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Abstract: The simple and highly sensitive measurement of the refractive index (RI) of liquids is
critical for designing the optical instruments and important in biochemical sensing applications.
Intensity modulation-based polymer optical fiber (POF) RI sensors have a lot of advantages including
low cost, easy fabrication and operation, good flexibility, and working in the visible wavelength. In
this review, recent developments of the intensity modulation POF-based RI sensors are summarized.
The materials of the POF and the working principle of intensity modulation are introduced briefly.
Moreover, the RI sensing performance of POF sensors with different structures including tapered, bent,
and side-polished structures, among others, are presented in detail. Finally, the sensing performance
for different structures of POF-based RI sensors are compared and discussed.

Keywords: polymer optical fiber; refractive index sensing; intensity modulation; different structures

1. Introduction

The refractive index (RI) is an important optical parameter of material. Some physical
quantities such as concentration, temperature, and pressure, etc., can be reflected by the
change of RI [1]. Therefore, RI measurement has great value of applications and is widely
used in disease diagnosis [2], environmental monitoring [3], food safety [4], and biochemical
sensing fields [5]. Optical fiber sensing technology employs the optical fiber to detect the
optical information changes caused by the interaction between the transmitted light and the
analytes. This technique first appeared in the 1960s, and with the development of optical
fiber technology and optical fiber communication technology, the optical fiber sensing
technology has gradually developed in recent decades. Compared with the electrical
sensors, optical fiber sensors have the advantages of electromagnetic immunity, chemical
corrosion resistance, electrical isolation, and are capable of distributed sensing and remote
sensing, which makes them suitable for employing in the occasions when electrical sensors
cannot be used [6].

To date, many different kinds of optical fiber-based RI sensors have been proposed. For
example, the fiber grating-based sensors including the fiber Bragg gratings [7–9], the long-
period fiber gratings [10–12], and the titled fiber Bragg gratings [13–15] were employed for
RI sensing; different types of fiber interferometers, such as the Mach–Zehnder interferome-
ter [16–18], the Fabry–Pérot interferometer [19], the Michelson interferometer [20], and the
Sagnac interferometer [21,22], were used for RI measurement; many kinds of optical fiber-
based surface plasmon resonance sensors were proposed for RI sensing [23–25]. Besides,
some 2D materials like graphene [26] and molybdenum disulfide (MoS2) [27] were also
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integrated on the fiber for RI measurement. Most of the reported optical fiber RI sensors
are based on the glass optical fibers; however, after the structural modification, they will
become very fragile, which makes them unsuitable for RI measurement in some special
situations. Compared with the glass optical fibers, the polymer optical fibers (POFs) can
solve these issues. This kind of fiber is made of polymer materials, which have an ease of
fabrication and operation, low cost, high flexibility, softness, and light weight [28,29]. The
POF-based sensors have the advantages of high strain limit, ease of operating, and high
repeatability, and can be used in harsh environments and bending situations [30,31]. In ad-
dition, polymer materials are more easily doped with organic materials [32] and compatible
with biological materials, which gives POF-based sensors great potential in the biological
sensing fields [33]. To date, the POF-based sensors have many applications including
temperature detection [34], liquid level detection [35,36], displacement detection [37], PH
detection [38], strain detection [39], bending measurement [40], environment detection [41],
and so on.

