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ABSTRACT

The activation of cryptic 50 splice sites (50 SSs) is
often related to human hereditary diseases. The
DNA-based mutation screening strategies are
commonly used to recognize the cryptic 50 SSs,
because features of the local DNA sequence can
influence the choice of cryptic 50 SSs. To improve
the identification of the cryptic 50 SSs, we developed
a structure-based method, named SPO (structure
profiles and odds measure), which combines two
parameters, the structural feature derived from
hydroxyl radical cleavage pattern and odds
measure, to assess the likelihood of a cryptic 50 SS
activation in competing with its paired authentic
50 SS. Compared to the current tools for identifying
activated cryptic 50 SSs, the SPO algorithm achieves
higher prediction accuracy than the other methods,
including MaxEnt, MDD, Markov model, weight
matrix model, Shapiro and Senapathy matrix, Ri

and "G. In addition, the predicted "SPO scores
from the SPO algorithm exhibited a greater degree
of correlation with the strength of cryptic 50 SS
activation than that measured from the other
seven methods. In conclusion, the SPO algorithm
provides an optimal identification of cryptic 50 SSs,
can be applied in designing mutagenesis experi-
ments for various splicing events and may be
helpful to investigate the relationship between
structural variants and human hereditary diseases.

INTRODUCTION

Mutations at splice sites occur frequently and result in the
activation of the so-called cryptic splice sites (1–3). Two
typical cases in human genes, BRCA1 and BRCA2,
contain several intronic genetic variants (4,5), and ap-
proximately 5% of these are associated with splice site
mutation (4). These mutations have a potential effect on

the activation of cryptic 50 splice sites (50 SSs) (4,5) that
lead to cryptic splicing events. These cryptic splicing
events were considered aberrant and often cause human
hereditary diseases (2,6). Therefore, predicting the activa-
tion of cryptic 50 SSs is an essential approach in
investigating human hereditary diseases.
Various approaches are used in cryptic 50 SS identifica-

tion. Recently, an EST-based method named cryptic splice
finder (CSF) (7) used the spliced alignment of ESTs to
identify the cryptic splice site. Although the CSF
program is useful for investigating splicing mutation in
genetic disease, it relies considerably on the availability
of sufficient EST data and accurate genomic annotations.
Another approach (8,9) used information content (Ri) to
detect activated cryptic 50 SSs in human genes. Ri is the
dot product of a particular sequence vector and weight
matrix derived from the nucleotide frequencies at each
splice site and is used to interpret mutated authentic
splice sites and associated splicing regulatory sites (9).
Although Ri provides useful information for analyzing
the nucleotide substitutions that potentially impair
splicing, the identification of activated cryptic 50 SSs was
reported to be less accurate. Sahashi et al. (10) recently
used the improved Ri to estimate the splicing consequences
of mutations at human 50 SSs and discovered that Ri had
low sensitivity in predicting splicing mutations. In
addition to the sequence-based analyses mentioned, a
thermodynamic inference scheme, based on binding free
energy (�G) toward the stability of the RNA duplex
between 50 SS and U1 snRNA, was proposed for 50 SS
selection (11). The method considered the effects of mo-
lecular structure and revealed that the �G method may
discriminate strong and intermediate activation of cryptic
50SSs in competition assays. However, the identification
for the intrinsic strength of cryptic 50 SSs using �G is
considerably inaccurate (6). Recently, Buratti et al. (12)
collected 254 cryptic 50 SSs that were activated by muta-
tions in human disease genes and analyzed the mutation
patterns and nucleotide structures in detail. They also
evaluated the performance of several computational
methods, including the Shapiro and Senapathy matrix
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(S&S) (13), the weight matrix model (WMM) (14), the
first-order Markov model (MM) (15), the maximum
entropy (MaxeEnt) (16) and the maximum dependence
decomposition model (MDD) (17) in discriminating au-
thentic and cryptic 50 SSs. Buratti et al. (2007) concluded
that most of the authentic 50 SSs contained a prediction
score that was statistically higher than that in the cryptic 50

