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Abstract

Background: The Smad7 protein is negative regulator of the TGF-β signaling pathway, which is upregulated
in patients with breast cancer. miRNAs regulate proteins expressions by arresting or degrading the mRNAs.
The purpose of this work is to identify a miRNAs profile that regulates the expression of the mRNA coding
for Smad7 in breast cancer using the data from patients with breast cancer obtained from the Cancer
Genome Atlas Project.

Methods: We develop an automatic search method based on genetic algorithms to find a predictive model
based on deep neural networks (DNN) which fit the set of biological data and apply the Olden algorithm to
identify the relative importance of each miRNAs.

Results: A computational model of non-linear regression is shown, based on deep neural networks that
predict the regulation given by the miRNA target transcripts mRNA coding for Smad7 protein in patients with
breast cancer, with R2 of 0.99 is shown and MSE of 0.00001. In addition, the model is validated with the
results in vivo and in vitro experiments reported in the literature. The set of miRNAs hsa-mir-146a, hsa-mir-93,
hsa-mir-375, hsa-mir-205, hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c, hsa-mir-497, hsa-mir-
107, hsa-mir-125a, hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-
mir-15b, hsa-mir-224, hsa-mir-185 and hsa-mir-10b integrate a profile that critically regulates the expression of
the mRNA coding for Smad7 in breast cancer.

Conclusions: We developed a genetic algorithm to select best features as DNN inputs (miRNAs). The
genetic algorithm also builds the best DNN architecture by optimizing the parameters. Although the
confirmation of the results by laboratory experiments has not occurred, the results allow suggesting that
miRNAs profile could be used as biomarkers or targets in targeted therapies.
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Background
The development of cancer is given by the loss of
regulation in cellular processes such as growth, death,
proliferation, differentiation, adhesion, migration
among others in many types of cells due to the accu-
mulation of mutations or drastic changes in deoxy-
ribonucleic acid (DNA) [1]. The transforming growth
factor beta 1 (TGF-β1) is overexpressed in breast can-
cer [2] and regulates these processes through the ini-
tiation of the TGF-β cellular signaling pathway, which
induces the genetic expression and the cellular pro-
cesses as response to stimuli on the outside of the
cell [3, 4].
The TGF-β signaling pathway initiate when an acti-

vated TGF-β1 ligand binds to a receptor II (TβRII).
The latter in turn recruits and activates receptor I
(TβRI) to form the receptor complex dependent on
the activated ligand. The activated TβRI phosphory-
lates the Smads proteins regulated by the receptor
(R-Smads). The cooperating Smads (Co-Smads) bind
to activated R-Smads to integrate the SMAD complex
that translocate to the nucleus. Once inside the nu-
cleus, it binds with DNA binding proteins and act as
transcription factors that regulate the expression of
target genes [4].
The Smad7 protein is part of the inhibitory Smads

(I-Smads) which are antagonistic proteins and inter-
rupt the transduction process of the TGF-β signaling
pathway by proteasomal degradation of the receptor
complex dependent on the activated ligand, prevent-
ing phosphorylation of the R-Smads, avoiding the
formation of functional SMAD complexes and block-
ing the binding of the SMAD complex to DNA [4].
The above establishes a negative regulation loop be-

tween the transforming growth factor beta (TGFβ1) as a
promoter and Smad7 as an inhibitor of the TGF-β sig-
naling pathway.
On the other hand, ribonucleic acid microRNAs

(miRNAs) are small non-coding RNAs with a length
between 21 and 25 nucleotides involved in the regula-
tion of cell division, development, oncogenesis, apop-
tosis, among other processes by repressing the
protein translation and degradation of the messenger
ribonucleic acid (mRNA) transcripts. The miRNAs are
transcribed by RNA polymerase II as part of polyade-
nylated and protected primary transcripts (pri-
miRNA), which can be of coding or non-coding pro-
tein. The primary transcript is cleaved by the enzyme
Drosha ribonuclease III to produce a stem loop pre-
cursor miRNA of approximately 70-nt (pre-miRNA),
which is further cleaved by ribonuclease dicer cyto-
plasmic to generate the mature miRNA and the anti-
sense miRNA star (miRNA*). The mature miRNA is
incorporated into an RNA-induced silencing complex