According to the usage of optical fibers, optical fiber sensors can be classified into
extrinsic or intrinsic sensors. For the extrinsic fiber sensor, the fiber is just acts as the
input and output parts of the optical sensor, and does not participate in the modulation
of the measured signals [42]. The intrinsic fiber sensors directly use optical fiber as the
sensing material and the transmission medium, which carries the measured optical signal
modulated in the optical fiber. The POF-based RI sensors reviewed in this paper belong to
the intrinsic fiber sensors. On the other hand, according to the demodulation methods, the
optical fiber sensors can be classified into intensity modulation, wavelength modulation,
phase modulation, and polarization modulation. At present, POF-based RI sensors are
mainly based on the wavelength modulation and intensity modulation methods. The
POF-based SPR sensors [43–46], the POF grating-based RI sensors [47–50], and the POF
interferometer-based RI sensors [51,52] are often working on the wavelength modulation
mode. However, these types of RI sensors usually require a complicated fabrication pro-
cesses, which is costly and time consuming, and the wavelength modulation method also
needs expensive demodulation devices, which is also costly. Although the measurement
accuracy of this type of sensor is high, the cost of its sensor systems is also high, which is
not conducive to commercial applications. Compared with the wavelength modulation,
the intensity modulation method does not need the complex fabrication processing and
expensive equipment; usually, the cheap LED and photodetectors can be used as the light
source and detector [53] for the sensor system. This type of sensor is very easy to implement
and goes very well with multimode fiber, which could provide a low-cost solution for
RI measurement.

To our knowledge, there are only a few reviews that specifically address the optical
fiber-based RI sensors. Recently, Xu et al. [54] introduced a wide range of most representa-
tive plasmonic and photonic sensors and placed them into a single map. Patil et al. [55]
reviewed the optical fiber-based RI sensors and tried to make a comparative study of
various existing devices and systems in this field. All of these existing reviews, however,
are completely lacking information about intensity-modulated POF-based RI sensors. In
this work, a brief review of the intensity-modulated POF-based RI sensors is presented.
This paper does not aim to present a thorough review of all POF-based RI sensors, but
rather to focus on more simple and low-cost interrogation approaches based on intensity
variation measurement techniques. The background of RI measurement and the application
of POF to RI measurement are briefly discussed in the first section of this paper. In the
second section, the polymer fiber technology is summarized, and the working principle
of the intensity-modulated POF-based RI sensors is introduced in the third section. In
the fourth section, we introduce a variety of intensity-modulated POF-based RI sensors.
Finally, a summary and outlook are provided.



Sensors 2022, 22, 81 3 of 20

2. Polymer Optical Fibers

The first POF was developed by DuPont in 1966, which appeared almost simultane-
ously with glass optical fiber [56]. However, compared with glass optical fibers, the POFs
received much less attention. The POFs are not suitable for long-distance communication
due to their high transmission loss. However, the advantages of POFs are that they are easy
to handle, have good flexibility, and have a low loss window in the visible wavelength,
which make them an ideal choice for short-distance communication and sensing applica-
tions. After many years of research and development, POFs made of different materials
and different structures have been developed to improve their properties. The following
sections mainly review the materials and structures of POFs.

2.1. Materials of POFs

A variety of materials have been used to fabricate POFs, including Polymethyl
Methacrylate (PMMA) [57], polystyrene (PS) [58], polydimethylsiloxane (PDMS) [59],
cycloolefin polymer (COC) [60], polycarbonate (PC) [61], perfluorinated polymer [62],
silicone [63], and cycloolefin copolymer [64]. Different materials of POFs have differ-
ent characteristics and applications. For example, PMMA has the low loss transmission
characteristic in the visible region, which is the most commonly used commercial POF
material. Figure 1 shows the typical transmission loss spectra of PMMA-based POFs from
ESKATM [65]. Compared with the PMMA-based POFs, PC-based POFs have better heat
resistance, which make them suitable to be used in a high-temperature environment. The
perfluorinated polymer fibers (CYTOP) possess the feature of low material dispersion,
which gives them a larger bandwidth.

Figure 1. The typical transmission loss spectra of PMMA-based POFs from ESKATM [65].

