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Metabolic diseases are major public health issues worldwide and are

responsible for disproportionately higher healthcare costs and increased

complications of many diseases including SARS-CoV-2 infection. The Western

Diet (WD) specifically is believed to be a major contributor to the global

metabolic disease epidemic. In contrast, the Mediterranean diet (MeD),

Ketogenic diet (KD), and Japanese diet (JD) are often considered beneficial

for metabolic health. Yet, there is a growing appreciation that the e�ect

of diet on metabolic health varies depending on several factors including

host genetics. Additionally, poor metabolic health has also been attributed to

altered gutmicrobial composition and/or function. To understand the complex

relationship between host genetics, gut microbiota, and dietary patterns, we

treated four widely used metabolically diverse inbred mouse strains (A/J,

C57BL/6J, FVB/NJ, and NOD/ShiLtJ) with four human-relevant diets (MeD,

JD, KD, WD), and a control mouse chow from 6 weeks to 30 weeks of

age. We found that diet-induced alteration of gut microbiota (α-diversity,

β-diversity, and abundance of several bacteria including Bifidobacterium,

Ruminococcus, Turicibacter, Faecalibaculum, and Akkermansia) is significantly

modified by host genetics. In addition, depending on the gut microbiota,

the same diet could have di�erent metabolic health e�ects. Our study

also revealed that C57BL/6J mice are more susceptible to altered gut

microbiota compared to other strains in this study indicating that host genetics

is an important modulator of the diet-microbiota-metabolic health axis.

Overall, our study demonstrated complex interactions between host genetics,
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gut microbiota, and diet on metabolic health; indicating the need to consider

both host genetics and the gut microbiota in the development of new and

more e�ective precision nutrition strategies to improve metabolic health.

KEYWORDS

gut microbiota, 16S, genetics, precision nutrition, metabolic health, glucose

metabolism, insulin, body fat

Introduction

Over the last decade, non-communicable diseases have

increased dramatically due to changes in dietary patterns

and lifestyles (1). Non-communicable diseases cause more

than 80% of deaths in Western societies (2) with poor

metabolic health being a major contributor. Metabolically

unhealthy people have disproportionately high morbidity and

mortality, and worse disease progression when challenged with

infectious diseases like SARS-CoV-2 (3–5). The co-occurrence

of several related risk factors (abdominal obesity, insulin

resistance, hyperglycemia, hypertriglyceridemia, decreased HDL

cholesterol, and hypertension) are summarized under the term

“metabolic syndrome” (MetS). In the United States, nearly

35% of all adults and 55% of elderly adults aged 65 and over

have MetS (6). People with MetS have 1.6 times higher health

care costs compared to individuals free from any risk factors

for the syndrome (7). MetS has become a global epidemic

in part due to broad adoption of a Western diet (WD) (8),

which is characterized by an excess of saturated fat, sodium,

refined grains and sugar, and comparatively less vegetables,

fruits, whole grains, dairy products and polyunsaturated fatty

acids (PUFA) to other well-defined dietary patterns.WD induces

metabolic diseases directly (9) and indirectly through altered gut

microbiota (10).

Diet patterns (the quantity, variety, or combination of

different foods and beverages in a diet) (11) vary across the

globe, are influenced by culture (12), and are popularized in the

media. Different diet patterns including the Mediterranean diet

(MeD), Ketogenic diet (KD), and Japanese diet (JD) reflect broad

differences in food and nutrient intake (13, 14). For example,

the traditional MeD is characterized by higher intake of fruits,

vegetables, whole-grain cereals, extra-virgin olive oil, nuts, and

a lower intake of red meat and sweets. MeD is reported as a

healthy diet that is associated with lower incidences of metabolic

diseases compared to WD (14). KD contains high fat, moderate

protein, and very low carbohydrate (15). KD treatment of obese

individuals has shown to decrease body weight and body mass

index, total cholesterol, LDL cholesterol, triglycerides, and blood

glucose, and increase HDL cholesterol (16, 17). However, the

effect of a KD on MetS still remains controversial (18, 19) and

has raised concerns among some physicians due to its high-fat

content (13). Moreover, little is known about the effect of KD

on gut microbiota (19). The classic JD is rich in fish, seafood,

and plant-based foods withminimal amounts of redmeat, added

sugars, and fat. The JD diet is considered healthy due to its

association with improved metabolic health (20) and longer

life expectancy (21). Though the JD has beneficial effects in

a particular population, several studies failed to demonstrate

similar benefits in other populations. Host genetics and gut

microbiota may explain the interindividual variation in the

response to different dietary patterns and susceptibility to diet-

induced metabolic diseases.

We have previously reported (22) that the diet effect on host

metabolic health varies depending on the genetic background

of the mouse strain. In brief, we found that the WD induced

adiposity in all mice, which was significantly more pronounced

in C57BL/6J compared to other mouse strains. Elevated fasting

blood glucose and poor glucose tolerance (GTT-AUC) were

observed in C57BL/6J and FVB/NJ mice consuming a WD diet

pattern, which was observed minimally in A/J mice, and was

not observed in NOD/ShiLtJ mice. KD prevented increased

adiposity in C57BL/6J and A/J mice but did not have any effect

in FVB/NJ or NOD/ShiLtJ mice. Additionally, KD induced poor

glucose tolerance in NOD/ShiLtJ mice that was not observed in

any other mice strains. The JD improved glucose tolerance in

C57BL/6J and FVB/NJ but did not have an effect in any other

mouse strains. JD also decreased body fat percentage in A/J,

C57BL/6J, and FVB/NJ but did not affect NOD/ShiLtJ mice. On

the other hand, MeD improved glucose tolerance in C57BL/6J

mice. Importantly, we found food intake was poorly correlated

with fat gain across all diets, further supporting the importance

of integrating gut microbiota and host genetics to understand

the diet effect on metabolic health.

The diversity and composition of the gut bacteria have

been intensely studied, as well as their impact on metabolic

health (23–27). Studies suggest that gut microbiota can

modulate MetS (27–29). Conversely, risk factors of MetS

also affect the gut microbiota and further worsen metabolic

health (30). In many cases, diet is the major driving force

for modulating the gut microbiota (31–34). Diet effects

on clinically relevant phenotypes can vary according to

an individual’s microbiota and genetic variation (35). Thus

relationships between gut microbiota, diet, and host genetics
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are exceedingly complex (27). A recent study (36) with a

large European cohort demonstrated the interactions between

genetic variation, diet, and gut microbiota. For example, lactose

intolerant individuals (defined as not having a functional

LCT-MCM6 locus: rs4988235) who consumed dairy products

regularly had increased Bifidobacterium abundance compared

to lactose-intolerant individuals who did not consume dairy

regularly. Similarly, Faecalicatena lactaris levels were increased

in non-A/B/AB-secretors (inactivated FUT2 gene: rs601338)

individuals who consumed a high-fiber diet. These data further

suggest that the complex interactions of diet, genetics, and

microbial abundance and function have important effects on

biological phenotypes and ultimately disease risk. Ascertaining

these complex gene-diet-microbiota associations can improve

our understanding of dietary needs as wemove toward precision

nutrition. Given the complexity of the interactions and diversity

among population in terms of genetics and diet; more work

remains to fully understand the relationship between gut

microbiota, diet, and host genetics.