SSs. Although most methods can locate the splice sites
based on searching specific sequence patterns, the
discrepancies between activated and inactivated splice
sites are not addressed. In other words, these methods
cannot identify the activation of cryptic splice sites when
the mutations do not cause a change in prediction scores.
DNA molecules form complex structures and function

by interacting with proteins, nucleic acids and other small
regulatory molecules. To detect such interactions, the
hydroxyl radical cleavage patterns (18,19) were widely
used for monitoring structural changes of DNA molecules
with single residue spatial resolution. For example, the
hydroxyl radical cleavage pattern was used for assessing
the structure of DNA molecules and their related biolo-
gical regulation (20,21), especially the interactions of
DNA–protein complexes (22–24). Recently, the hydroxyl
radical cleavage patterns of DNA were discovered to be
associated with context-dependent mutation rates in
mammals (25) and local sequence bias of human
mutation (26). In addition, Parker et al. (27) used the
ORChID (OH Radical Cleavage Intensity Database)
(28) as genome-scale structural information to analyze
the functional non-coding regions of the human genome.
Their results indicated that single-nucleotide polymorph-
isms could induce larger structural changes in the
non-coding DNA, and DNA structural changes may
help to identify the phenotype-associated mutations (27).
Importantly, a recent report indicated that the changes of
the structure properties of the local DNA sequence can
influence the choice of cryptic 50 SSs when DNA variants
occur in human disease genes (29). Therefore, it is crucial
to realize the influence of single base pair substitutions in
local DNA sequence context on the mRNA splicing
phenotype. According to these studies, the DNA structure
change may be a crucial factor for studying cryptic 50 SS
activation in human hereditary diseases; therefore, we
used the hydroxyl radical cleavage pattern as the structure
feature to improve the prediction for cryptic 50 SSs in
human disease genes.
The preference of DNA-based mutation screening

strategies (12,30) was used to investigate cryptic 50 SSs
in genetic diseases, and the feature was applied in the pre-
diction tool (30). In fact, some signals that may influence
the choice of 50 SSs in the local DNA sequence have been
tested as a splicing feature for 50 SS prediction (31). To our
knowledge, the association of DNA structure and the
choice of cryptic 50 SSs are rarely discussed, and a
structure-based method for the screening of activated
cryptic 50 SSs for human disease genes is not available.
In this study, an advanced version with structure-based
method, named structure profiles and odds measure
(SPO) algorithm, was developed to quantitatively
evaluate the activation of a cryptic 50 SS in competing
with its authentic 50 SS. The SPO algorithm combined

structural profiles with odds measure to assess the activa-
tion likelihood for a cryptic 50 SS. The results indicates
that the SPO algorithm was more efficient than the other
seven approaches, including S&S (13), WMM (14), MM
(15), MaxeEnt (16), MDD (17), Ri (10) and �G methods
(32), in identifying an activated cryptic 50 SS in competi-
tion with its paired authentic 50 SS. In addition, the �SPO
score from the SPO algorithm was a more effective score
than the others in identifying the inherent strength of 50

SSs in human disease genes.

MATERIALS AND METHODS

Data sets

Two sets of human mutation splicing sequence data were
used for the development and evaluation of the SPO al-
gorithm. The first data set, HMD1, was collected from
published studies (6,8,12) containing 490 authentic and
cryptic 50 SS data pairs (Supplementary Table S1), which
were experimentally validated. Of the 490 data pairs, 275
were inactivated pairs and 215 were activated pairs. These
490 pairs of splice site sequences were used to train the
SPO algorithm in determining a scoring threshold for the
successful prediction of cryptic 50 SS activation. The
second data set, HMD2, contained 52 data pairs
(Supplementary Table S2) from two competition assays,
competition scheme I (CS-I) and competition scheme II
(CS-II), which contained 26 authentic and cryptic 50 SS
data pairs (11). The CS-I compared mutations of cryptic 50

SSs with wild types of authentic 50 SSs, whereas CS-II
compared mutations of cryptic 50 SSs with weakened
types of authentic 50 SSs. From CS-I and CS-II, each
group of 26 cryptic 50 SSs was subdivided into 6 strong,
13 intermediate and 7 weak cryptic 50 SSs according to
their splicing strength. The HDM2 sequences were solely
used to correlate the scoring method with the actual acti-
vation strength for cryptic 50 SS independent from those
490 paired splicing sequences from HDM1. In total,
189 249 50 SSs (10) from the entire human genome were
extracted as source data for the SPO algorithm.