2.2. Structures of POFs

The most common and the first development structure of a POF is the step-index
(SI) multimode POF. The schematic illustration of this structure is shown in Figure 2a.
It consists of two layers: the core with a large diameter and the cladding with a small
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thickness. The common core material of this type of POF is PMMA with a larger RI, and
the common cladding material of this type of POF is a fluorinated polymer with a lower
RI [66]. This type of fiber can transmit a large number of modes, and it has been used in the
sensing fields for a long time with the intensity demodulation method generally. Another
common structure is the graded-index (GI) multimode POF, as shown in Figure 2b, the
core material of this type of POF is often perfluorinated polymer with a graded RI [67].
Compared with the PMMA-based POFs, the GI perfluorinated polymer-based POFs have
the low loss transmission characteristic at the communication wavelengths of 850 nm and
1300 nm. The diagram of SI single-mode POF is shown in Figure 2c [68]. This type of POF
can propagate only one mode at a fixed wavelength, it has the significance applications
in the development of POF-based gratings. Besides, the microstructured POFs including
the photonics crystal fiber (PCF) [69] and the multicore fiber [70] have also been developed
and proposed for sensing applications.

Figure 2. The common structures of POFs.

3. Principle for Intensity-Modulated RI Sensing

For intensity modulation optical fiber-based RI sensors, the change of RI is measured
by detecting the propagation loss of light, which is induced by refraction loss, evanescent
field, optical absorption, etc. At the effect of total internal reflection, light is bounded inside
the fiber core, and the critical angle θc at which total reflection occurs can be expressed as,

θc = sin−1(ncl/nco) (1)

where nco and ncl are the RIs of fiber core and cladding, respectively. For light propagated
in fiber in the form of total internal reflection, some of the light power will go into the
medium surrounding the fiber core, which is known as evanescent wave (EW). The energy
of the EW decays exponentially at the direction perpendicular to the reflection interface.
The penetration depth dp of EW can be expressed as,

dp =
λ

2π
√

n2
cosin2θ − n2

cl

(2)

where λ is the wavelength of light in vacuum, and θ is the incident angle at the interface of
core and cladding. In order to increase the sensitivity of RI sensor, the POF structure should
be modified. Tapering, bending, and side polishing are the common processing method.
For the tapered POF, the incident angle θ, and the cladding thickness will be decreased,
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and the decreased incident angle will lead to an increase of dp, which could make the
EW extend outside the cladding and react with the surrounding medium, and, hence, the
output power will be changed with the RI variations of surrounding medium. For the
bending POF structure, its principle is similar to that of tapered fiber. Besides, the fiber
modes will shift to the outward direction, increasing the penetration depth as well. When
the fiber cladding is removed, for example with the side-polished POF, the surrounding
medium acts as the fiber cladding in the polished region; in this case, as the RI increases,
the fiber will support less modes propagating in the fiber, and on the other hand, the
penetration depth of EW will be also increased. Therefore, the RI changes of surrounding
medium for these fiber structures can be detected by monitoring the output intensity.

4. Different Types of Intensity Modulation POF-Based RI Sensors

As mentioned above, the evanescent field intensity can be improved by modifying the
fiber structure. The following presents the RI sensors based on POFs with different structures.

4.1. Tapered POF-Based RI Sensors

The tapered structure is shown in Figure 3. It consists of a taper-decreasing region
and a taper-increasing region. The transmission characteristics of light can be changed
by this structure of fiber. In the decreased tapered region, the coupling and conversion of
propagation modes of light are generated, and the total reflection condition of transmitted
light is easily destroyed when the RI of surrounding environment changes, which will
introduce the propagation loss. In addition, the tapering fiber diameter will cause a
continuous change in the propagation angle, which will not only increase the number of
total reflections in the fiber, but also bring more evanescent field power [71].

Figure 3. The schematic diagram of tapered POF.