In this study, we evaluated the effect of four popular diet

patterns (MeD, KD, JD, WD) and a mouse control chow in

four metabolically diverse inbred mouse strains (C57BL/6J, A/J,

FVB/NJ, and NOD/ShiLtJ). C57BL/6J mice are the most widely

utilized laboratory mouse strain as the metabolic abnormalities

of the C57BL/6J mouse closely parallel that of the human

obesity progression pattern (37, 38). In contrast, A/J mice

are genetically resistant to developing diet-induced metabolic

diseases (38, 39), despite having low levels of activity. FVB/NJ

is a physically active mouse strain (40, 41) and is also resistant

to diet-induced metabolic diseases (42). NOD/ShiLtJ, a popular

Type I diabetic mouse model, is prone to develop spontaneous

insulin deficiency due to pancreatic beta-cell destruction by

autoimmunity (37). Here, we report the microbiome aspect of

the study. We found that depending on the underlying host

genetics, diet modulates gut microbiota differently. Moreover,

we found that diet, gut microbiota, and host genetics modulate

each other’s effects on host metabolic health.

Methods

Study design and sample collection

Detailed study design and study procedures have been

reported previously (22). In brief, four-week-old A/J, C57BL/6J,

FVB/NJ, and NOD/ShiLtJ mice (The Jackson Laboratory,

Bar Harbor, ME) were acclimated for two weeks and then

randomized to one of five diets: traditional Mediterranean diet

(MeD), Japanese diet (JD), typical American diet (mentioned

as Western diet (WD) hereafter), ketogenic diet (KD), or

control mouse chow with five mice per diet, sex, and strain

(Supplementary Figure 1). Mice were housed five per cage and

maintained at 22◦C under a 12-h light cycle. The mice were

maintained on the experimental human andmouse control diets

from 6 to 30 weeks of age. Fecal samples were collected at

30 weeks of age and stored at −80◦C until further processing.

The final dataset had 16S rRNA gene amplicon sequencing data

from 149 mice (n = 27–34 per diet, 27–44 per strain, and 3–

10 per diet-strain, Supplementary Table 1). The study protocol

was approved by Texas A&M University Institution Animal

Care and Use Committee (IACUC) protocol number 2017-0076.

All experiments were performed in accordance with relevant

guidelines and regulations.

Diet

MeD, JD, WD, and KD diets were designed to match human

diets as closely as possible in terms of macronutrient ratio, fiber

content, types of ingredients, and fatty acid ratios to the human

diets according to the Food and Agriculture Organization’s Food

Balance Sheets from Greece and Japan in 1961 (43), Department

of Agriculture’s 2008 Dietary Assessment of Major Food Trends

(44), and diet consumed by theMasaai population (45). Detailed

diet formulation, and macro- and micro-nutrient composition

have been previously reported (22). The five experimental diets

were assigned randomly to each of the four inbred mouse

strains separately.

Clinical phenotype assays

Blood samples were collected for clinical phenotyping

following a 6h fasting. Insulin concentrations were quantified

using a Mouse Serum Adipokine Immunoassay ELISA kit

(Millipore, Bedford, MA). A glucose tolerance test (GTT)

was carried out after 6h of fasting. Blood glucose levels

were measured with a Bionome GM100 glucose monitor

(Bionome USA). Detailed GTT methodology has been reported

earlier (22).

Anthropometric phenotype assays

Body composition was measured by EchoMRI-130 Body

Composition Analyzer, which has been detailed earlier (22).

Gut microbiota assay

Stool DNA was extracted by using Fast DNA Spin Kit

for Soil (MP Biomedicals, Solon, OH), according to the

manufacturer’s instructions. A mixed template amplicon library

of the hypervariable region V3-V4 of the bacterial 16S rRNA

gene was prepared by using 341F and 805R primer set (46).

Amplicon PCR was carried out by KAPA HiFi HotStart
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ReadyMix (Roche, Basel, Switzerland) and the product was

cleaned using AMPure XP beads (Beckman Culture, IN,

USA). A second PCR was performed to attach 8 nucleotide

dual indices and Illumina sequencing adapters using the

Nextera XT (Illumina, CA, USA). The amplicon library was

sequenced using the Illumina MiSeq platform. Sequences were

de-multiplexed and amplicon sequence variants (ASV) was

determined using the open-source software QIIME2-DADA2

pipeline (47). Taxonomy was assigned using the SILVA 132

reference database (48) customized for QIIME2 for 16s V3-

V4 (341F/805R) region of sequences at the threshold of 99%

pairwise identity. A total of 11,766,771 sequences remained

after quality filtering and demultiplexing with an average of

54,476 ± 11,616 (mean ± SD) sequences per sample for ASV

picking. After removing noised and chimeric sequences, a total

of 7,084,823 sequences with an average 32,800 ± 7,148 per

sample were in the final ASV table. The final dataset had 16S

rRNA gene amplicon sequencing data from 176mice (n= 27–34

per diet).

Statistical analysis

Statistical analyses were performed using R version V4.0.3

for Windows (49). Metadata continuous variables were analyzed

for Normality using the Shapiro-Wilk Normality Test and

QQ-normal plot. Variables with the Shapiro-Wilk “W” value

≥ 0.95 were considered Normal. Non-Normally distributed

metadata variables were transformed by natural log, square root,

square, or Box-Cox power transformation. If no appropriate

transformation was found, the variables were normalized rank

transformed. The ASV table was filtered by removing any ASV

present in fewer than 5 samples and with a relative abundance

≤ 0.005% across all samples to calculate the differential taxa

abundance. We utilized ANCOM-2.1 (50) with adjusted for

confounding factors (e.g., sex, mouse strains, and diet) to

determine the differential ASV and genera abundance as

described in the results below. Shannon diversity index on

the alpha rarefaction curve reached a plateau at about 3,000

sequences per sample. We performed a single rarefaction at

a sequence depth of 15,000 sequences per sample. α-diversity

(Shannon diversity index, Faith’s phylogenetic diversity, and

observed ASV) and β-diversity (unweighted UniFrac, weighted

UniFrac, and Bray Curtis) were calculated from the unfiltered

ASV table. Differences in microbial community β-diversity

were tested by ADONIS using 999 permutations in the R

package Vegan (51) upon controlling for the confounding

factors as described in the result below. Principal coordinate

(PCoA) analysis was carried out by PhyloSeq (52). ANOVA

analysis was performed to compare between groups adjusted

for confounding factors. Diet, strain, and microbial diversity

together showed increased variance inflation factor (VIF) and

therefore separate ANOVA models had been developed for

analyzing the interactions between diet and diversity, andmouse

strain and diversity. Graphs were prepared by GGplot2 (53).

Results

Diet dominates host genetics in shaping
gut microbiota

This study aimed to determine how popular dietary patterns

modulate gut microbial diversity and composition in genetically

diverse mouse strains and how the gut microbiota interacts with

diet and host genetics to alter metabolic health. We assayed gut

microbiota following 24 weeks of diet treatment using the widely

used 16S rRNA gene amplicon sequencing method. As expected,

gut microbial diversity and composition were significantly

influenced by both diet and genetics (Figures 1A–D). In

particular, the microbial α-diversity was significantly different

among the diets (Supplementary Figures 2A–C) with a higher

diversity observed inMeD and a lower diversity in KD compared

to WD and mouse control chow. Here we report three different

α-diversity measures; observed ASV, Shannon diversity index,

and Faith’s Phylogenetic Diversity (Faith’s PD). The observed

ASV (commonly known as observed species) depends on the

number of different ASV present in a sample that represents the

richness of the sample. Shannon diversity index represents the

richness of the sample weighted by the abundance of each of the

ASV, while Faith’s PD is the phylogenetic richness of the sample,

an important diversity measure that considers the similarity

between bacteria based on shared evolution. In our study, we

found that diet explains 47, 36, 37% variability of the Shannon

diversity index, Faith’s PD, and Observer ASV, respectively. In

contrast, the genetic background of the mouse strain explains

only 8, 8, and 5% variability of the Shannon diversity index,

Faith’s PD, and Observer ASV, respectively.

