic, and demographic variables by U.S.
counties. Likewise for European countries, Sannigrahi et al. [19] estimate
local spatial correlation coefficients between socio-demographic variables
and COVID-19 data.

Among generalized linear models, logistic regression has had special
prominence in geographic studies of COVID-19. Poisson distribution de-
scribes the expected frequency of a set of probabilities for a discrete vari-
able [32]. Each point of the distribution represents the probability that a
given number of events occurs during a time period in a specific place or
population. This distribution is typically used to study events with small
probabilities or anomalous eventsDiaz Quijano [33].
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To explore infection dynamics at the neighborhood level, Harris [34] an-
alyzes differences in the number of COVID-19 deaths across borders of
neighboring locations and looks for relationships with other differences
in the make-up of neighbors. The assumption is that, all else being equal,
nearby locations should have similar mortality levels because they share
the same geographic context and because the infection is transmitted
through close contact between people. Although based on a simple princi-
ple, when applied it induces a clustering effect in the data that is addressed
through a multilevel Poisson model.

Yip et al. [23] use the Poisson distribution, among other regression,
to evaluate the association between notified confirmed cases and the
constructed environment in Hong Kong. Other significant uses of Pois-
son include studies by Andersen, Harden, Sugg, Runkle, and Lundquist
[35], Desjardins et al. [36], and Hohl, Delmelle, Desjardins, and Lan [37].
Their surveillance studies assume that COVID-19 cases have a Poisson
distribution and use that to infer high-risk geographic hotspots. Das et al.
[38] use Poisson as well as other models to evaluate the impact of living
environment in hotspots in the city of Kolkata (India), similar to Harris
[34] in London. Sugg, Spaulding, and Lane [39] attempt to determine the
driving factors in accumulated COVID-19 cases in nursing homes at local
scales.

As can be seen, it is crucial to be able to detect hotspots. Hotspot iden-
tification allows a focused approach to assessment and response by local,
state, and federal agencies. One of the most common tools to measure local
clustering is the Getis-Ord Gi statistic [40] (e.g. [34,39,41–47]). The statistic
is calculated by analyzing every entity within the context of neighboring
entities. An entity with a high value is relevant, but it may not be a statis-
tically significant hotspot. Following Tobler’s first law (1970) [48], the Gi
statistic uses a global index to measure the level of spatial autocorrelation,
that is, the degree to which objects or activities in a geographic unit are
similar to other objects or activities in nearby geographic units [49].

For measuring spatial autocorrelation, Global Univariate Moran’s is
one of the most used methods (e. g. [17,18,20,28,43,46,50–54]. The global
version, Moran’s I evaluates the pattern and general tendency of the data.
As a global indicator, it overlooks the instability of local spatial processes,
which leads to the development of the local version of Moran [55] which
identifies both the spatial clustering of entities with similar values and
the occurrence of divergent values. This latter version is known as local
indicators of spatial association (LISA).

Xie et al. [53] in China, Murgante et al. [28] in the United States, and
Santana Juárez et al. [52] in Mexico create LISA cluster maps to analyze
the characteristics of local spatial correlation of the COVID-19 epidemic.
Wu et al. [17] use LISA to test whether the stationarity of the incidence
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of COVID-19 in China. Sun, Di, Sprigg, Tong, and Casal [56] use LISA
to map COVID-19 risk in the U.S. as well as to identify hotspots related
to demographic variables. Mollalo et al. [46] examine the spatial pattern
of mortality associated with lower respiratory tract infections and ad-
justed for age with global and local indices of spatial autocorrelation.
They use the Moran’s I and the Getis-Ord General G to investigate the
extent to which nearby counties have similar rates of lower respiratory
tract infections. Yao et al. (2020), analyzing 49 Chinese cities, investigate
the associations between concentrations of particulate matter and the
COVID-19 fatality rate. Sun et al. [56] use Moran to spatially relate the
COVID-19 mortality rates with non-COVID-19 mortality in the United
States.

11.2.2 Multicriteria analysis

Our review of correlation methods for multicriteria analysis highlights
the importance of the Pearson correlation coefficient. The test statistic mea-
sures the strength of association between two continuous variables. It is
considered the best method to measure the association between variable of
interest because it is based on the covariance method. The statistic indicates
the magnitude of correlation as well as the direction of the relationship
(Statistics solutions).