(RISC), which recognizes target mRNAs through im-
perfect or perfect base pairing with the miRNA [5].
There is reported evidence on the relationship of

the miRNAs and the inhibitory proteins of the TGF-β
signaling pathway, where the overexpression of
miR-21 or the low expression of Smad7 promotes the
fibroblast formation associated with carcinoma [6].
Overexpression of miR-21 can inhibit the proliferation
of rat renal tubular epithelial cells [5]. miR-21 pro-
motes the proliferation and invasion of breast cancer
cells by suppressing Smad7 [7]. Besides, Yan et al. [8]
observed that nine miRNAs were more than twofold
up-regulated versus seven miRNAs under expressed
in tumors compared with the adjacent normal tissue.
While Apostolos et al. demonstrated that the expres-
sion of miR-21, miR-210 and miR-221 has a signifi-
cant role in the development of primary triple
negative breast cancer [9].
All the aforementioned, suggests the existence of

regulation of the expression of the Smad7 protein
given by the miRNAs on the mRNA coding of the
Smad7 protein (mRNA-Smad7) and the possible im-
pact on the negative regulation loop of signaling
pathway of TGF-β mediated by TGFβ1 and Smad7.
For this process, a non-linear dynamic is observed,
since there are multiple interactions between miR-
NAs and mRNAs, thus it is feasible to approach it
from the complexity point of view.
Since, computational models have been used previ-

ously to predict protein expression regulation given
by miRNAs. In [10] a computational approach based
upon emerging biomedical and biological ontologies
and semantic technologies to investigate the import-
ant roles of microRNA, mRNA regulation on gluco-
corticoid resistance in pediatric acute lymphoblastic
leukemia.
Machine learning based models to predict potential

disease-related long noncoding RNAs (lncRNAs) has
been developed based on Laplacian Regularized Least
Squares [11], semantic similarity [12, 13], and Naive
Bayesian classifier [14].
Moreover, biological network-based and random

walk with restart as predictor models has been devel-
oped based on lncRNA-lncRNA functional similarity
[15], lncRNAs and PCGs expression profiles in pros-
tate cancer and protein interaction datasets [16], inte-
grate three networks miRNA-associated lncRNA-
lncRNA crosstalk network, disease-disease similarity
network, and known lncRNA-disease association net-
work [17], using three networks, disease-disease simi-
larity network, lincRNA-lincRNA similarity network
and known lincRNA-disease association network [18],
integrate known lncRNA-disease associations, lncRNA
expression profiles, lncRNA functional similarity,
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disease semantic similarity [19], coding-non-coding
gene-disease bipartite network based on known dis-
ease genes and lncRNA-disease associations and fur-
ther implemented a propagation algorithm on this
bipartite network to infer the underlying lncRNA-dis-
ease associations [20].
In addition, computational framework based on dis-

ease genes to predict lncRNA-disease association based
on the known disease-related genes/miRNAs and the
relationships between lncRNAs and genes/miRNAs has
been developed. In [21] computational framework in-
fers that there could be potential associations between
this lncRNAs with diseases related with these human
tissues. Furthermore, it could obtain related diseases
for non-tissue-specific lncRNAs based on disease–gene
associations and gene-lncRNA co-expression relation-
ship. Ten lncRNAs predicted to be associated with vas-
cular smooth muscle cells were selected for further
experimental validation to test the accuracy of the
method. As a result, eight of ten lncRNAs (80%) were
confirmed [22]. Chen [23] developed a novel inference
computational model based on HyperGeometric distri-
bution for LncRNA-Disease Association inference
(HGLDA) by integrating miRNA-disease associations
and lncRNA-miRNA interactions. Furthermore, con-
structed a model of lncRNA functional similarity calcu-
lation based on the information of miRNA (LFSCM) to
calculate lncRNA functional similarity combining dis-
ease semantic similarity, miRNA-disease associations
and lncRNA-miRNA interactions.
Deep neural networks (DNN) based on a meta-