In addition to α-diversity measures, we presented three

commonly used β-diversity (Bray-Curtis, unweighted UniFrac,

and weighted UniFrac) measures. β-diversity is a measure of

how similar or dissimilar two or more microbial communities

are. Bray-Curtis is a quantitative, non-phylogenetic β-diversity

metric that considers only the abundance of the features.

Unweighted UniFrac is a qualitative, phylogenetic β-diversity

metric that depends on only the presence or absence of features

and the phylogenic distance of the features (54). Unweighted

UniFrac is more sensitive to rare bacterial taxa. Weighted

UniFrac is a qualitative, phylogenetic β-diversity metric that

additionally adjusts the unweighted UniFrac measures with the

abundance of the features (54). Both weighted UniFrac and

Bray-Curtis consider the relative abundance of the ASV and

are more sensitive to the most abundant taxa. However, Bray-

Curtis considers all features are equally dissimilar, but weighted

UniFrac accounts for similarity based on shared evolution.

All above mentioned β-diversity measures were significantly
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FIGURE 1

Diet-gene interaction on gut microbiota. Shannon diversity index (A) and Faith’s PD (B) α-diversity by diet and strain. Boxes without a common

letter are significantly (p < 0.05) di�erent from others. Boxes with common letters represent no significant di�erence. 2-way ANOVA with

Tukey’s post hoc analysis was performed to determine the statistical di�erences. (C) Weighted UniFrac β-diversity PCoA plot. The color of the

point represents diet. The ellipse on the principal coordinate analysis plot indicates 95% CI of the clusters by groups. Inset box is the results of

ADONIS test on diet, strain, and their interaction. ADONIS analyses were adjusted for sex as a covariate. (D) Mean relative abundance of top 20

genera in A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ mice treated with control mouse diet, WD, JD, KD, or MeD.

different among the diets and mouse strains (Figure 1C;

Supplementary Figures 3B,C, 4). For β-diversity, diet explained

20% to 28% variability of the gut microbiota, whereas genetics

explained only 6–8% variability in β-diversity. These data

highlight the dramatic effects diet can have on the gutmicrobiota

as compared to host genetics (mouse strain in this case).

Host genetics modulate the association
between diet and gut microbiota

The diet-induced alteration of the gut microbiota was

influenced by the genetics of the host. In particular, a

significant diet ∗ genetic interaction was observed for both α

and β-diversity measures. For instance, the KD significantly

decreased the α-diversity measures (specifically Shannon

diversity index, observed ASV, and Faith’s PD) in FVB/NJ

mice compared to both WD and mouse chow (Figures 1A,B;

Supplementary Figure 3A). However, the effects of the KD on

α-diversity measures were muted (limited to Shannon diversity

index) in A/J mice, and absent in NOD/ShiLtJ mice.

Consistent with α-diversity, significant diet ∗ genetic

interactions on all microbial β-diversity measures were also

observed (Figure 1C; Supplementary Figures 3B,C). Therefore,

we determined the diet effect on the gut microbiota for

each individual mouse strain using ADONIS function in

the R package vegan and found that depending on the

genetic background, the diet altered β-diversity measures

differently with a range of 34–59%, 33–48%, and 45–57%,

respectively, for weighted UniFrac, unweighted UniFrac, and

Bray-Curtis β-diversity measures (Supplementary Table 2).

These results demonstrate that genetics influences diet-

induced alteration of microbial composition. The community

differences among diets and strains were also reflective

of large alterations in the mean relative abundance

of the specific bacterial genera (Figure 1D) and ASVs

(Supplementary Figure 3D).

We then focused on which specific bacteria are differentially

abundant between mouse control chow and popular human

diets. Several bacterial ASVs (Figure 2; Supplementary Table 3)

and genera (Supplementary Figure 5; Supplementary Table 4)

were found enriched or depleted in popular human diet

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.896348
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huda et al. 10.3389/fnut.2022.896348

FIGURE 2

Di�erential ASV abundance between controlled mouse diet and four popular human diet patterns. The top 20 most di�erentially abundant

(based on cumulative ANCOM W-value) ASV were selected for the graph. On the Y-axis, maximum taxonomic information has been presented

with the ASV ID. For easier presentation, ANCOM W values were converted to negative if the CLR mean abundance is lower in the popular diet

patterns compared to control mouse diet. Red indicates higher ASV abundance in the popular diet pattern and blue represents higher ASV

abundance in the control diet group. White represents a non-significant result obtained from ANCOM analysis. ANCOM models were FDR

(BH-method) corrected and a significant sub-hypothesis test at a level of adj.P < 0.05 was counted toward W value. Models were adjusted for

sex as a confounding factor and were stratified by mouse strains. “***” = ≥W0.9, “**” = ≥W0.8, and “.” = ≥W0.6. The full list of the di�erential ASV

abundance is available in Supplementary Table 3. Corresponding di�erential genera abundance has been depicted in Supplementary Figure 5,

and the full list is available in Supplementary Table 4.

patterns compared to control mouse chow. In general,

the relative abundance of bacterial ASVs belong to family

Muribaculaceae, Lachnospiraceae, and genus Alistipes were

consistently increased in human popular diets compared to

mouse control chow (Figure 2), whereas Ruminiclostridium

abundance was lower in human popular diets compared

to the mouse control chow. Similarly, a genus under the

family Muribaculaceae was enriched; and Ruminococcaceae

UCG-005, Rombutisa, and Parabacteroides were depleted in

human popular diets compared to control mouse chow

(Supplementary Figure 5), indicating that mouse chow typically

used in pre-clinical studies has a differential effect on gut

microbiota compared to human-relevant diets and could alter

interpretations of metabolic studies when only considering

mouse chows.

Then to understand how WD contributes to higher

metabolic diseases compared to other human diets used in

this study, we focused on the differential bacteria abundance

in MeD, KD, or JD diet patterns compared to WD. We

found several differences in gut genera abundance in MeD,

KD, and JD compared to the WD (Supplementary Table 5;

Supplementary Figure 6). For instance, we found that relative

abundance of short-chain fatty acids (SCFA) producing

bacteria Faecalibaculum, Blautia, and Lactococcus were

higher in KD, JD and MeD compared to WD. However,

Ruminococcaceae UCG-005 abundance was lower in JD, KD,

and MeD compared to WD. Unexpectedly, we found the

abundance of Bifidobacterium was higher in WD compared

to other diets in this study. However, as we discuss below,

we cannot determine which species or subspecies of the

Bifidobacterium are enriched in WD using a 16S rRNA

gene amplicon sequencing. Other notable bacterial genera

that were differentially abundant compared to WD were

Akkermansia, Butyricicoccus, Anaeroplasma, Desulfovibrio,

Lachnospiraceae, Odoribacter, Rikenella, Citrobacter, Dubosiella,

Faecalibaculum, Roseburia, Ruminiclostridium 9, Streptococcus,

Turicibacter, Muribaculum, and Parabacteroides, which varied

among diets and mouse strains (Supplementary Table 5;

Supplementary Figure 3D). These results indicate that the

differential gut microbial abundance due to diet treatment

is significantly influenced by background genetics. For

example, only in NOD/ShiLtJ mice, Roseburia was significantly

decreased in KD and JD while being increased in MeD

(Supplementary Table 5). The differential ASV abundance

between diets also varied significantly depending on the

mouse strain (Supplementary Table 6). For instance, an ASV

belongs to the genus Akkermansia was >4-fold higher only

in C57BL/6J mice fed KD as compared to those fed a WD

(Supplementary Table 6). This result indicates that depending

on the background genetics of the host, the same diet may show

significant heterogeneity in its effects on the enrichment or

depletion of specific gut bacteria.
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FIGURE 3