Chatterjee et al. [57] measured variables relating social behavior with
age groups, socio-political, exposure, and comorbidities. Mollalo et al.
[31] use the Pearson correlation coefficient in a U.S. case study to inves-
tigate the correlations between socioeconomic, behavioral, environmental,
topographic, and demographic variables. Wu et al. [17] use the same to
evaluate the relationship between environmental variables and COVID-
19. Bherwani, Anjum, and Kumar [58] study population, density, and area
by state in India. Tao, Downs, Beckie, Chen, and McNelley [59] analyzed
the Pearson coefficient for the correlation between population density and
accessibility of COVID-19 testing sites. Using atmospheric data, Coccia
[60] and Marquès, Rovira, Nadal, and Domingo [61] correlated atmo-
spheric stability and stability of pollution levels.

While the Pearson coefficient evaluates the linear relationship between
two continuous variables (a relationship is linear when a change in one
variable is associated with a proportional change in the other variable), the
Spearman and Kendall correlation evaluates the monotonic relationship
between two continuous or ordinal variables, without considering the
linearity of the relationship. Prunet, Lezeaux, Camy-Peyret, and Thevenon
[62] use Spearman to extract the correlation between remotely sensed NO2
data (S5P) and in situ NO2 data. Pani, Lin, and RavindraBabu [63] correlate
COVID-19 with meteorological parameters. Sun et al. [56], in the U.S.,
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design a probability model to estimate the community risk of exposure
to pandemics, which uses Spearman in different time intervals, as well as
to study the relationship in estimation of risk between neighboring coun-
ties. Ran, Zhao, and Han [64] use Spearman to evaluate the relationship
between the ozone and the spatial distribution of COVID-19 [62].

Analytic Hierarchy Process (AHP) is a multicriteria decision-making
model [65]. It is an additive and compensatory technique of pair-based
comparison, based on three principles: decomposition, comparative eval-
uation, and establishment of priorities. It is a process for identifying,
understanding, and evaluating the interactions of a system in a holistic
way by providing a scale to measure intangible factors and a method to
establish priorities [66]. It is widely used for issues related to environment
and health. Requia et al. [66], working in Brazil, establish a hierarchical
network for issues of land use, socioeconomic, population, health condi-
tions, and the healthcare system. Mishra et al. [67] use AHP to generate
a COVID vulnerability index for urban environments in India and Fang
et al. [45] perform a similar process for the island of Xiamén, China. Yao
et al. [68] use multicriteria analysis to model the potential distribution
of soya crops and how the soya trade has changed since the COVID-19
pandemic.

Following this account of interesting works, Wei, Liu, and Zhu [69] look
at the intersection of meteorologic and transportation variables, factors
that may play an important role in COVID-19 transmission in continental
China. Their study shows that counties crossed by railroads or major
highways or that have airports have significantly greater risk of COVID-
19, and at the same time, they find that the greatest COVID-19 attack rates
are significantly associated with lower average temperature, moderate
cumulative precipitation, and greater wind speeds.

According to Karaye and Horney [24], it is essential to address social
determinants of health, such as housing, education, and environmental
and economic justice in order to reduce the inequities associated with
health disasters in the U.S. As such, they use socio-economic, climatic, and
PM2.5 data to show that the socio-economic conditions of the infected pop-
ulation profoundly affect the health of socially vulnerable communities.
The study finds that minority status and language, household composition
and disability, and housing and transportation can be used to predict
COVID-19 case counts in U.S. counties. This is consistent with findings by
Harris [34] for London neighborhoods. Karaye and Horney [24] position
their analysis as further evidence that age, relative wealth, and ethnicity
are key risk factors associated with the highest COVID-19 mortality rates.
In a study also addressing socio-economic disparities, Cuadros, Xiao, and
Mukandavire [70] develop a mathematic model to classify the population
by Susceptible-Infected-Hospitalized-Recuperated-Dead (SIHRD).
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11.2.3 Geostatistics

Geostatistics refers to a collection of spatial statistical tools and tech-
niques to analyze and predict values of a continuous variable [71]. Here
we focus on interpolation methods used for the analysis of COVID-19
spatiotemporal patterns.