phoric form in the human nervous system, are infor-
mation processing systems composed of simple
elements highly interconnected and have been used
successfully for prediction in systems of non-linear
dynamics [24]. These have been used to identify miR-
NAs associated with breast cancer phenotypes [25],
diagnosis of tumors and candidate identification for
therapy based on gene expression [26], precursor clas-
sification of microRNA [27], identification of profiles
of expression in stage II tumors associated with ag-
gressive disease [28], also to identify biologically rele-
vant miRNAs associated with specific breast cancer
phenotypes and expression of miRNAs in rectal can-
cer as predictors of response to neoadjuvant chemora-
diation therapy [29].
DNN design intrinsically implies the challenge of

determining its architecture (number of hidden
layers, number of nodes per layer, output layer, etc.),
establishing the input data set, defining the valid-
ation method in the training process, among other
characteristics, that integrate the DNN with the best
predictive capacity. This challenge is addressed as an
automatic search problem over a solution space.

On the other hand, genetic algorithms (GA) are an
automatic optimization technique based on the princi-
ples of evolution postulated by Darwin which estab-
lish natural selection and the adaptation of individuals
to the environment as evolutionary elements along
with convergence toward the best solutions in a
search space. GAs, in conjunction with DNNs, have
been used in predicting renal colic in emergency set-
tings [30], in the optimization of weights in the DNN
training process [31], among others.
Based on the above, the aim of this research is to

develop a computational model based on DNN and
GA to predict the regulation given by the miRNA
target mRNA-Smad7 in patients with breast cancer.
Particularly, GA is used for feature selection and op-
timizing the parameters of DNN architecture.

Methods
Data collection and processing
Based on the objective of this study, we identified 179
miRNAs that interact with the mRNA-Smad7 database in
the mirDB [20, 32, 33], microRNA [34], and MiRTarBase
[35]. As well, a set of 1074 samples expression files of pa-
tients with breast cancer was downloaded from the project
website “The Cancer Genome Atlas” [36], each set of files
in a sample contains the base and normalized expression
of the miRNAs, the mRNAs, among other data that were
not considered for this work. The initial dataset was inte-
grated by the base values of mRNA-Smad7 and the base
values of the miRNAs of all the files set [37] with size of
1074 records (rows) × 180 fields (columns) (a field with
the expression of mRNA-Smad7 and 179 expressions of
miRNAs) values.

Data preprocessing
Given the initial dataset in each sample, the existence
of mRNA-Smad7 expression and the existence of
miRNAs expression were validated, from which it was
obtained that the 1074 samples have an expression of
mRNA-Smad7 and that a total of 39 miRNAs do not
have expression in the samples, reducing from 179 to
140 miRNAs (Additional file 1), therefore the size of
the dataset was reduced to 1074 records by 141 fields.
Starting from this new dataset, the expression of each
miRNA was validated in all the samples and 41 miR-
NAs were removed, as they do not contribute statisti-
cally in the explanation of the variability of
mRNA-Smad7 expression, given that its expression
values in 75% samples (third quartile) is lower than
two or has a mode equal to zero and the frequency
of the mode greater than 15% samples (Additional file
2), the size of the dataset changed to 1074 records by
100 fields (Additional file 3).
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Once the dataset was defined, it was normalized
and used in linear regression models including the
generalized linear model, regression trees, assembly of
regression trees, support vector machines, and Gauss-
ian processes regression. The best overall performance
was from Gaussian process regression with R2 = 0.12
and MSE = 0.014077. Thus, no function was found
that adjusted the dataset (Additional file 4).
The expression vectors of each miRNA were con-

sidered as time series of data and were transformed
by the discrete Meyer wavelet [38] to eliminate pos-
sible noise in the data, defined in Eq. (1). A

characteristic of the wavelet transform is to preserve
the original signal after the transformation, this trans-
formation shows better performance in relation with
conventional filtering methods applied on genomic
data [39], they have been used for filtering biological
data signals [40], in the classification of tumors using
microarrays of gene expression data [41], among
others.
The simple linear regression technique was applied to

the dataset to identify and eliminate the exact linear rela-
tionship and / or the high correlation between the miR-
NAs and thus validate the assumption of multicollinearity,