Diet and gut microbiota interact to alter host body composition. (A) Association between body composition measures and α-diversity or first

principal component (PC1) of β-diversity measured for each diet determined by using Spearman correlation. As indicated, red represents a

positive correlation and blue represents a negative correlation. P-values were adjusted for multiple comparisons using BH method. “***” =

adj.p < 0.001, “**” = adj.p < 0.01, “*” = adj.p < 0.05, and “.” = adj.p < 0.10. (B) Volcano plot of the di�erential genera abundance between high

(above median) and low (below median) body fat percentage in mice maintained on western diet determined by ANCOM analysis. Structural

zero represents the presence of the bacteria in one group and complete absence in another group. (C) Relative abundance of the Roseburia in

mice having high and low lean mass maintained on the ketogenic diet. (D) Relative abundance of the Roseburia in mice with high and low lean

mass maintained on the Mediterranean diet. (E) Bodyweight distribution of mice maintained on the Mediterranean diet by the presence or

absence of Enterobacter in their gut microbiome. Mean abundance was compared using the Wilcoxon rank-sum test. For (C–E) “**” = P < 0.01,

“*” = P < 0.05, and “ns” = not significant. (F) Di�erential genera abundance between high (above median) and low (below median) body

composition measures determined by ANCOM analysis. 20 most di�erentially abundant (based on cumulative ANCOM W-value) were selected

for the graph. For easier presentation, ANCOM W values were converted to negative if the CLR e�ect size is negative. Red indicates higher

genera abundance in the above-median group and blue bacteria represents higher genera abundance in the below-median group. White

represents a non-significant result obtained from ANCOM analysis. Models were adjusted for mouse strain and sex as confounding factors. The

median was calculated for each diet. ANCOM models were FDR (BH-method) corrected for multiple comparisons and a significant

sub-hypothesis test at a level of adj.P < 0.05 was counted toward W value. For (F), “***” = ≥W0.9, “**” = ≥W0.8, “*” = ≥W0.7, and “.” = ≥W0.6.

Diet and gut microbiota interact to a�ect
host body composition

The gut microbiota is critical to digestion and thus variation

in the gut microbiome can affect availability of energy substrates,

host metabolism, and body composition. Therefore, we next

focused on the association between gut microbiota and host

body composition between diet groups. In the WD, all three

microbial α-diversity measures were positively correlated with

lean mass and negatively associated with body fat percentage

(Figure 3A), indicating high microbial diversity is associated

with better metabolic health. However, α-diversity measures in

the MeD, KD, and JD did not show any significant association

with body composition, and Faith’s PD and observed ASV

showed a positive correlation with body weight in controlled

mouse chow. This result suggests a significant interaction

between diet and α-diversity measures on body composition

phenotypes. For example, Shannon diversity index explains

21, 0.3, 0.1, 7, and 50% variance of the body fat percentage

respectively for control mouse chow, JD, KD, MeD, and WD,

indicating aWD induces profound alteration in gut microbiome

and dramatically affects body fat percentage (Table 1). The

interaction between Shannon diversity index and diet on body

fat percentage remained significant after adjusting for sex as a

covariate (Supplementary Table 7).

Next, we focused on the association between microbial β-

diversity and body composition to understand the effect of

the overall microbial composition. Since principal component
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TABLE 1 Percent phenotypic variance explained by gut microbial alpha and beta diversity measures in each of the experimental diet.

Faith’s PD Observed ASV Shannon Weighted UniFrac PC1 Unweighted UniFrac PC1 Bray Curtis PC1

Control

Body weight 27.4% 26.1% 4.7% 6.5% 6.6% 15.7%

Fat mass 13.8% 16.7% 26.4% 0.1% 1.1% 1.3%

Lean mass 20.8% 19.9% 1.1% 7.0% 7.6% 20.9%

Body fat percentage 2.9% 5.6% 21.4% 2.2% 1.5% 11.4%

Fasting glucose 0.2% 1.5% 4.2% 3.3% 0.0% 3.0%

Insulin 0.4% 0.3% 2.1% 15.7% 0.2% 19.7%

GTT 15.7% 11.3% 0.1% 2.0% 0.6% 6.8%

Japanese

Body weight 0.5% 0.8% 7.2% 0.7% 0.2% 1.6%

Fat mass 11.4% 2.2% 1.2% 2.9% 6.2% 2.8%

Lean mass 1.9% 5.5% 5.3% 2.0% 4.9% 0.2%

Body fat percentage 12.8% 4.4% 0.3% 4.8% 14.4% 4.2%

Fasting glucose 0.0% 0.2% 0.4% 2.1% 10.5% 11.1%

Insulin 0.1% 0.7% 4.4% 2.1% 22.3% 1.9%

GTT 0.4% 4.2% 6.4% 5.5% 23.4% 9.9%

Ketogenic

Body weight 2.3% 0.8% 7.2% 2.1% 14.4% 23.1%

Fat mass 6.6% 3.5% 0.7% 14.1% 0.5% 1.0%

Lean mass 0.8% 0.1% 5.4% 0.0% 34.0% 20.2%

Body fat percentage 3.0% 2.3% 0.1% 11.1% 8.8% 1.0%

Fasting glucose 2.6% 1.2% 11.6% 16.8% 0.4% 31.3%

Insulin 17.0% 16.6% 0.3% 0.1% 1.8% 13.7%

GTT 1.7% 0.4% 12.0% 11.8% 0.3% 27.8%

Mediterranean

Body weight 1.7% 2.2% 11.4% 2.2% 3.9% 0.8%

Fat mass 0.3% 0.6% 13.4% 0.0% 0.9% 3.3%

Lean mass 2.8% 2.9% 9.5% 4.8% 14.7% 5.3%

Body fat percentage 0.1% 0.1% 7.0% 0.7% 6.6% 7.7%

Fasting glucose 1.2% 2.9% 22.1% 12.4% 18.3% 23.2%

Insulin 9.5% 4.4% 1.4% 3.8% 11.3% 31.3%

GTT 3.5% 0.3% 12.0% 5.5% 0.4% 0.1%

Western

Body weight 6.5% 10.7% 0.6% 17.7% 5.5% 0.6%

Fat mass 2.9% 1.7% 19.3% 3.7% 1.7% 11.3%

Lean mass 27.8% 33.3% 18.5% 24.2% 24.4% 14.4%

Body fat percentage 23.5% 21.1% 49.5% 2.7% 18.0% 42.1%

Fasting glucose 36.1% 38.5% 7.2% 31.5% 42.9% 10.8%

Insulin 0.5% 2.5% 0.2% 40.0% 0.2% 0.0%

GTT 36.9% 46.7% 18.1% 28.3% 25.8% 11.4%

Percent variance explained was calculated from the correlation coefficient.

1 (PC1) explains most of the variability of multidimensional

data (55), we determined the correlation between PC1

of β-diversity measures and clinical phenotypes and body

composition phenotypes. This approach was previously used in

the microbiome field to demonstrate the association between

microbial β-diversity and a higher number of clinical or

metabolic phenotypes (56–58). Similar to measures of α-

diversity, we observed that the WD has the most pronounced

association betweenmicrobial β-diversity and body composition

compared to other diets in the study (Figure 3A). The first
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principal component of Bray-Curtis β-diversity explains 11, 4,

1, 8, and 42% variance of the body fat percentage respectively

for control mouse chow, JD, KD, MeD, and WD, indicating

the changes in the microbial abundance due to diet treatment

may explain the differential adipogenicity among diets (Table 1).