The tapered POF can be fabricated by the heat-drawing method [72–74] or the chemical
etching method [75,76]. Different heating sources including the furnace [72], the solder
gun [52], and the flame [73] were used to heat the POF. Ujihara et al. [74] fabricated a
tapered GI perfluorinated POF by a high-power light propagating inside the fiber, an
approximately 4 mm long tapered region was obtained, and a RI sensitivity of 107 dB/RIU
was achieved by using this fiber probe. In 2008, a tapered graded-index POF was fabricated
and proposed for RI measurement by J. Arrue et al. [77]. They employed a ray-tracing
method to analyze the behavior of light transmitted in the tapered GI POF and investigated
the influence of the narrowing ratio on the RI sensitivity and RI measurable range for the
OM-Giga/POF and the Lucina fibers as shown in Figure 4. They found that the narrowing
ratio does not need to be very small for a large range of RIs to be measurable, but the
maximum RI that can be measured is smaller than the case of the OM-Giga/Giga POF
fibers. For the same narrowing ratio, the range of RIs that can be measured with a tapered
Lucina POF is greater than that with a GI glass fiber.

Masayuki et al. [78] proposed a taper-type POF (with fiber core of PS material and
cladding of PC material) sensor probe for ethanol solution measurement. The results
showed that the proposed sensor can measure a low concentration of ethanol solution
below 5 v/v%, whose sensitivity was about three times as that without the tapered structure.
Besides, the sensor was temperature independent, and did not receive any influence from
water, which was suitable for a real application. Yang et al. [71] optimized the tapered POF
for the sensing of ethanol concentration. The ray-tracing method was used for theoretical
investigation of different parameters of sensor, i.e., V-number matching, and evanescent
wave penetration depth in this study. The theoretical analysis and experimental results were
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used to optimize the taper ratio and taper length for the achievement of high evanescent
wave penetration depth and high sensitivity. The analysis indicated that the sensitivity
of tapered fiber sensor can be improved by decreasing the taper ratio with simultaneous
increase in the taper length. The highest sensitivity of 1.527 mV/% was achieved from the
tapered fiber with a taper ratio of 0.27 and taper length of 8 cm. The proposed parametric
optimized tapered fiber sensor can detect the change in concentration of C2H5OH as small
as 6.55 × 10−3.

Figure 4. The photos of the tapered POFs (a), and the transmission behaviors of light for the OM-
Giga/POF and the Lucina fibers with a different narrowing ratio in liquid with different RIs (b) [77].

Rahman et al. [79] proposed and demonstrated a simple tapered POF sensor for
continuous monitoring of salinity based on different concentration of sodium chloride
(NaCl) in deionized water. The results showed that as the solution concentration varied
from 0% to 12%, and the output voltage of the sensor increased linearly from 0.109 mV to
1.142 mV, with a sensitivity of 0.0024 mV/% and a linearity of more than 98%. Similar to this
work, Feng et al. [73] proposed a RI sensor based on a taper POF. Three wavelengths (532,
633, and 780 nm) were used to evaluate the sensitivity of the sensor, and results indicated
that 633 nm was the best sensing wavelength due to the increased levels of sensitivity
achieved at this wavelength. Besides, a double-tapered fiber structure was designed to
enhance the sensitivity of sensor as shown in Figure 5, and a sensitivity of 950 µW/RIU at
633 nm was obtained when the launched power was 1 mW.

Figure 5. The schematic diagram of the double-tapered POF.

Some nanomaterials, such as carbon nanotubes [80], graphene [81], and ZnO nanos-
tructures [82], were coated on the tapered POF to enhance the RI sensing performance.
Batumalay et al. [80] proposed a simple tapered POF coated with a single-wall, carbon
nanotube, polyethylene oxide composite for the measurement of the uric acid concentration.
The results showed that an improved sensitivity can be obtained from this sensor, as the
solution concentration of the uric acid varied from 0 to 500 ppm, and the output voltage
of the sensor had a linear response with a sensitivity of 0.0023 mV/% when the waist
diameter was 0.45 mm and tapering length was 10 mm. Later, a graphene-coated tapered
POF was proposed for uric acid detection by the same group [81]. The results showed that
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as the solution concentration of the uric acid varied from 0 ppm to 500 ppm, the output
voltage of the sensor increased linearly with a sensitivity of 0.0021 mV/% and a linearity of
more than 98.88%. Similar to these works, they employed a tapered POF coated with ZnO
nanostructures for the measurement of different concentrations of uric acid in deionized
water and the changes in relative humidity (RH) [82]. The results showed that as the
concentration of the uric acid varied from 0 ppm to 500 ppm, and the output voltage of
the sensor using tapered POF with seeded ZnO nanostructures increased linearly with a
higher sensitivity of 0.0025 mV/ppm compared to 0.0009 mV/ppm for unseeded tapered
POF coated with ZnO.