Fig. 1 Steps involved in the data collection and preprocessing
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obtaining as a result the non-existence of collinearity be-
tween the miRNAs (results omitted in this document).
The miRNAs expression was scaled in the range from − 1

to 1 (Eq. 2) and thus tied with the function of sigmoid acti-
vation of the DNN. The expression of the mRNA-Smad7
was scaled in the range from 0 to 1, since the activation
function is linear, and the expected values are in that range.
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Finally, the preprocessed dataset was integrated with

1074 samples that have mRNA-Smad7 expression as a
dependent variable and the expression of 99 miRNAs as
independent predictor variables (See Fig. 1).

f xð Þ ¼ x−μ xð Þ
max xð Þ−μ xð Þ ð2Þ

Proposed model
Method of evolutionary search
After developing different linear regression models, in-
cluding generalized linear model, regression trees,

assembly of regression trees, support vector machines,
and Gaussian processes regression, R2 values were from
0.70 to 0.92; however, according to some authors [26, 27],
those values could be increased using DNNs.
The design of the predictive model was treated as an

optimization problem of automatic search over a solution
space, where each point (solution) represents a predictive
model with its own characteristics and predictive capacity.
To tackle that problem, an evolutionary method based on
GA was developed as an automatic search optimization
technique to automatically design evolutionary DNNs as
predictive models, as shown in Fig. 2.
This method establishes the mechanisms to evolve

the input dataset, the DNN architecture and the val-
idation method for the DNN training process, for
this work, it is called Evolutionary Method of the
Dataset, Architecture, and Validation (EMDAV). The
EMDAV was executed 20 times, the maximum evolu-
tion was up to 100 generations, with a stopping cri-
terion of five generations without significant change
in the predictive capacity of the evaluated models.

Genetic algorithm
The search for a model with better predictive capabilities
was treated as a minimization problem (see Algorithm 1)
with the mean squared error (MSE) as an adaptation
value, using a binary type genetic algorithm with an initial
population of 50 individuals with a uniform crossing oper-
ator with 80% of probability, linear range selection oper-
ator, uniform random mutation operator with 10%

Fig. 2 Evolutionary method of the data set, architecture and validation (EMDAV)
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probability and elitism factor of 10%. In order to find a
better adjustment to allow the evolution of desired charac-
teristics by a process of parameters tuning, experiments
were carried out with the selection factors with four levels
(Linear rank, nonlinear rank, roulette wheel and tourna-
ment) and crossing with two levels (Single point and uni-
form), the treatment was the evolution of GA.
The selection operator in linear rank and the uniform

crossover operator were established given that they are
the levels of the treatment factors with higher R2 and
lower MSE. Similarly, the population size of 50 individuals
was established through the evolution of GA with popula-
tion size of 20, 50 and 100 individuals. The base coding
for the individuals of the population is of variable length,
composed of 99 bits that encode the set of input data
where a value of one (1) means that the miRNA is part of
this set, while a value of zero (0) that it is not; one bit for
the validation methods (0 for hold-out and 1 for k-folds),
the maximum number of hidden layers encoded in six bits
and the maximum number of nodes for each hidden layer
encoded in ten bits, as described in Eq. (3).

individual length ¼ 99bitsþ 1bit þ 6bits
� 10bits ð3Þ

The number of hidden layers results from the conver-
sion to decimal of 6 bits + 1 decimal avoiding the exist-
ence of 0 layers, in the same way the number of nodes per
hidden layer is given by the conversion to decimal of 10
bits + 1 decimal. The variability of the length of the indi-
vidual is given by the last two terms of Eq. (3), which es-
tablish the necessary length for the maximum values in
both terms, in other cases, starting from bit 107 only the
first (n + 1) * 10 bits are processed, where n + 1 is the
number of hidden layers and therefore 10 * (64 - (n + 1))
bits are not part of the individual in question.