The interaction between Bray-Curtis PC1 and diet on body fat

percentage remained significant even after adjusting for sex as a

covariate in the ANOVA model (Supplementary Table 8).

We then determined if any specific gut bacterial ASVs

or genera are associated with body composition and found

several gut bacteria were associated although the associations

varied depending on diet composition (Supplementary Tables 9,

10). For instance, with WD, mice having lower body fat

percentage were enriched with several bacterial genera including

Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group,

Turicibacter, Ruminococcus 1, and a genus under the family

Clostridiales vadinBB60 group compared to mice having higher

body fat percentage after adjusting for the mouse strain

and sex as covariates (Figure 3B). With KD, mice having

a higher body fat percentage were associated with 1.4-fold

higher enrichment of UBA1819, a genus under the family

Ruminococcaceae compared to those having a lower body

fat percentage (Figure 3F; Supplementary Table 9). The same

bacteria UBA1819 was found about 0.8-fold lower in mice

with higher lean mass, and 0.6-fold lower in higher body

weight mice indicating a consistent association with body

composition. Similarly, an uncultured bacterium under family

Clostridia was positively associated with body fat percentage

and negatively associated with the lean mass with WD.

On the other hand, Odoribacter was positively associated
with higher body fat percentage (1.5-fold enriched), body

weight (0.8-fold lower), and lean mass (0.8-fold lower) with
MeD. Roseburia was found positively associated with lean

mass with KD (Figure 3C) but not with MeD (Figure 3D).

Conversely, the presence of Enterobacter, a bacterium under
Proteobacteria phylum was associated with mice with lower
body weight, fat mass, and lean mass, which was completely

absent in mice with higher body weight, fat mass, and
lean mass consuming MeD (Figure 3E; Supplementary Table 9).

The differential ASV abundance between high and low body

composition phenotypes also varied depending on the dietary

patterns (Supplementary Table 10). These study results indicate

that gut microbiota is associated with host body composition

and the association between gut microbiota and host body

composition may vary in different diet patterns.

Diet and gut microbiota interact to a�ect
host glucose metabolism

Glucose metabolism is an important part of the host

metabolism and impaired glucose metabolism is directly

related to metabolic diseases notably type 2 Diabetes Mellitus.

Therefore, we then focused on the interaction between diet

and microbiome on host glucose metabolism. Consistent with

the host body composition, a significant diet ∗ microbiota

interaction affecting glucose metabolism was observed. For

instance, more pronounced associations between fasting blood

glucose, glucose tolerance, and microbial α-diversity were

observed with WD compared to other diets in the study

(Figure 4; Supplementary Table 11). Faith’s PD explained about

16, 0.4, 2, 4, and 37% variability in GTT-AUC for mouse

control chow, JD, KD, MeD, and WD, respectively, indicating

that the WD altered-gut microbiota influences host glucose

metabolism the most among all study diets. Similar to α-

diversity, β-diversity measures also showed significant diet ∗

microbiota interaction on host glucose metabolism (Figure 4A;

Supplementary Table 12). For example, fasting blood glucose

levels and glucose tolerance showed a significant correlation

with β-diversity measures and the association was more

prominent with WD, which was consistent with the α-diversity

measures and body composition. The interaction remained

significant even after adjusting for sex as a covariate in

the ANOVA model (Supplementary Table 12). For instance,

the interaction between weighted UniFrac PC1 and diet on

GTT (as a dependent variable) remained significant (P =

0.03) after adjusting for sex. These results indicate that the

overall microbial composition is associated with host glucose

metabolism, but the association varies depending on the

dietary pattern.

Next, we wanted to identify the specific bacterial ASV

or genera responsible for modulating the host glucose

metabolism in each of the study diets. Several gut bacterial

genera (Figures 4B,F; Supplementary Table 13) and ASV

(Supplementary Table 14) were found differentially abundant

between high and low glucose metabolism parameters with

each diet. For instance, Akkermansia was found associated

with lower fasting blood glucose, glucose tolerance, and insulin

levels, but only with WD (Figures 4C–E). Faecalibaculum,

an SCFA producing bacteria, was associated with improved

glucose tolerance only with MeD. Conversely, Coriobacteriaceae

UCG-002 was enriched in mice having higher fasting blood

glucose levels compared to those having lower blood glucose

levels with MeD, KD, and JD, but not with WD or controlled

mouse chow. Unexpectedly, Bifidobacterium was positively

associated with fasting blood glucose levels with MeD.

Similar to the genus level, ASV level analysis also revealed

significant diet ∗ microbiota interactions on host glucose

metabolism (Supplementary Table 14). For instance, an ASV

belonging to the genus Akkermansia was found enriched

in mice having lower fasting blood glucose and improved

glucose tolerance, but only with WD. These results further

support that diet ∗ microbiota interaction modulates host

glucose metabolism.
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FIGURE 4

Diet and gut microbiota interact to modulate host’s glucose metabolism. (A) Association between fasting blood glucose parameters and

α-diversity or first principal component (PC1) of β-diversity measured for each diet determined by using Spearman correlation. As indicated, red

represents a positive correlation and blue represents a negative correlation. P-values were adjusted for multiple comparisons using BH method.

“***” = adj.p < 0.001, “**” = adj.p < 0.01, “*” = adj.p < 0.05, and “.” = adj.p < 0.10. (B) Volcano plot of the di�erential genera abundance between

high (above median) and low (below median) fasting blood glucose in mice maintained on western diet determined by ANCOM analysis.

Structural zero represents the presence of the bacteria in one group and the complete absence in another group. (C–E) Relative abundance of

the Akkermansia in mice with high (above median) and low (below median) fasting blood glucose levels in mice maintained on the (C) KD, (D)

MeD, and (E) WD. Mean abundance was compared using the Wilcoxon rank-sum test. For (C–E), “***” = p < 0.001, and “ns” = not significant. (F)

Di�erential genera abundance between high (above median) and low (below median) glucose metabolism parameters determined by ANCOM

analysis. 20 most di�erentially abundant (based on cumulative ANCOM W-value) were selected for the graph. For easier presentation, ANCOM

W values were converted to negative if CLR e�ect size is negative. Red indicates higher genera abundance in the above-median group and blue

bacteria represents higher genera abundance in the below-median group. White represents a non-significant result obtained from ANCOM

analysis. Models were adjusted for mouse strain and sex as confounding factors. ANCOM models were FDR (BH-method) corrected for multiple

comparisons and a significant sub-hypothesis test at level adj.P < 0.05 was counted toward the W value. The median was calculated for each

diet. For (F), “***” = ≥W0.9, “**” = ≥W0.8, “*” = ≥W0.7, and “.” = ≥W0.6.

Host genetics and gut microbiota
interact to a�ect body composition

Genetics is a critical determinate of disease risk and

the interindividual heterogeneous response to diet. Thus,

we next sought to determine if gut microbiota interacts

with host genetics to affect clinical traits such as body

composition. To evaluate this hypothesis, next, we compared

the association between gut microbiota and host body

composition within each mouse strain. The microbial diversity

correlated significantly with host body composition and

the association showed significant interaction with mouse

strains, with a more pronounced association in C57BL/6J

mice (Figure 5A; Supplementary Tables 15, 16). For example,

body fat percentage was significantly correlated with all

three α-diversity measures only in C57BL/6J (Figure 5A).