Inverse distance weight (IDW) interpolation: Saha, Barman, and
Chouhan [72] analyze the impact of the COVID-19 lockdown on commu-
nity mobility by changing spatiotemporal series in different Indian states.
They use IDW to show movement trends before and after the lockdown.
They use data from COVID-19 community mobility reports from Google,
2020 to address the spatiotemporal dynamics centered on the social iso-
lation policies, with the use of human mobility variables. Park, Jo, and
Cho [73] use IDW to model the concentration of PM 2.5 in the city of
Guro-gu (Seoul). Prunet et al. [62] use IDW to map S5P L2 NO2 data in
a customized grid that allows them to calculate temporal averages while
assuring that the results are equivalent for cities at different latitudes (Paris,
Milan, Athens, and Madrid). Their use of IDW minimizes interpolation
error by weighting measurements based on their proximity to interpolation
points.

Another form of interpolation is kriging. The method is most commonly
used for climatic variables [54,6869,74] and common atmospheric con-
taminants [50,64]. In the latter case, research has used kriging to identify
associations between air pollution and COVID-19.

A related technique is cokriging. Kerimray, Baimatova, and Ibragimova
[75] use cokriging to map distributions of PM 2.5 and benzene in Almaty
in 2018–2019 and 2020, respectively. In particular, they are interested in
the effect of government-mandated lockdowns on concentrations of these
materials.

Finally, spline interpolations are another technique to use discrete data
points to model a continuous variable. Sui, Zhang, and Shang [76] use cubic
spline interpolation (CSI) to estimate the second-by-second speed of buses
and taxis, using data from vehicle GPS devices.

11.2.4 Other models

Geographically Weighted Principal Component Analysis (GWPCA).
GWPCA is an extension of the classic principal components analysis (PCA)
that adapts the approach for use with geographic data by considering the
spatial heterogeneity of the data [77]. Covariances are weighted based
on the distance between the feature object and neighboring features. In
essence, GWPCA performs a local PCA using the neighborhood surround-
ing each spatial feature [38]. Basu et al. [42] note that GWPCA does not
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require additional data to weight the variables. It is successfully applied
in a wide range of fields such as economic development modeling, de-
privation, pollution sources, water resources, environmental health, soil
characteristics, and landslides. Das et al. [38] use GWPCA in developing
their improved Index of Multiple Deprivations (IMD) in districts of Cal-
cutta, using housing condition, household amenities, water, sanitation, and
hygiene (WaSH), asset possession, and gender disparity.

Voronoi: Bherwani et al. [58] use Bayesian probabilistic modeling to un-
derstand the relationship between COVID-19 cases and population density
in a given region together with GIS-based Voronoi diagram to identify
high-risk areas. Subsequently, Thiessen polygons delineate the risk zone
boundaries.

Spatial autocorrelation from Clifford, Richardson, and Hemon [78]: No-
mura, Yoneoka, and Shi [79], in the prefecture of Fukuoka, Japan, execute
this spatial autocorrelation analysis to relate the number of PCR-confirmed
COVID-19 cases to a social network application that provides real-time
monitoring of self-reported COVID-19 symptoms. The highly significant
correlation they report indicates the utility for these methods to structure
epidemiological evaluation and assist in policy evaluations such as emer-
gency declarations.

Spatial error model (SEM) and spatial lag model (SLM): Iyanda et al.
[18]; Maiti et al. [27]; Mollalo et al. [31]; Sannigrahi et al. [19]; Sun et al.
[20].

Spatial autoregressive combined (SAC): Sun et al. [20]; Zulkarnain and
Ramadani [80]

Self-organizing maps (SOM), also referred to as Kohonen [81]
Spatial Markov [82]
Birthday paradox [56]
Topological Weighted Centroid (TWC) by Buscema, Della Torre, Breda,

Massini, and Grossi [83], a new algorithm used in Italy
Space-time scan statistic from Kulldorff [84]: Andersen et al. [35]
Spatiotemporal refined risk model [85].
Geodetector: Wu et al., [17], Xie et al. [53].
Random forest: Kerimray et al. [75]; Mollalo et al. [46]; Pourghasemi,

Pouyan, and Heidari [86].