Deep neural networks
Each GA individual was transformed into a DNN with archi-
tecture given by the input data set of variable size of miR-
NAs, sigmoid transfer function (Eq. 4) between input layers
and hidden layers, linear transfer function between the last
hidden layer and the output layer and were trained with the
mini-batch gradient descent optimization algorithm called
RMSprop [42] with a fixed batch size of 50 and with a fixed
learning rate of 0.01.
A set of 20 runs were executed with hold-out valid-

ation and 10 times with k-folds validation up to a
maximum of 5000 epochs for both scenarios. For
each run, the predictive capacity, determined by the
MSE, was calculated by randomly divided the dataset
into three subsets, training (50%), validation (25%),
and testing (25%).

To avoid overfitting, a stop threshold of 10 gradient
updates was set in the validation process. As well as, a
50% discard rate of nodes and their incoming and out-
going connections between the last hidden layer and the
output layer as dropout value.

S tð Þ ¼ L
1þ et

ð4Þ

Algorithm 1: Evolutionary method of the dataset, 
architecture and validation (EMDAV).

Step 1: (Set evolution parameters)

N=50, n=20, k=10, Ef=10%, Cp=80% and 
Mp=10%,

Where,

N represents the amount of individuals in population

n, k are training runs

Ef means elitism factor

Cp express crossover percentage

Mp correspond to mutation percentage

Step 2: (Initialization of population)

Generate an initial population of N individuals 
which are bit strings of randomly generated binary values.  

Step 3: (Fitness evaluation)

3.1 Decode individuals to determine which 
miRNAs to be included in input dataset, number of hidden layers,

and nodes per each hidden layer to build the 
DNN architecture and set validation method, in order to build a 
particular DNN as a predictive model.

3.2 Train each one of the resulting 
predictive models , n times for hold-out validation or k times for k-folds 

validation.

3.3 Calculate the MSE average (test) as 

individual fitness value for GA.

Step 4: (Validate stopping criteria)

If five generations with no significant 

Step 5: (Generate new population)

5.1 Preserve unchanged Efof fittest 
individuals by elitism operator.

5.2 Apply linear rank selection to 
generate the breeding stock (mating pool).

5.3 Generate the remaining N - (N*Ef)
of the population by applyingcrossover with Cp probability. 

5.4 Apply uniform mutation with Mp probability 

Step 6: (Repeat from Step 3)

prediction capacity of each predictive model and take that as its 

change in the predictive capacity of the evaluated models occurred 
then stop, otherwise continue to Step 5. 

Results and discussion
In this section we discuss the results obtained by the
EMDAV method and the prediction model based on
deep neural networks.
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Evolution of the EMDAV method
In the different executions of the EMDAV method, a
maximum of 24 generations were obtained, in the exe-
cution with the greatest number of generations 17,760
evaluations of phenotypes were made up to the gener-
ation 24 + 5, reaching the stopping criteria, of which
1560 used k-folds validation with 10 folds and the other
remaining 16,200 with validation hold-out and 20 repeti-
tions. The variability of the validation method feature
was segregated from generation 14, the architecture was
established in generation 21, and the remaining genera-
tions were used exclusively for the evolution of the input
data set.
Table 1 shows the ten models with greater predictive

capacity and it can be seen that in the evolution of the
characteristics that there is a tendency to converge to-
wards the same values.
The results shown in Table 1 only represent a small

part of the experiments performed in the algorithm
set-up process. This process had to be carried out care-
fully due to the computational cost, leading for example
to the execution of exploratory executions on incremen-
tal search spaces in the range of 4 hidden layers and 64
nodes per layer up to 64 hidden layers and 1024 nodes
per layer with both types of validation and a single fold
or repetition. For all explored evolutions, the GA con-
verged to the first architecture shown in Table 1. Given
this, the final exploration was performed with 20 repeti-
tions for hold-out and 10 folds for k-fold and the results
were consistent. Which allows establishing the predictive
model based on DNN described in the next section.