4.2. Bending POF-Based RI Sensors

Similar with the tapering structure, bending the fiber can also increase the evanes-
cent field power, which is mainly caused by the changes of RI profile and mode field
distribution [83]. The bending can be classified into micro-bending and macro-bending.
Micro-bending fiber usually means that the curvature radius of the fiber is comparable
with the diameter of the fiber, as shown in Figure 6a. While for the macro-bending fiber, the
curvature radius is usually much larger than the fiber diameter as shown in Figure 6b [84].

Figure 6. The schematic illustration of the micro-bending (a) and macro-bending POFs (b).

Thomas et al. [85] proposed a permanently micro-bent bare POF for detecting chemical
species as shown in Figure 7. The results showed that the output intensity is linearly
dependent on the logarithm of concentration of the absorbing species surrounding the
bent portion of the fiber, and the sensor can even detect very low concentrations in the
order of nanomoles per liter with a dynamic range of greater than six orders of magnitude.
George et al. [86] employed the similar fiber structure to detect the continuously varying
RI of chlorinated water. The results showed that the evaporation of chlorine from water
and the change in RI followed a first-order exponential decay function of time.

Figure 7. The schematic diagram of the permanent micro-bending POF.

The macro-bending structure was often combined with the taper or side-polished
structure to increase the RI sensitivity of sensor. For example, Teng et al. [87] proposed
a macro-bending tapered POF for the RI sensing as shown in Figure 8. The RI sensing
performance for the probes with and without cladding was investigated. By changing the
taper waist and curvature radius, the sensing performance of the probe was optimized.
The highest sensitivity of the probe with cladding reached 937%/RIU in the RI range of
1.33–1.41, for the probe without cladding, the RI sensing range expanded to 1.33–1.45,
and the sensitivity was about 800%/RIU. The temperature dependence of the probe with
cladding was also investigated by the same group [88]. Wandermur et al. [89] manufactured
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a U-shaped probe with a specially developed device. The RI sensing performances for
the probes with different structure parameters were compared. After functionalizing with
antibody anti-E. coli serotype O55, the probe was tested with bacterial concentrations of
104, 106, and 108 colony-forming units/mL (CFU/mL), and the decaying parameters of
3.0 × 10−3, 3.6 × 10−3, and 8.0 × 10−3 were obtained, respectively.

Figure 8. The schematic illustration of the macro-bending tapered POF probes with (a) and without
(b) cladding, and the RI sensing performance for the probes with (c) and without (d) cladding [87].

Jing et al. [90] proposed a side-polished, macro-bending POF for RI sensing as shown
in Figure 9. By changing the curvature radius, the polished depth, and the polished position
(angle), the RI sensing performance of the probe was optimized. They obtained the maxi-
mum RI sensitivity of 154 dB/RIU in the RI range of 1.33–1.44 when the curvature radius,
the polished depth, and the polished position were 5 mm, 500 µm, and 60◦, respectively.
The influence of the temperature was also tested by the same group [91]. Wang et al. [92]
demonstrated a U-shaped, double-sided, polished POF for RI sensing. They optimized the
processing parameters experimentally, and a sensitivity of 1541%/RIU was obtained with
a resolution of 5.35 × 10−4 in the scope of 1.33–1.39. Besides, Zhong et al. [93] explored
the temperature-independent operation of a POF-based evanescent wave sensor immersed
in distilled water. They observed that the light transmission modes and sensitivity of the
sensor were affected by changes in the surface morphology, diameter, and RI of the sensing
region caused by changes in temperature. The transmitted light intensity of the sensor was
maintained at a constant level after five cycles of the heating–cooling treatment, after which
the fibers exhibited a smooth surface, low RI, and large fiber diameter.
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Figure 9. The schematic diagram of the side-polished macro-bending POF (a), and the effect of
polished depth on the RI sensing performance (b) [90].