11.2.5 Remote sensing (RS) and unmanned aerial vehicle
(UAV)

By Earth’s spheres (integrated biosphere):
The atmosphere:
The subject of relevant atmospheric analyses tends to fall into one of

two categories: climatic conditions or pollution. Regarding the spatio-
temporal dynamics of climatic conditions, these are analyzed at all scales
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[17,54,63,87–92]. About spatiotemporal analyses of pollution levels during
the pandemic, these tend to focus on the consequence of reductions in
mobility and economic production [17,91,93,94]. There is special attention
paid to countries that adopted lockdowns to control the pandemic, as well
as to issues specifically affecting urban areas.

In the lithosphere:
Land use change, with significant examples such as the case of Yao

et al. [68] where analyze the potential distribution of soya crops and how
COVID-19 has affected the soya market. Brancalion et al. [95] look at a
possibly faster pace of tropical deforestation during 2020. Wang, Peng,
and Yu [96] conduct a land use analysis of crops in China to evaluate
whether the pandemic led to increased cultivation and land exploitation;
their findings are relevant for the development of agricultural policy to
guarantee food security. RS and UAV also have applications for the real
estate market as they are used for property inspection [97]

Analysis in urban environments associated with the level of pollutants
they emit [38,62]. Lighting is considered an indicator of economic recovery
or recession, as in the case of several Chinese cities, where lighting levels
are compared during peak closure with the same variable a year earlier
[98].

Research on the dynamics of human movement during the pandemic
demonstrates important applications of RS and UAV. Minetto, Segundo,
Rotich, and Sarkar [99] employ a deep learning technique to automatically
detect objects, such as cars and aircraft from satellite imagery. They suggest
that the ability to automatically identify these objects in image time series
will allow for temporal analysis of societal indicators [99]. Similarly, Wu
et al. [17] use deep learning to identify vehicles within Wuhan, China from
RS imagery and thus evaluate the effect of a transportation ban on the city.
In a very different type of analysis, Okyere, Chuku, and Ekumah [100] use
UAV to monitor fishing boats and assess adherence the effects of physical
distancing mandates and risks of exposure in the fishing sector.

There are also studies in areas with armed conflict as in the case of
Syria [101]. Using RS and spatial models, the authors design the “Risk
of Vulnerability to COVID-19 in War Zones Index” (Id_Covid19_WZ) to
identify areas that are vulnerable to the pandemic and thus help decision-
makers to limit risk and avoid and/or manage widespread infection.

The hydrosphere, with special attention to lockdowns:
Addressing the concepts of rivers and pollution: changes in water qual-

ity as a result of a major lockdown are evaluated in both the Ganges
River [102] and the Sabarmati River [103] in India using Lansat 8 and
Sentinel-2 imagery, respectively. Similar methods are applied to measure
lake pollution, such as by Yunus, Masago, and Hijioka [104] who use
Landsat 8 to measure water turbidity in Vembanad Lake in India, finding
an improvement in water quality as a result of lockdown.
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In another hemisphere, Sentinel-2 and Sentinel-3 imagery was ap-
plied to detect a harmful algal bloom (HAB) in salmonid aquaculture in
Chile. The analysis technique combined with rapid delivery of the high-
resolution satellite imagery allowed for near real-time monitoring and
decision-making at a time when in situ sampling was restricted by a
mandated lockdown [105].

The tools are also highly relevant to topics related to ocean economic
activities. For example, UAV was used in Ghana to monitoring water-based
activity during COVID-19, in order to provide solid scientific evidence as
a basis for decision-making in the artisanal fishing sector [100].