Predictive model based on DNN
Figure 3 shows the predictive model based on DNN with
architecture of two hidden layers with 42 and 63 nodes
respectively, type of hold-out validation, an input data
set composed of 44 miRNAs as shown in Table 2 and it
such as multi-layer perceptron (MLP), with logistic

activation function (Eq. 5) and trained with the resili-
ent backpropagation with weight backtracking algo-
rithm called Rprop+ [43], predicts the regulation
given by the miRNAs target the mRNA transcripts
coding for the Smad7 protein in patients with breast
cancer with R2 = 0.99 and MSE = 0.00001.

Relative importance of miRNAs to regulate mRNAS-
Smad7 expression
The relative importance of each miRNAs on the expres-
sion of mRNA-Smad7 was evaluated using the Olden al-
gorithm [44, 45], which is based on the weights of the
connections of each node in the DNN and considers the
magnitude and the direction, where the weight repre-
sents the intensity and the direction the excitation of the
signal, therefore, a greater weight with positive direction,
represents a greater relative importance and increases
the predictive capacity of the model.
The results shown in Table 3 correspond to the aver-

age values of the miRNAs that increase the predictive
capacity of the model since they are of great intensity
and positive direction. Obtained from 20 runs of the
predictive model such as MLP, with logistic activation
function and trained with Rprop+.
Considering the information contained in the samples

of patients with breast cancer taken from the TGCA
project, the results show that the miRNAs hsa-mir-146a,
hsa-mir-93, hsa-mir-375, hsa-mir-205, hsa-mir-15a,
hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c,
hsa-mir-497, hsa-mir-107, hsa-mir-125a, hsa-mir-200c,
hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c,
hsa-mir-92b, hsa-mir-33a, hsa-mir-15b, hsa-mir-224,
hsa-mir-185 and hsa-mir-10b integrate a profile that
critically regulates the expression of mRNA-Smad7 and
Smad7 protein in breast cancer and could be used as
biomarkers or as targets in targeted therapies.

f xð Þ ¼ L
1þ e−k x−x0ð Þ ð5Þ

These results are consistent with some previously re-
ported studies that associate miRNAs with
mRNA-Smad7 and Smad7 protein in breast cancer, such
as the hsa-mir-146a that is an oncomiR that regulates
the expression of mRNA and the Smad7 protein in
non-alcoholic fibrous steatohepatitis [46] and it is over
expressed in the plasma of patients with breast cancer
[47]. Hsa-mir-93 is an oncomiR part of cluster 106b-25
involved in the mesenchymal epithelial transition sup-
pressing the expression of Smad7 and activating the
TGF-Beta signaling pathway in breast cancer [48].
Hsa-mir-21 is an oncomiR that promotes breast cancer
proliferation and migration through the suppression of
Smad7, which improves the epidermal growth factor

Table 1 Best predictive model based on DNN

Generation Individual miRNAs
count

Validation Hidden
layers

MSE R2

23 17 45 Hold-out 42:63 0.003877 0.9275

19 16 53 Hold-out 42:63 0.004425 0.9224

21 28 53 Hold-out 42:63 0.003982 0.9174

21 6 52 Hold-out 42:63 0.003612 0.9167

17 36 52 Hold-out 42:63 0.003668 0.9139

18 20 54 Hold-out 42:63 0.004021 0.9138

22 7 50 Hold-out 42:63 0.004431 0.9137

20 8 55 Hold-out 46:61 0.004826 0.9128

17 5 53 Hold-out 42:63 0.004176 0.9119

19 25 55 Hold-out 42:63 0.004045 0.9112
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signaling pathways (EGF) and TGF-Beta [7]. The cluster
miR424–503 contains the oncomiR hsa-mir-503, which
is expressed in metastatic breast cancer and suppresses
the expression levels of Smad7 and Smurf2 [49].
Hsa-mir-497 is an oncomiR low expressed in breast can-
cer [9], the mRNA-Smad7 is a target of this and are
negatively correlated in breast cancer [50].
Similarly, some studies that associate miRNAs with

the mRNA-Smad7 and the Smad7 protein in different
types of cancer or other malignancies are reported,
such as: hsa-mir-375 is an oncomiR associated with
single-polymorphisms nucleotide of Smad7 in colorec-
tal cancer (CRC) and collectively can be considered as
non-invasive biomarkers in the detection and diagnosis
of CRC [51]. Hsa-mir-15a is an oncomiR with no re-
ports associated with breast cancer and in infections of
the hepatitis B virus, it regulates apoptosis and tumori-
genesis based on the regulation of Smad7 [52].
Hsa-mir-212 activates hepatic stellate cells and pro-
motes fibrosis in the liver by suppressing Smad7 [53].