In addition, due to the large evanescent field of micro-fiber, the macro-bending micro-
POFs were proposed for RI sensing [94–97]. Jing et al. [94,95] fabricated a micro-POF
directly from the commercial POF and proposed a RI sensor based on a macro-bending
micro-POF as shown in Figure 10. The macro-bending structure of the m-POFs was
simulated and optimized by using the ray-tracing method. A linear RI sensing response
was obtained with the sensitivity of 500%/RIU when the ratio of the radius of curvature
of the macro-bending fiber to the radius of the fiber was 20. Irawati et al. [96,97] drew the
micro-POF from melting PMMA and fabricated a micro-fiber loop resonator; after coating
a layer of ZnO nanostructure, it was used for measuring the changes of relative humidity,
with a variation from 20% to 80%. The experiment results showed that the output power of
the sensor decreased linearly from −9.57 dBm to −20.19 dBm with a maximum sensitivity,
linearity, and resolution of 0.1746 dBm/%, 94%, and 6.17%, respectively.

Figure 10. The schematic diagram of the directly drawing process of micro-POF from commercial
POF (a), and the photo of the micro-POF (b) [94].

4.3. Polished POF-Based RI Sensors

The side-polished fiber removes parts of the fiber cladding or the core to increase the
evanescent field power to interact with the surrounding medium. Because the shape of its
cross section is similar to the English capital letter ”D”, it is also called the D-shaped optical
fiber, as shown in Figure 11.
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Figure 11. The schematic diagram of the side-polished POF.

Banerjee et al. [98] described the experimental results on RI sensing by a low-cost
plastic-cladded POF and a silica fiber with a plastic coating that forms a protective layer on
the silica cladding. The cladding of these two fibers were stripped to different thickness to
make the fibers sensitive to RI of the environment. The results showed that the sensitivity
of the sensor to RI change was nonlinear and was dependent on cladding thickness, and the
sensitivity would reach a maximum at an intermediate thickness value. L. Bilro et al. [99]
presented a cure monitoring system based on a side-polished interface on POF, and they
also presented the modeling of a side-polished POF as a sensor for RI and curvature
measurement by using a geometric optic approach [100]. The model considered different
details such as the geometric description of the sensor, the intensity profile of the emitter,
and the possibility of a multireflection for a light ray at the sensitive area. Teng et al. [101]
investigated the RI sensing performances of the straight and macro-bending side-polished
POFs. Results showed that the macro-bending probe had an enhanced RI sensing per-
formance, and when the polished depth was 400 µm, the polished length was 10 mm
and the curvature radius was 2 mm, and a sensitivity of 864%/RIU and a resolution of
3.3 × 10−4/RIU with a standard deviation of 0.16 were obtained.

Feng et al. [102] made a RI sensor based on a D-shaped POF, and different depths
of the D-shaped groove and a different curvature radius of the fiber probe were used
to research the influence for the sensor sensitivity. Experiment results showed that the
proposed sensor had a good linear response for the measured RI ranging from 1.333 to 1.455,
and the highest sensitivity of the sensor was obtained when the depth of the D-shaped fiber
was 500 µm. They also simulated the energy distribution of the D-type structure by using
the Finite Element Method [103], and the experiment results showed that the normalized
transmittance intensity decreased 13.4% with the RI increasing from 1.333 to 1.455 when
the depth and length were 500 µm and 2 cm, respectively, with an excurvature radius of
5 cm and optical source wavelength of 652 nm.