11.2.6 Participative GIS, mapping, voluntary geographic
information (VGI), public participation GIS (PPGIS)

Green areas in the cities, nature, public spaces play an important role in
times of crisis [106,107]. Public participation GIS (PPGIS) and Voluntary
geographic information (VGI) are important tools, in addition to exist-
ing information sources, for gathering data from the population to fight
COVID-19. Gorayeb, de Oliveira, and da Cunha [108] describes informa-
tion gathering through citizen surveys in Fortaleza, Brazil. The information
provided by the population through the surveys exhibits similarities with
data provided by official maps, suggesting that these are promising tools
for rapid data collection. In Israel, an online questionnaire was carried out
to identify possible symptoms and, with this, to follow up with infected
persons over time [109]. In the interpretation of the data, differences in
the proportion of reported symptoms in participants from different cities
and different neighborhoods that are geographically close to each other
are revealed, which could suggest the ability to detect changes at a high
geographical resolution.

The implementation of PPGIS in Greece [110] and Turkey [111] during
the spring of 2020 was motivated by the need to rapidly acquire data based
on location. These studies find that crowdsourcing applications are impor-
tant tools for real-time mapping and monitoring to allow health authorities
to make decisions and design effective management approaches [110,112].

11.2.7 GPS networks

Throughout this overview, we have detailed numerous works employ-
ing GPS. In the following section, we focus on data mining and analysis of
communication and transportation networks.

Studies using data mining to study human mobility tend to focus on
areas where lockdowns were enacted. We differentiate these studies by
their inputs: a) cellular telephone data [113–117, 74,118]; b) data from
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Google, Facebook, Apple, and Baidu, and geotagged tweets from Twitter
[119–125]; c) data from bicycle share systems in urban contexts [126] ; d)
geo-tagged data from identified infections compiled into travel histories
[127].

On the topic of transportation networks, we emphasize analyses of
the movement or trajectory of the following: vessels during lockdown
in Venice, Italy [128]; public transport and taxis in Qingdao, China [76] ;
transportation in Milano, Italy [129].

Other studies are centered on highway networks in Jaipur, India [130] or
in Tarragona province, Spain [131] , where there was a significant decline
in capacity during the lockdown. Furthermore, Silalahi, Hidayat, Dewi,
Purwono, and Oktaviani [132] for Jakarta, Indonesia, and Alasadi, Aziz,
and Dhiya [133] for Basora, Iraq, provide important analyses of hospital
accessibility.

11.2.8 Web mapping

Thanks to the availability of consistently-updated open data and to
the availability of web cartographic templates, plugins, and shared code,
there are many geospatial on-line platforms for monitoring COVID-19
around the world [134], which have emerged from organizations, academic
institutions, or media organizations.

Here, we present a specific example in Mexico and briefly explain
the operation of the university-based platform maintained by the Na-
tional Autonomous University of Mexico (UNAM) (https://covid19.ciga.
unam.mx/). The platform is supported by a package written in R, which
runs a daily process to download the current COVID-19 data published by
the federal government. The system first cross-checks the data publication
date and downloads the database for the current day from the page titled
Open Data maintained by the Health Agency.

The data are combined with spatial data for the geographic regions
(states and municipalities) and with 2020 population counts for the given
regions. Next, the following statistics are calculated at the national, state,
and municipal level: total recovered cases, active cases, deaths, and ac-
cumulated cases. Combining these totals with the population counts, the
process computes rates of incidence, mortality, and fatality. The absolute
change between consecutive weeks is calculated for weekly values for
positive cases, hospitalizations, and deaths, as well as the weekly change in
incidence and mortality rates, and the percent positivity rate [134]. These
geographic data are mapped and published through an ArcGIS Online web
dashboard using the template created by Dong, Du, and Gardner [135].

In recent months, other notable graphics have been produced using
cartograms to represent COVID-19 data world-wide [136], China [137,138],
USA [139], and Europe [140].

https://covid19.ciga.unam.mx/
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11.3 Discussion and conclusions