SPO algorithm

For the likelihood of activating a cryptic 50 SS, the SPO
algorithm was developed based on the combination of
structural profiles with odds measure. The structural
profiles consider the local DNA structural change
between the before and after mutation that occurs in a
50 SS and the odds measure computes the actual relative
probability for a splicing event to occur. Figure 1 shows
the SPO algorithm. The details of defining and combining
these two numerals (‘SP’ for structural profiles and ‘O’ for
odds) into the proposed ‘SPO’ algorithm are as follows:

(1) First, a 50 SS pattern was defined as {X1, X2, . . . ,
Xm}, where Xm represents the m-th nucleotide and
consists of nucleotide bases {A, G, C, T}. X1, X2

and X3 obtain from exonic region, and X6, X7, X8

and X9 obtain from intronic region. X4 and X5 are
the center consensus of a 50 SS. Following the con-
vention for the splice site coordinate, the center
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consensus X4 and X5 assume the position of GT.
Second, the hydroxyl radical cleavage pattern from
ORChID (28) was used as DNA structural profiles
and provided high-resolution quantitative informa-
tion of the local shape of DNA molecules. Before
mutation occurrence, the DNA structural profile for
a 50 SS pattern was defined as (Y1b, Y2b, . . . , Ymb),
where Ymb represents the structural profile of the m-
th nucleotide. After mutation occurrence, the DNA
structural profile for a 50 SS pattern was defined as
(Y1a, Y2a, . . . , Yma), where Yma represents the struc-
tural profile of the m-th nucleotide. The DNA struc-
tural change for a 50 SS between the before and after
mutation occurrence was defined as S(Yma, Ymb) and
was computed using Euclidean distance. In detail,
S(Yma, Ymb) was given by:

SðYma,YmbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ðYia � YibÞ
2

s
ð1Þ

The Sp value and Sq value were defined as the struc-
tural change for a cryptic 50 SS and an authentic 50

SS individually. Finally, the Sc value was defined as
(Sp+Sq+1) and used to assess the activation likeli-
hood for a cryptic 50 SS. Here, to avoid Sc=0
causing a non-meaning Or value (see the next para-
graph), 1 as a constant was used to keep Sc=1 when
Sp+Sq=0.

(2) The improved odds measure was used to identify
activated cryptic 50 SSs. All known 189 249 50 SSs
(10) in human genome were extracted as source
data N. The odds (Os) were computed for each of
these 4679 non-redundant sequences from the 189 249
50 SSs. The Os was defined as a square root of
(M/N)/(1�M/N), where M is the number of

occurrences of a particular splicing sequence in the
source data N. If a splicing sequence did not appear
in the source data N, the Os were defined as a square
root of (0.25/N)/(1� 0.25/N) to avoid the infinity
caused by odds ratio calculations. Note 0.25 as a
parameter quoted from Sahashi’s study (10). To
increase the computation speed for Os, all 50 SS se-
quences in the source data N were permutated
for each splicing sequences. This was followed by
pre-computing and indexing of all Os in the
database to efficiently retrieve Os for any given
splicing sequence. After mutation occurrence, an
improved odds ratio (Or) was defined as the Os
value of a cryptic 50 SS divided by the Os value of
its paired authentic 50 SS. Finally, the Or value
was used to assess the activation likelihood for a
cryptic 50 SS.

(3) The SPO value was defined as the Sc value multiplied
by the Or value. Finally, the SPO value was used as
�SPO score for identifying activated cryptic 50 SSs.

Performance analysis

The performance of the proposed SPO algorithm in the
identification of activated cryptic 50 SSs was evaluated
with the other seven reported approaches, that is, S&S
(13), WMM (14), MM (15), MaxeEnt (16), MDD (17),
Ri (10) and �G (32). Comparative evaluation was con-
ducted by using a 5-fold cross-validation of 490 paired
splicing sequences that were included in the HMD1 data
set. First, all 490 pairs of splicing sequences were divided
equally into five partitions. Each partition was a testing
set, and the remaining four partitions were used for
training. In total, five testing sets were used, and each
training set was four times the size of its corresponding
testing set. The indices that were used to evaluate the per-
formance included the following: sensitivity, specificity,
accuracy, precision and F-measure, which may be
defined as TP/(TP+FN), TN/(FP+TN), (TP+TN)/
(TP+FN+TN+FP), TP/(TP+FP) and 2� (sensitiv-
ity� specificity)/(sensitivity+specificity), respectively.
The TP, TN, FP and FN represented the count of true
positive, true negative, false positive and false negative
cases, respectively. The receiver operating characteristic
(ROC) curves from the sensitivity and 1 � specificity of
the eight methods were constructed based on varying delta
scores for determining the activation of a cryptic 50 SS.
The area under the ROC curve (AUC) was used as a
measurement for their performance. In addition to these
methods, Pearson’s coefficient was also used to evalu-
ate the correlation between the predicted scores and
the activation strength of cryptic 50 SSs from the HMD2
data set.