In addition, Sequeira et al. [104] reported the optimization of the length for a D-shaped
POF sensor for RI sensing from a numerical and experimental point of view. Results
showed that, in the RI range of 1.33–1.39, the sensitivity and the resolution of the sensor
were strongly dependent on the sensing region length, and the highest sensitivity resolution
of 6.48 × 10−3 RIU was obtained with a 6 cm sensing length. While in the RI range of
1.41–1.47, the length of the sensing region was not a critical aspect to obtain the best
resolution. Besides, Zhong et al. [105] investigated the mechanism of the effect of heat
treatments on physical and optical properties of D-shape POF-based EW sensors.

4.4. Grating Structure-Based RI Sensors

The fiber gratings usually refer to the fiber Bragg gratings (FBG), the long-period
gratings (LPG), and the titled Bragg gratings, which are fabricated on the single-mode silica
fibers [106] or the single-mode polymer fibers [48]. They often work on the wavelength
modulation method. While in this review, the grating structures introduced were fabricated
on the multimode POF by a simple mechanical die press print method; due to the coupling
of the core modes and cladding modes that occurs at all wavelengths, this type of fiber
sensors work on the intensity modulation mode.

In 2017, Teng et al. [107] proposed a POF with a multi-notched structure as a long-
period grating for RI sensing. The structure was simply made on the surface of the fiber by
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pressing a thread rod against the POF as shown in Figure 12. The RI sensing performances
for straight and macro-bending POFs with this structure were studied. Results showed
that the POF probes with straight multi-notched structures were not sensitive enough for
RI measurement. After bending the multi-notched structure into U-shaped probes, the RI
sensing performance was improved markedly. The highest sensitivity of 1130%/RIU with
a resolution of 8.44 × 10−4 RIU in the RI range of 1.333–1.410 was obtained.

In 2019, Xue et al. [108] fabricated the LPGs on the POFs with different diameters and
investigated their RI sensing performances. The results showed that a higher RI sensitivity
can be obtained when the LPG structure was imprinted on a thin POF (with a diameter of
0.25 mm), and the optimum sensitivity of 2815%/RIU with a resolution of 1.39 × 10−4 RIU
was achieved in the RI range of 1.33–1.45 when the grating period, the groove depth,
and the tilted angle were 100 µm, 65 µm, and 20

◦
, respectively. Later, the same group

proposed a D-shaped POF assisted by an LPG structure for RI sensing [109], as shown
in Figure 13. The results showed that the LPG structure could achieve an enhanced RI
sensitivity. When this structure was fabricated on POF with a thin diameter of 0.25 mm,
the high sensitivities of 2676 %/RIU and 9786 %/RIU could be obtained in the RI ranges of
1.33–1.40 and 1.40–1.45, respectively.

In addition, a screw-shaped POF was fabricated through a heat pressing and twisting
method and proposed for RI sensing by this group, as shown in Figure 14 [110]. This
structure can lead to periodic coupling between core modes and cladding modes, which is
similar to the working principle of LPG. The results showed that when the screw-shaped
POF was fabricated by twisting a thin flat-shaped POF with a thickness of 600 µm and with
a screw pitch of 2 mm, the highest sensitivities of 2277%/RIU, 4318%/RIU, and 4399%/RIU
with the resolutions of 3.10 × 10−4 RIU, 1.63 × 10−4 RIU, and 1.60 × 10−4 RIU were
obtained in the RI ranges of 1.33–1.37, 1.37–1.40, and 1.41–1.45, respectively.