During the first half of 2020, Tobler’s first law of geography was not
apparent in analyzing COVID-19 at a global scale. The disease evolution
indicated by the constellation of the epicenters on the global map had more
resemblance to Lévy flight [141], in other words randomly distributed,
where human movement seemed to be the sole driving factor in the spatial
distribution and intensity of COVID-19. In fact, the dominance of this
factor has changed little, but, by reviewing the works from the second
half of the year in combination as we have here, we see more evidence
of Tobler’s law. We find that cartographic scale and enhanced resolution
of the units of analysis uncovers the role of geography in disease patterns.
Physio-geographic dynamics have a greater role in disease distribution at
more local levels. As such, to facilitate the applicability of spatial analysis
to decision-making, information must be collected and made available
with high spatial resolution. Detailed datasets allow the design of targeted
management strategies with greater chances of limiting chains of infection.
The likelihood of significantly reducing spread increases further if high
resolution data is paired with fieldwork [134]. Whereas aggregated spatial
information, even at the municipal level, often serves only anecdotally.
Although it may be useful to inform the general public, it offers minimal
utility in containing the pandemic. To address this, many studies working
at the city level use alternative data sources, such as VGI, mobility data,
and remote sensing to break through this limiting factor.

From anthropogenic, economic, and social perspectives, there are con-
clusions to be drawn related to Tobler’s concentual umbrella [48]. In fact,
spatial statistics models are among the most widely used and thus could
be considered among the most commonly used tools for studying the
COVID-19 pandemic during the second half of 2020. Spatial correlation
and autocorrelation, and multicriteria analysis are used in the greatest
number of GIS-based studies among all the disciplines studying the pan-
demic, although we find that socio-economic variables have become more
common in relation to the body work when compared to the first half of the
year [10]. Specifically there has been a significant increase in the production
of vulnerability maps of COVID-19 and urban environments.

PR has also exhibited outstanding production. Air pollution thematic
has concentrated the largest number of studies. On the other hand, in the
previous semester, the main objective of analysis was the climate and its
relationship with COVID-19. In this regard, some studies affirm that the
climate played a greater role in the first phase of the pandemic, and that its
impact has dissipated in the later phases [142].

Web mapping continues to be a principal medium for disseminating
public information about COVID-19. Consistent with Chatterjee et al. [57],
public health organizations and governments advise many preventive
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measures such as social distancing and personal hygiene, but one of the
dominant strategies remains communicating risks and generating con-
sciousness to break chains of infection. Web maps provide an eloquent
means to effect these strategies.

Spatiotemporal analysis of before and during lockdowns was the topic
most developed in the second half of 2020. Although not all countries
implemented lockdowns, but to a greater or lesser degree, all have reduced
the mobility of their residents as well as their economic and production ac-
tivities. In the geographic dimension of the pandemic, lockdown dynamics
were among the most analyzed phenomena, studied by all the disciplines
with spatial analyses of COVID-19.

As can be seen, most spatial analyzes use administrative boundaries as
their units of studies. From a global perspective, nation-states dictate the
management of the pandemic and borders become the land, air and water
ports of entry, which fulfill a series of functions (legal, control, security,
health) that are decisive in time of crisis: terrorist threats or armed conflict
and, in 2020, a pandemic [143]. Mobility is determined by state power and,
as the spread of the virus is dictated by the main axes of air transport,
the stoppage of more than 90% of traffic is the first effect of this policy
of interrupting chains of contagion [143].

On the other hand, the global pandemic is inherently metropolitan in
character [67] as proven by the large number of reviewed works in urban
environments around the world. The publication by the UN-Habitat of
a Response Plan for the mitigation of the externalities based on SARS-
CoV-2 in global cities is further evidence. The report expresses concern for
the urban nature of the pandemic and thus highlights the role of cities in
disease transmission [67].

In this second half of the year, the most spatial analyses are conducted
within the territories of China and the U.S. In comparison with the previous
six months [10], India accounted for the greatest increase in spatial analysis
studies whereas global-scale studies have most declined. There continue to
be many studies based in Brazil, Iran, and Italy. Although there are notable
studies based in Egypt, Ghana, Morocco, Nigeria, and Oman, we observe
a powerful gap in contributions for the whole of Africa, where there are
still many unknowns to solve.

GIS has served to monitor, evaluate situations, predict events, and
inform policy decisions, all while the global populace awaits a vaccine.
We expect that the economic dynamics and study topics will once again
change in 2021, especially as vaccines begin to be administered and induce
further changes around the globe.
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Non-Print Items

Abstract
Discussions of spatial analysis generally refer to the study of any information
that includes a geographic dimension. In other words, it studies information
that is spatially identifiable and, thus able to be mapped. This is independent
of whether a given analysis is qualitative or quantitative.
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