Determining "SPO score threshold for an activated
cryptic 50 SS

A 5-fold cross-validation of 490 paired sequences from the
HMD1 data set was conducted. This 5-fold cross-
validation was also used to determine the �SPO threshold

Figure 1. Flow chart of SPO algorithm.
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in the SPO algorithm. For each of the five sets of training
sequences, the �SPO threshold that yielded the optimal
F-measure on the corresponding testing sequences was
chosen. The value that corresponded to the highest occur-
rence of these five thresholds (to five decimal points) was
designated as T for the �SPO threshold in the SPO algo-
rithm. Based on this, a cryptic 50 SS competing with its
authentic 50 SS was considered activated if its �SPO score
was greater than T, and the amount of �SPO score
elevated from T was used to rank the probability for
such activation. If no single highest occurrence appeared
from any of these five thresholds, the 5-fold cross-
validation was reiterated until such a threshold was
obtained.

RESULTS AND DISCUSSION

Identification of activated cryptic 50 SS by
scoring methods

An HMD1 data set that contained 490 pairs of human
authentic and cryptic 50 splice sequences was used for
evaluating the performance of the proposed SPO algo-
rithm (Supplementary Table S3). A threshold of
T=1.2214, previously obtained from analyzing the
HMD1 data set with 5-fold cross-validation, was used to
determine whether a splice site was activated. The detailed
sensitivity, precision, specificity, false positive rate,
accuracy and F-measure in different �SPO score thresh-
olds were shown in Figure 2. Moreover, the other seven

Figure 2. Sensitivity, specificity, precision, false positive rate, accuracy and F-measure vary with �SPO score. (A) Sensitivity and precision vary with
�SPO score; (B) specificity and false positive rate vary with �SPO score; (C) accuracy and F-measure vary with �SPO score.
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reported approaches, including S&S (13), WMM (14),
MM (15), MaxeEnt (16), MDD (17), Ri (10) and �G
(32), were used for comparison. Note that these
seven approaches can evaluate the likelihood of a 50 SS
based on searching specific sequence patterns, but they do
not consider the comparative competition between a
cryptic 50 SS and its paired authentic 50 SS. Therefore, to
assess the likelihood of a cryptic 50 SS activation in
competing with its paired authentic 50 SS, these seven
approaches were modified by using the following
scheme. After mutation occurrence, ‘�Ri’ was defined as
the Ri value of a cryptic 50 SS subtracted by the Ri value
of its paired authentic 50 SS. The other methods
were modified by using the same procedure, except �G
method. Subject to the definition of �G, the delta of
�G was defined and represented by the symbol ‘��G’.
��G was the �G value of the authentic 50 SS subtracted
by the �G value of the cryptic 50 SS. All seven deltas were
derived from the same 490 paired splicing sequences.
Finally, �0.009, �0.09, �0.27, 0.9362, 0.9836, �0.5408
and �0.0001 were obtained as the �SPO threshold for
�MaxEnt, �MDD, �MM, �WMM, �S&S, �Ri and
��G, respectively.

Table 1 summarizes the performance of these eight
scoring methods. According to the results from the
5-fold cross-validation, the SPO algorithm outperformed
the others for accurately identifying activated cryptic 50

SSs competing with paired authentic 50 SSs in all six
categories. Note a different modified strategy (taking the
ratio defined as cryptic 50 SS score divided by authentic 50

SS score) for the seven scoring methods was also tested,
the result remained consistent (Supplementary Table S4).
The quantitative comparison between the scoring methods
also showed that the SPO algorithm had the best predic-
tion performance (Figure 3). In addition, the proposed
SPO algorithm predicted 166/202=82.2% point
mutation cases, 8/9=88.9% deletion cases, 2/3=66.7%
insertion cases and 1/1=100% duplication cases when
these mutations occurred. In the comparison with the
other seven reported approaches (Table 2), the SPO algo-
rithm yielded the highest accuracy for the identification
of activated cryptic 50 SSs in various mutant categories,
especially in point mutation cases.