Hsa-mir-92b promotes the progression of hepatocellu-
lar carcinoma via the repression of Smad7 [54].
Hsa-mir-15b targets mRNA-Smad7 in angiogenesis in
myocardial infarction [55]. Hsa-mir-185-3p predicts the
radiosensitivity of nasopharyngeal carcinoma and mod-
ulates the growth and apoptosis of cancer cells by regu-
lating Smad7 [56].
On the other hand, some miRNAs are reported asso-

ciated only with breast cancer, such as hsa-mir-205 is a
tumor suppressor in breast cancer inhibits cell prolifer-
ation and anchorage independent growth as well as cell
invasion, ErbB3 and vascular endothelial growth factor
A (VEGF-A) are direct targets [57], significantly
underexpressed in breast cancer [9]. Hsa-mir-20a were
significantly overexpressed in breast cancer [58].
Hsa-mir-29c is an oncomiR underexpressed in breast
cancer [8]. Hsa-mir-107 is an oncomiR underexpressed
in stem cells of breast cancer [59], associated with
strong probabilities of recurrence and with overall re-
duced OS values for triple-negative breast cancer [60]

Fig. 3 Reduced graphical representation of DNN predictive model

Table 2 Predictive model evolved dataset

hsa-let-7c hsa-let-7d hsa-let-7 g hsa-mir-100 hsa-mir-107 hsa-mir-10b

hsa-mir-126 hsa-mir-140 hsa-mir-145 hsa-mir-146a hsa-mir-148a hsa-mir-149

hsa-mir-15b hsa-mir-183 hsa-mir-185 hsa-mir-191 hsa-mir-200c hsa-mir-205

hsa-mir-21 hsa-mir-212 hsa-mir-22 hsa-mir-224 hsa-mir-23a hsa-mir-26b

hsa-mir-29a hsa-mir-29c hsa-mir-30a hsa-mir-32 hsa-mir-33a hsa-mir-34a

hsa-mir-375 hsa-mir-378 hsa-mir-425 hsa-mir-429 hsa-mir-497 hsa-mir-503

hsa-mir-92b hsa-mir-93 hsa-mir-125a hsa-mir-15a hsa-mir-20a hsa-mir-27a

hsa-mir-374a hsa-mir-625
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the overexpression accelerates the tumor progression of
HCC in vitro and in vivo through its new target gene
CPEB3 [61]. Hsa-mir-125a is a tumor suppressor, were
significantly downregulated in her2-positive breast can-
cers, overexpression in an erb2-dependent cancer cell
line (skbr3) suppressed her2 and her3 transcript and
protein levels, which decreased cell motility and inva-
siveness [62]. Hsa-mir-200c is underexpressed in breast
cancer [63].
The miRNAs hsa-mir-429, hsa-mir-34a, hsa-let-7c and

hsa-mir-33a are not reported in the literature as directly
associated with Smad7. In protein expression levels,
interruption or suppression processes of the gene ex-
pression at transcription and translation levels are impli-
cated, as well as proteosomal degradation or protein
proteolysis, among other processes.
In particular, TGF-beta signaling pathway, the suppres-

sion of gene expression at the transcriptional level can be
given by co-repressors (c-Ski / SnoN, Evi1, among others).
However, elucidating the relationship of all the mecha-

nisms involved in the expression of the Smad7 protein is
beyond the scope of this research.
As described, in the manuscript [6–9], there is evi-

dence of the relationship between the miRNAs and the
inhibitory proteins of the TGF-β signaling pathway. The
results presented in Table 3, represent the relative im-
portance for each miRNAs for the predictive model with
the presented dataset.
Finally, the results obtained by the predictive model

have been consistent with previously published works.
This lays the foundations for the hypotheses development
that confirming the results with laboratory experiments.
Similarly, it establishes a precedent for the application of
this methodology to alternative datasets that provide evi-
dence to support the generalization of the results. How-
ever, these research hypotheses are part of the set of
perspectives and future work in the research line.