In particular, Faith’s PD showed the strongest correlation

with body fat percentage, which explained 9, 19, 13, and

0.2% of the variability of the body fat percentage, for

A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ mice (Table 2),

respectively, indicating that C57BL/6J is the most susceptible

to gut microbiome aletration. Similarly, Shannon diversity

index, observed ASV, Bray-Curtis, and unweighted UniFrac

also explained higher percent variance of body composition

in C57BL/6J (Table 2), further supporting that C57BL/6J

mice are more susceptible to obesity due to diet-induced

alteration of microbiota compared to other strains in

this study.

Then to detect the individual gut bacterium contributing to

the host body composition, we determined that the differential
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FIGURE 5

Host genetics and gut microbiota interact to modulate host body composition. (A) Association between body composition measures and

α-diversity or first principal component (PC1) of β-diversity measured by mouse strains determined by using Spearman correlation. As indicated,

red represents a positive correlation and blue represents a negative correlation. “***” = adj.p < 0.001, “**” = adj.p <0.01, “*” = adj.p < 0.05, “.” =

adj.p < 0.10, and “ns” = not significant. (B) Volcano plot of the di�erential genera abundance between C57BL/6J mice with high (above median)

and low (below median) body fat percentage determined by ANCOM analysis. Structural zero represents the presence of the bacteria in one

group and complete absence in another group. (C) Relative abundance of the Akkermansia in A/J mice with high and low body fat percentage.

(D) Relative abundance of the Akkermansia in C57BL/6J mice with high and low body fat percentage. Mean abundance was compared using the

Wilcoxon rank-sum test. For (C,D), “***” = P < 0.001 and “ns” = not significant. (E) Di�erential genera abundance between high (above median)

and low (below median) body composition measures determined by ANCOM analysis. 20 most di�erentially abundant (based on cumulative

ANCOM W-value) were selected for the graph. For easier presentation, ANCOM W values were converted to negative if CLR e�ect size is

negative. Red indicates higher genera abundance in the above-median group and blue bacteria represents higher genera abundance in the

below-median group. White represents a non-significant result obtained from ANCOM analysis. Models were adjusted for diet and sex as

confounding factors. ANCOM models were FDR (BH-method) corrected for multiple comparisons and a significant sub-hypothesis test at a

level of adj.P < 0.05 was counted toward W-value. The median was calculated for each mouse strain. For (E), “***” = ≥W0.9, “**” = ≥W0.8, “*” =

≥W0.7, and “.” = ≥W0.6.

abundance of genera (Figures 5B,E; Supplementary Table 17)

and ASV (Supplementary Table 18) between high and low

body weight, fat mass, lean mass, and body fat percentage

in each of the mouse strains. For instance, Akkermansia was

negatively associated with body fat percentage in C57BL/6J mice

(Figure 5D), but not in other mice including A/J (Figure 5C).

On the other hand, Muribaculum was enriched in A/J,

FVB/NJ, and NOD/ShiLtJ mice with lower body fat percentage

compared to those who had higher body fat percentage,

which was not observed in C57BL/6J mice (Figure 5E;

Supplementary Table 17). Similarly, Ruminococcaceae UCG-014

was enriched in FVB/NJ mice with lower body fat percentage

compared to mice having higher body fat percentage, but was

not found in other mice. Detailed statistics of the distribution of

the gut microbial genera and ASV between low and high groups

have been depicted in Supplementary Tables 17, 18. Our results

demonstrated that depending on the host genetics, the same gut

bacteria may have a different association with body composition.

Host genetics and gut microbiota interact
to a�ect host glucose metabolism

Consistent with body composition data, a host

genetics ∗ gut microbiota interaction was also observed

on the host glucose metabolism phenotypes (Figure 6A;

Supplementary Tables 19, 20). For instance, in C57BL/6J mice,

microbial α-diversity and fasting blood glucose levels were
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TABLE 2 Percent phenotypic variance explained by gut microbial alpha and beta diversity measures in each of the mouse strains.

Faith’s PD Observed ASV Shannon Weighted UniFrac PC1 Unweighted UniFrac PC1 Bray Curtis PC1

A/J

Body weight 3.3% 1.0% 0.9% 4.5% 0.8% 0.1%

Fat mass 6.5% 6.5% 0.2% 21.7% 3.0% 0.1%

Lean mass 0.0% 1.0% 3.7% 0.5% 8.1% 0.7%

Body fat percentage 9.3% 11.9% 3.6% 24.3% 9.2% 1.6%

Fasting glucose 1.0% 4.1% 14.9% 8.7% 27.2% 10.1%

Insulin 0.0% 0.5% 27.3% 0.6% 28.6% 22.7%

GTT 5.6% 4.6% 5.3% 0.0% 6.2% 4.4%

C57BL/6J

Body weight 23.4% 16.1% 14.1% 8.5% 16.0% 4.8%

Fat mass 24.3% 18.4% 14.7% 16.0% 13.7% 6.6%

Lean mass 15.2% 10.5% 8.7% 0.5% 8.6% 2.2%

Body fat percentage 18.8% 14.3% 10.5% 18.1% 9.4% 30.0%

Fasting glucose 39.3% 34.7% 30.2% 11.4% 32.1% 15.7%

Insulin 40.1% 32.7% 42.0% 25.7% 34.9% 25.4%

GTT 2.0% 0.1% 5.0% 0.6% 3.8% 9.9%

FVB/NJ

Body weight 2.5% 0.1% 1.3% 3.8% 3.6% 1.1%

Fat mass 10.1% 3.9% 3.3% 2.3% 0.6% 2.0%

Lean mass 0.1% 3.8% 0.1% 9.8% 6.4% 5.7%

Body fat percentage 13.3% 9.3% 5.9% 7.5% 0.1% 7.3%

Fasting glucose 2.0% 7.9% 0.5% 12.4% 4.6% 14.1%

Insulin 1.6% 4.8% 2.6% 47.1% 35.9% 21.4%

GTT 1.1% 7.7% 1.3% 3.8% 0.9% 4.3%

NOD/ShiLtJ

Body weight 4.9% 7.6% 11.4% 4.8% 12.5% 0.1%

Fat mass 3.3% 3.0% 4.2% 4.4% 13.6% 0.4%

Lean mass 6.5% 12.0% 16.1% 2.5% 2.3% 2.4%

Body fat percentage 0.2% 0.0% 0.0% 3.1% 11.8% 2.0%

Fasting glucose 1.1% 4.0% 0.0% 4.8% 17.9% 4.0%

Insulin 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GTT 1.7% 0.6% 13.6% 5.6% 26.4% 3.5%

Percent variance explained was calculated from the correlation coefficient.

highly correlated, but not in FVB/NJ and NOD/ShiLtJ mice

(Figure 6A). The associations between glucose metabolism

phenotypes and β-diversity measures were also more

pronounced in C57BL/6J mice (Figure 6A) indicating the

overall composition of the microbial community is associated

with altered metabolic health, which depends on the host

genetics. Shannon diversity index explained 15, 30, 0.5, 0.03%

of the variance for fasting blood glucose in A/J, C57BL/6J,

FVB/NJ and NOD/ShiLtJ mice, respectively, indicating that the

C57BL/6J strain is the most susceptible to metabolic diseases

due to alteration in gut microbiota (Table 2).