Identification of cryptic 50 SS of different strengths

To verify that the proposed SPO algorithm can identify
cryptic 50 SSs of various activation strengths, an HMD2
data set containing 52 data pairs from two competition
assays (11) was used, including 12 strong, 26 intermediate
and 14 weak 50 SSs, according to various activation levels
(11). Based on the comparison for the performance of the
other seven methods (Table 3), the SPO algorithm consist-
ently achieved a high accuracy in all of the three groups
and yielded the highest accuracy when the three groups
of data were pair wisely combined as used in Roca’
study (11).
A Pearson’s coefficient (r value) was computed between

these two variables by using the HMD2 test data (consist-
ing of two competition assays CS-I and CS-II, each of
which included 26 authentic and cryptic 50 SS data pairs)
to correlate the strength of cryptic 50 SS activation with
the predicted �SPO scores. Table 4 summarizes the result-
ing r values for �SPO, �MaxEnt, �MDD, �MM,
�WMM, �S&S, �Ri and ��G scores, in which the
SPO algorithm displayed a greater degree of correlation
than the others. In particular, the SPO algorithm appeared
to perform efficiently for both CS-I and CS-II assays;
however, all the other seven methods demonstrated rela-
tively inferior performance for CS-I assay than for CS-II
assay. It is known that wild types of authentic 50 SSs were
used in CS-I assay, but weakened types of authentic 50 SSs
were used in the CS-II assay (11). In in vitro experiments,
the average activation of cryptic 50 SSs was considerably
stronger (P=6.13E�07) in the CS-II assay than in the
CS-I assay. Therefore, activation of cryptic 50 SSs in the
CS-II assay is easier than in the CS-I assay. In summary,
the SPO algorithm was able to correctly predict the acti-
vation of a cryptic 50 SS as well as to infer the activation
level by evaluating the increase of �SPO score from its
threshold. With this feature, it is reasonable to verify the
cryptic 50 SS activation by ranking the �SPO scores, when
a number of splicing pairs were available for consider-
ation. In other words, SPO algorithm can be used to
predict novel cryptic 50 SSs, especially when sequencing
data (like RNA-seq data) is not available.

DNA structural profiles as an impact factor in
cryptic 50 SS

To analyze whether DNA structural profiles extracting
from the hydroxyl radical cleavage pattern can improve
the identification of activated cryptic 50 SSs, the HMD1
data set and HMD2 data set were used to estimate the
effect of structural profiles. First, without the inference
from structural profiles, the identification for activated
cryptic 50 SSs from HMD1 data set decreased by 7.9%
in sensitivity, 4.4% in specificity, 5.9% in accuracy,
6.2% in F-measure, 6.2% in precision and 5.7% in AUC
(corresponding to the result in Table 1). Second, without
using structural profiles, the SPO algorithm obtained a
lower degree (82%) of correlation between the strength
of cryptic 50 SS activation and �SPO score (corresponding
to the result in Table 4), and its accuracy decreased to
0.865 for the analysis of the 52 data pairs from HMD2

Table 1. Performance of scoring methods in identifying activated

cryptic 50 SSs based on 490 paired splicing sequences included in the

HMD1 data set

Method Performance measures

Sensitivity Specificity Accuracy F-measure Precision AUC

SPO 0.823 0.884 0.857 0.851 0.849 0.905
MaxEnt 0.730 0.840 0.792 0.780 0.781 0.849
MDD 0.712 0.836 0.782 0.768 0.774 0.844
MM 0.744 0.818 0.786 0.778 0.762 0.828
WMM 0.665 0.720 0.696 0.691 0.650 0.734
S&S 0.740 0.695 0.714 0.714 0.655 0.782
Ri 0.730 0.647 0.706 0.707 0.687 0.772
�G 0.679 0.609 0.667 0.667 0.658 0.730
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data set. Interestingly, the DNA structural profiles can
also improve the 2, 2, 2, 4, 5, 6 and 1% degrees of correl-
ation between the strength of cryptic 50 SS activation and
score from MaxeEnt (16), MDD (17), MM (15), S&S (13),
WMM (14), Ri (10) and �G (32), respectively, for the
analysis of the HMD2 data set. The improvement for
the seven methods was based on the use of the Sc value

as a weight factor to multiply the original scores from
these compared approaches. For example, an improved
�MaxEnt score was defined as the �MaxEnt score
multiplied by the Sc value. The scores for the other
methods were improved by using the same strategy.
These results indicate that DNA structural profiles
derived from the hydroxyl radical cleavage pattern can

Figure 3. Comparison of predictive accuracy of the scoring methods for identifying activated cryptic 50 SSs. (A) Sensitivity versus 1 � specificity for
the scoring methods; (B) false positive rate versus false negative rate for the scoring methods.