Conclusions
We develop a non-linear regression model based on DNN
using Gas to predict the expression of mRNA-Smad7

regulated by the miRNAs, validated through the results of
experiments in vivo and in vitro reported in the literature.
Such hybrid system is capable of finding both features and
the architecture of the best neural network, including
number of layers, the neurons per layer, validation method
in the training process, and training algorithm. In sum-
mary, GAs has been used in the proposed model of deep
neural networks for two main tasks: determining features
inputs and designing the structure of the deep neural
network.
An evolutionary search method based on binary GA

called EMDAV is presented, where each individual is
manifested in DNN and the input data set, architec-
ture, and training validation are evolved as character-
istics that define the predictive capacity of the model.
This method is able to find a prediction model based
on DNN that fits the biological data with R2 = 0.99
and MSE of 0.00001.
A profile of critical regulation is established for the ex-

pression of mRNA-Smad7 and the expression of the
Smad7 protein in breast cancer integrated by
hsa-mir-146a, hsa-mir-93, hsa-mir-375, hsa-mir-205,
hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503,
hsa-mir-29c, hsa-mir-497, hsa-mir-107, hsa-mir-125a,
hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a,
hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-mir-15b,
hsa-mir-224, hsa-mir-185 and hsa-mir-10b.
The relative importance granted to every miRNAs has

been supported by previously reported studies [8, 9, 47–63].
However, the miRNAs set associated with mRNA-Smad7 in
breast cancer is integrated by five miRNAs (hsa-mir-146a,
hsa-mir-93, hsa-mir-21 hsa-mir-503 and hsa-mir-497) and
they accumulate 40% of the relative importance assigned by
the predictive model.
On the other hand, it has the set integrated by

hsa-mir-375, hsa-mir-15a, hsa-mir-212, hsa-mir-92b,
hsa-mir-15b and hsa-mir-185-3p, are reported as associ-
ated with mRNA-Smad7 in other types of cancer or malig-
nancies and their cumulative relative importance of 23%.
Both sets are disjoint and contain the miRNAs directly

related to mRNA-Smad7, in conjunction they

Table 3 Relative importance positive on mRNAS-Smad7 from miRNAs

miRNAs % Relative miRNAs % Relative miRNAs % Relative

hsa.mir.146a 12.00% hsa.mir.29c 4.13% hsa.let.7c 1.52%

hsa.mir.93 10.71% hsa.mir.497 3.95% hsa.mir.92b 1.32%

hsa.mir.375 10.18% hsa.mir.107 3.66% hsa.mir.33a 1.18%

hsa.mir.205 7.93% hsa.mir.125a 3.40% hsa.mir.15b 1.10%

hsa.mir.15a 7.75% hsa.mir.200c 3.16% hsa.mir.224 1.09%

hsa.mir.21 7.72% hsa.mir.212 1.97% hsa.mir.185 0.74%

hsa.mir.20a 7.70% hsa.mir.429 1.68% hsa.mir.10b 0.22%

hsa.mir.503 5.31% hsa.mir.34a 1.59%
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accumulate 63% of the relative importance granted by
the predictive model.
From the above, it is possible to establish hypotheses

and explore, on the one hand, the possible relationship
between the miRNAs selected by the predictive model,
but not previously reported, in association with
mRNA-Smad7 in breast cancer. On the other hand, the
impact on other cancers of the interaction between
mRNA-Smad7 and miRNAs reported in association with
breast cancer and selected by the predictive model.
In the same sense, for the set of miRNAs associated

with breast cancer but not associated with the
mRNA-Smad7, experiments need to be carried out to
elucidate the possible relationship with mRNA-Smad7.
Future work includes the application of this method-

ology to other data sets related to breast cancer or other
diseases, as well as the development of laboratory exper-
iments to confirm the relevance of each miRNA in the
regulation of mRNA-Smad7.
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