Next, we focused on the specific gut bacteria that might be

responsible for the elevated glucose phenotypes for each mouse

strain and found that several gut bacterial genera (Figures 6B–F;

Supplementary Table 21) and ASV (Supplementary Table 22)

were differentially abundant between mice with high and low

blood glucose, GTT, and insulin levels. In particular, C57BL/6J

mice with lower GTT-AUC had significant enrichment of several

gut bacterial genera including Bifidobacterium, Lactobacillus,

and a number of genera under Muribaculaceae family lineage

compared to those who had higher GTT-AUC (Figures 6B,F;

Supplementary Table 21). Both the differential ASV and genera

abundances reconfirmed the existence of significant host gene-

microbiota interactions on glucose metabolism in the host. For

instance, a higher abundance of Ruminococcaceae UCG-014

was associated with higher insulin concentration in FVB/NJ
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FIGURE 6

Host genetics and gut microbiota interact to modulate host glucose metabolism. (A) Association between host glucose metabolism phenotypes

and α-diversity or first principal component (PC1) of β-diversity measured by mouse strains determined by using Spearman correlation. As

indicated, red represents a positive correlation and blue represents a negative correlation. “***” = adj.p < 0.001, “**” = adj.p < 0.01, “*” = adj.p <

0.05, “.” = adj.p < 0.10. (B) Volcano plot of the di�erential genera abundance between C57BL/6J mice with high (above median) and low (below

median) GTT AUC determined by ANCOM analysis. Structural zero represents the presence of the bacteria in one group and the complete

absence in another group. Relative abundance of the Ruminococcaceae UCG-014 in AJ (C) C57BL/6J (D) and FVB/NJ (E) mice with high and

low plasma insulin levels. Mean abundance was compared using the Wilcoxon rank-sum test. For (C–E), “*” = P < 0.05 and “ns” = not

significant. (F) Di�erential genera abundance between high (above median) and low (below median) blood glucose-related phenotypes

determined by ANCOM analysis. 20 most di�erentially abundant (based on cumulative ANCOM W-value) were selected for the graph. For easier

presentation, ANCOM W values were converted to negative if CLR e�ect size is negative. Red indicates higher genera abundance in the

above-median group and blue bacteria represents higher genera abundance in the below-median group. White represents a non-significant

result obtained from ANCOM analysis. Red and blue represent significant associations determined by ANCOM. Models were adjusted for diet

and sex as confounding factors. The median was calculated for each mouse strain. ANCOM models were FDR (BH-method) corrected for

multiple comparisons and a significant sub-hypothesis test at a level of adj.P < 0.05 were counted toward W value. For (E), “***” = ≥W0.9, “**” =

≥W0.8, “*” = ≥W0.7, and “.” = ≥W0.6.

(Figure 6E) mice but not in A/J mice (Figure 6C) mice. A higher

abundance of Ruminococcaceae UCG-014 in C57BL/6J was also

associated with elevated insulin levels but was not significant

(Figure 6D). Our results indicate that both genetics and gut

microbiota play a role in an individual’s glucose metabolism.

Discussion

Metabolic syndrome is a major global public health problem

(6, 8), which carries a huge health care cost burden (7). It

is well accepted that diet and nutrition play a central role in

the development of metabolic diseases (59). In particular, a

WD pattern contributes to the global epidemic of metabolic

diseases (9, 60). Additionally, host genetics contributes to the

susceptibility to diet-inducedmetabolic diseases (22, 61). Similar

to the host’s genome, gut microbiota, also known as a malleable

third genome (62), plays an important role in metabolic diseases

(23, 63). Therefore, it is important to not only study how

genetics, diet, and gut microbiota affect metabolism and disease

risk but also to take an integrative approach to understand how

interactions among these factors affect an individual’s metabolic

health. Such an approach can further enrich our understanding

of the underlying mechanism for the interindividual variation in

susceptibility to metabolic diseases. Our studies presented here

are among several that have begun to model these interactions

using mice (36, 64).

In this study, we treated four inbred mouse strains (A/J,

C57BL/6J, FVB/NJ, and NOD/ShiLtJ) with four diverse diet
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patterns (Mediterranean diet, Japanese diet, ketogenic diet,

Western diet), and a control mouse chow for 24 weeks starting

from 6 weeks of age (22). We carefully selected four different

inbred strains based on their phenotypic diversity and wider

utilization within biomedical research, and the four diets

were selected based on their effects on metabolic health. We

previously reported that genetics is an important modulator of

the diet effect on metabolic health (22) and here, we focus on

perturbations to the gut microbiota and its interactions with

diet, and host genetics to alter host metabolic health. Though

several studies have evaluated diet and microbial effect on host

metabolism, largely in C57BL/6J mice, the holistic approach

that has been taken in this study using four different mouse

strains and five diets is a major strength of our study. We

report several key findings in this article including: (1) effect

of popular human diets (MeD, KD, and JD) on gut microbiota

in metabolically distinct inbred mouse strains; (2) gut microbial

modulation of diet effect on host body composition and glucose

metabolism; and (3) influence of host genetics on the association

between microbiota and metabolic health. Each of these is

discussed below.

E�ect of popular human diets on gut
microbiota

Analysis of the gut microbial diversity and composition

suggests that diet has a stronger influence on gut microbiota

than host genetics, which is consistent with a previous report

(64). We observed several notable diet effects on microbial

community structure which we briefly described. Consistent

with other studies (65), we observed that the microbial α-

diversity increased in MeD groups compared to both WD and

control mouse chow. MeD contains higher fruits, vegetables,

whole-grain cereals, antioxidants, and polyphenols that have

been hypothesized to support the survival and colonial

expansion of diverse gut bacteria (65). Similarly, we observed

that KD, which contains almost no carbohydrate, decreased

the microbial α-diversity significantly across all mouse strains.

Other studies have also found a reduction of gut microbial α-

diversity of gut microbiota when mice are fed KD (66, 67).

Since the large portion of the gut microbiota predominantly

depends on undigested carbohydrates (68), it is expected that

the very low carbohydrate in KD will decrease the microbial

diversity. Additionally, the KD contains only a few, less diverse

sets of ingredients (22), which also may cause the reduction

of microbial diversity. The effects of a KD may depend on

genetics or disease state as the NOD/ShiLtJ mice did not have

reduced diversity due to KD (also to other diets in the study).

Usually, NOD/ShiLtJ develops diabetes at 10–14 weeks (69).

Our NOD/ShiLtJ mice were 30 weeks old, and their insulin

levels were nearly undetectable, indicating the development of

severe insulin deficiency in these mice. One possibility is that

the microbiota composition in NOD/ShiLtJ is determined by

diabetic phenotype, which is well known to affect microbial

diversity (27). Contrary to our hypothesis that a JD would

dramatically affect α-diversity, the JD and WD-fed mice had

similar α-diversity. Among the four popular diets in this study,

JD was studied the least and we did not find any previous

study that compared classical JD with WD. However, one study

found that the α-diversity of gut microbiota in individuals with

habitual JD with higher JD score is not different than those

who had a westernized low JD score diet (70), which supports

that the JD may result in a microbial diversity similar to WD.

However, JD has been found associated with better metabolic

health compared to WD (22).

Diversity metrics are important, but the underlying

composition of the gut microbiota (i.e., the specific microbes)

also is important. Therefore, to understand the underlying

microbial compositional differences between study diets, we

next determined differential gut bacteria abundance in KD,

JD, and MeD compared to WD. Consistent with the nutrient

diversity, the underlying composition of gut bacteria was

quite different among the study diets. For example, we found

that several gut bacteria abundances including Lactococcus,

Streptococcus, and Parabacteroides were higher in JD compared

to WD, whereas, relative abundance of Odoribacter, Rikenella,

and Staphylococcuswere lower in JD compared toWD. Similarly,

a genus under the familyMuribaculaceae [previously referred to

as S24-7 (71)] was enriched over four-fold in the gut microbiota

of WD compared to JD in all mouse strains. These data suggest

that a closer look at the underlying composition of bacteria in

combination with microbial diversity is needed to completely

understand the health effects of gut microbiota.