Table 2. Accuracy of scoring methods in different mutant categories

Mutant type SPO MaxEnt MDD MM WMM S&S Ri �G

Point mutation 0.822 0.723 0.708 0.738 0.535 0.629 0.728 0.678
Deletion 0.889 0.889 0.778 0.889 0.778 0.778 0.778 0.667
Duplication 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000
Insertion 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
Total 0.772 0.679 0.665 0.693 0.502 0.591 0.684 0.637

Table 3. Accuracy of scoring methods in competition assays based on 52 (12 strong, 26 intermediate and 14 weak) paired splicing sequences in

the HMD2 data set

Data type SPO MaxEnt MDD MM WMM S&S Ri �G

Strong 1.000 0.833 1.000 0.917 0.917 0.917 1.000 0.917
Intermediate 0.769 0.654 0.692 0.692 0.615 0.731 0.654 0.654
Weak 1.000 1.000 0.929 1.000 0.929 1.000 0.714 0.929
Strong and intermediate 0.842 0.711 0.789 0.763 0.711 0.789 0.763 0.737
Intermediate and weak 0.850 0.775 0.775 0.800 0.725 0.825 0.675 0.750
Strong and weak 1.000 0.923 0.962 0.962 0.923 0.962 0.846 0.923
Total 0.885 0.788 0.827 0.827 0.769 0.846 0.750 0.788
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improve the identification of activated cryptic 50 SSs in
human mutation cases.

Although the effect of DNA structural profiles was
useful for identifying activated cryptic 50 SSs, the
detailed relationship between the DNA structural
profiles and the cryptic 50 SSs is unclear. One possible
explanation could be that the changes of the DNA struc-
tural profiles at either the cryptic 50 SS or the correspond-
ing authentic 50 SS may respond to the strength of cryptic
50 SS activation. On the other hand, the changes of DNA
structural profiles may be involved in non-intronic splicing
mechanism when mutation occurs on the DNA level.
Some non-intronic splicing information was assumed to
play a vital role in shaping the split structure of eukaryote
genes (7). Consequently, the DNA structural profiles may
improve the identification of cryptic 50 SSs in eukaryote
genes.

CONCLUSION

This study proposes the SPO algorithm that combined
structural profiles with odds measure to obtain the
�SPO score for identifying the activated cryptic 50 SSs.
Based on the results, the SPO algorithm yields a superior
identification of cryptic 50 SSs than that by the other seven
methods, and its �SPO score also provides information to
estimate the inherent strength of 50 SSs in human mutation
data. In practical application, the SPO algorithm can be
used as a powerful tool for designing mutagenesis experi-
ments of various splicing events and can be used to study
the influences of activated cryptic 50 SSs in the field of
amino acid changes in human hereditary diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4.

ACKNOWLEDGEMENTS

We thank for the comments from the anonymous re-
viewers. The experimental data provided by Roca,
Rogan and Buratti’ studies are also appreciated.

FUNDING

National Science Council of Taiwan (Grant No:
NSC99-2627-M-001-005-MY3; 99-2621-B-001-005-MY2).
Funding for open access charge: Biodiversity Research
Center, Academia Sinica, Taiwan.

Conflict of interest statement. None declared.

REFERENCES

1. Baralle,D. and Baralle,M. (2005) Splicing in action: assessing
disease causing sequence changes. J. Med. Genet., 42, 737–748.

2. Krawczak,M., Reiss,J. and Cooper,D.N. (1992) The mutational
spectrum of single base-pair substitutions in mRNA splice
junctions of human genes: causes and consequences. Hum. Genet.,
90, 41–54.

3. Nakai,K. and Sakamoto,H. (1994) Construction of a novel
database containing aberrant splicing mutations of mammalian
genes. Gene, 141, 171–177.

4. Chen,X., Truong,T.T., Weaver,J., Bove,B.A., Cattie,K.,
Armstrong,B.A., Daly,M.B. and Godwin,A.K. (2006) Intronic
alterations in BRCA1 and BRCA2: effect on mRNA splicing
fidelity and expression. Hum. Mutat., 27, 427–435.
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