Gut microbiota modulate diet e�ect on
host health

Beyond the regulatory effects that both diet and genetics

have on the composition of the microbiota, it is important

to understand the functional differences that altered gut

microbiota have on clinical or disease related traits. Of particular

interest are traits related to metabolic diseases. We highlight

2 specific examples from the current study. Determining the

exact mechanisms for the effect of specific microbiota/diet

interactions is difficult but evolving understanding of the

metabolic consequences of specific gut bacteria does provide

some clues. For example, we found that Akkermansia is

associated with lower fasting blood glucose levels and glucose

tolerance and insulin levels. Akkermansia is an anaerobic,

intestinal mucin-degrading, a gut bacterium (72) uses mucin,

has been found lower in diabetic patients (27) and is being

considered as a potential probiotic for treating metabolic

diseases (73). However, our study reveals that the inverse
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relationship between Akkermansia and diabetic phenotypes

varies among the diets and was only observed significantly

in WD-treated mice suggesting that the health effects of

specific microbes may be found only within the context

of a specific diet pattern. One possible explanation is that

WD induces metabolic inflammation (2) and Akkermansia

and its membrane protein Amuc 1100 reduces inflammation

through Toll-like receptor 2 (74). In addition to direct

host cell signaling (ie- Amuc1100 and TLR2) there has

been considerable interest in the local metabolic products

produced by specific microbes and how they affect health.

We identified a higher abundance of Faecalibaculum in MeD

fed mice is significantly associated with a lower glucose

tolerance which is consistent with literature suggesting that

adherence to MeD reduces the risk of developing type 2

diabetes (75). Faecalibaculum is known to be an efficient

SCFA producer in the rodent gut bacterium (76), and higher

concentrations SCFA in stool improves metabolic health (27).

Our study results indicate that enrichment of some gut bacteria

(e.g., Faecalibaculum) and perhaps their ability to produce

metabolites beneficial to the host might be responsible (at least

partly) for some of the improved health outcomes ascribed

to diet. Several studies have reported that Bifidobacterium

improves metabolic health in humans (27, 77). Unexpectedly,

we found Bifidobacterium to be positively associated with

fasting blood glucose levels. Two important concepts could

account for this surprising result. Bifidobacterium is a genus

composed of 54 different species identified as of January

2017 (78), and not all Bifidobacterium are equal. Many

of these species are animal host-specific, with evidence of

vertical transmission from mothers to offspring (78, 79).

Among different species of the Bifidobacterium, Bifidobacterium

Longum subsp. infantis is the most beneficial to health (80).

Some of the species in Bifidobacterium lineage including

Bifidobacterium bifidum do not have this beneficial effect. With

the 16S rRNA gene amplicon sequencing data, we only can

identify genus level taxonomical information. Bifidobacterium

longum subsp. infantis utilizes human milk oligosaccharides

and is thus predominantly found in breastfed, human infants

(81). Bifidobacterium longum subsp. infantis does not colonize

in mice (82) which confounds Bifidobacterium comparisons

across human and mouse studies. Thus, the positive association

between Bifidobacterium and increased blood glucose levels is

most likely not driven by Bifidobacterium longum subsp. infantis.

Utilization of metagenomics is needed to completely understand

the association between Bifidobacterium and carbohydrate

metabolism in mice.

Influence of host genetics

The diversity and composition of the gut microbiota

depend on several factors including the host’s digestion,

metabolism, and intestinal immunity (83, 84), all of which

are influenced by host genetics (22, 85, 86). Therefore, it

is expected that changes in gut microbiota due to diet

will be different among individuals depending on the host

genetics. The effect of dietary patterns on gut microbial

α-diversity, β-diversity, and composition was heterogeneous

and varied in effect size between mouse strains utilized

in this study. This supports the notion that genetics is

a critical underlying mediator of the diet-microbiome axis.

For example, the NOD/ShiLtJ mice did not have reduced

diversity due to KD (also to other diets in the study).

Usually, NOD/ShiLtJ develops diabetes at 10–14 weeks (69).

Our NOD/ShiLtJ mice were 30 weeks old, and their insulin

levels were nearly undetectable, indicating the development of

severe insulin deficiency in these mice. One possibility is that

the microbiota composition in NOD/ShiLtJ is determined by

diabetic phenotype which is well known to affect microbial

diversity (27). In addition to diversity, we also observed several

differential bacterial abundances that vary depending on host

genetics. For instance, Roseburia abundance in NOD/ShiLtJ

mice was significantly increased in the KD and JD compared

to WD but decreased in the MeD. Our study finding of the

interaction between diet and host genetics on gut microbiota

is in line with a few published reports. For example, a study

(87) reported an interaction between diet and host genetics

on microbiome using two inbred mice and two experimental

diets. Similarly, another study has reported that different

mouse strains have a different distribution of gut microbiota

and enterotypes in C57BL/6J, FVB/NJ, BALB/cJ, NOD/ShiLtJ,

and an outbred Swiss mouse strain (88). A recent study

(89) showed that the alteration of gut microbial diversity

and composition due to fructose consumption is different

among C57BL/6J, DBA/2J, and FVB/NJ mice strains, indicating

diet ∗ genetic interaction on gut microbiota similar to the

current study.

Mice and humans share a similar genetic architecture

which makes mice an efficient model for genetic research.

The ability to control environmental exposures including diet

makes it a widely used animal model for studying human

health and diseases (90). Therefore, to better understand the

influence of genetics on metabolic health, we determined

the interactions between mouse strain and gut microbiota

on host body composition and carbohydrate metabolism.

As mentioned earlier, different mouse strains have different

metabolic profiles (22, 85, 91). Therefore, it is expected

that host metabolic response to the gut microbiota and

microbial metabolites will be different among the mouse

strains because of their differences in genetic background.

In our study, we found significant genetics ∗ microbiota

interaction on host body composition and metabolic health.

Consistent with our findings, a recent study (89) determined

that the correlations between host fructose-responsive genes

expression, adiposity and gut microbial composition are
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modulated by host genetics. Additionally, they also found that

gut microbiota in C57BL/6J is more likely to be correlated

with adiposity compared to DBA/2J and FVB/NJ mice.

We also found that the C57BL/6J mice have the strongest

correlation between gut microbiota and body composition.

We did not find a set of bacteria consistently associated

with body composition and metabolic phenotypes across all

study diets and mouse strains. Similar to ours, a recent

study (92) also did not find a set of common gut bacteria

is associated with cancer immune therapy across 5 different

human cohorts. Our findings indicate the importance of

considering both diet and genetics for designing probiotics for

precision therapeutics.

One limitation is that this study did not determine sex-

specific effects due to insufficient mouse number in the female

group for some diet-mouse strain arms. Therefore, our study

result was presented here as a combined effect on both

sexes upon adjusting for sex as a covariate in the statistical

model. A future study with adequate power is needed to

determine the interactions between phenotype, mouse strain,

diet, and biological sex. We only collected stool samples at

the end of the study to measure microbiota. Collecting more

stool samples at multiple time points including a baseline

would help us better understand the subtle and cumulative

effect of diet on microbial composition and the dynamic

association between microbiota and metabolic phenotype over

time. Additionally, we did not perform a functional validation

study with a fecal microbiota transplant (FMT) in this study,

which would confirm the causality. More research with larger

sample sizes is needed to determine the sex dimorphic nature

of the associations between diet, microbiota, and genetics on

metabolic health.

In conclusion, the present study demonstrates diverse diet

patterns affect gut microbial community structure and that

these can be influenced by host genetics. The interactions of

diet and genetics likely contribute to the modulatory effects

of diet plays in metabolic health. Importantly, depending on

the composition of the gut microbiota and host genetics,

the same diet can have dramatically different metabolic

outcomes which is a consideration as we move toward

“precision nutrition”.
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