Figure 12. The schematic diagrams of the fabrication process of multi-notched structure on POF, and
the structure of multi-notched POF [107].
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Figure 13. The schemes diagram of fabrication pross of LPG structure on POF (a), and (b) is the
comparison of the experiment data for the D-shape POF probe with and without LPG structure [108].

Figure 14. The schematic diagram of the screw-shaped POF [110].

4.5. Others

Besides the above works, David et al. [111] proposed a self-referencing, fiber optic
intensity sensor based on bending losses of a partially polished POF coupler, as shown in
Figure 15. The coupling ratio (K) of the proposed sensor depended on the external liquid in
which the sensor was immersed, which can be expressed as follows [111],

T =
4cosθ

(
cos2θ − cos2θc

)1/2[
cosθ + (cos2θ − cos2θc)

1/2
]2 (3)

where θ is the angle of incidence for a certain beam with the normal to the core surface
and θc is the critical angle. For θ ≤ θc, the beam will be refracted from the fiber core,
increasing the power losses. When the sensor was immersed into different liquids, these
losses changed because of the different RIs surrounding the coupler, which could change
the coupling ratio K of the sensor. The experimental results showed that the proposed
sensor could distinguish and detect the presence of different liquids of the most usual
liquids found in industry, like water and oil by the changes of K. Additionally, the coupling
ratio K of the sensor had the increments of ∆K = 0.018 (from air to water), ∆K = 0.060
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(from air to oil), and ∆K = 0.042 (from water to oil). Measurements also showed a low
temperature dependence of K, below 1% from its nominal value.

Figure 15. The schematic diagram of the side-polished POF coupler (a), and the variations of K for
the probe with different bending radius in different liquids (b) [111].

Teng et al. [112] also proposed a similar coupling structure for RI sensing by employing
two twisted tapered POFs. The tapered POFs were fabricated by a heating and drawing
method and were twisted around each other to form a coupled structure. The sensor
consisted of two input ports, a twisted region, and two output ports, as shown in Figure 16.
The tapered POF could make the light couple from one POF to the other easily. When
the RI of the external medium of the coupled region changes, the mode profile of the
tapered POFs will be altered, leading to the changes in the coupling property. Therefore,
the variations of the external medium RIs could be measured by monitoring the changes
of the coupling ratio. Experiment results showed that when the active fiber diameter was
100 µm, the passive fiber diameter was 200 µm, and the twisted region length was 18 mm,
the sensitivity reached 1700%/RIU and −3496%/RIU for the RI ranges of 1.37–1.41 and
1.41–1.44, respectively.

Figure 16. The schematic diagram of the twisted tapered POFs (a) and the RI sensing performances
for the sensors with different twisted region length (b) [112].

The side-hole structure fabricated on the POF was also investigated and proposed
for RI sensing [113–117], as shown in Figure 17. Xin et al. [113] drilled a micro-hole by
using a miniature numerical control machine for RI sensing in 2013. When the measured
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RI in the hole changes, the transmission behavior of the light will be changed accordingly.
The experiment results showed that the sensor had a good linear relationship between the
transmission and RI over a large operating range from 1.335 to 1.475, and a sensitivity of
36,071.43 mV/RIU (RI unit) was archived. The relationship between the transmission and
the RI of the hole depended on the micro-hole’s diameter and depth. Later, they fabricated
the micro-hole on the POF by using the femtosecond laser [114]. The experimental results
showed that, in the RI operation range of 1.333–1.473, the sensor had a good linear loss
(dB) response to the liquid RI in the micro-holes and a high RI sensitivity of 18 dB/RIU
approximately. Shin et al. [116,117] proposed a RI senser probe with the similar structure,
and a simple ray optics model was used to analyze the sensor transmittance with different
liquids, and the difference between experimental and calculated results proved to be less
than 6%.

Figure 17. The schematic diagram of the side-hole structure POFs.

In addition, Hu et al. [118] coated a layer of gold film on the POF with narrow
grooves structure to form the surface plasmon resonance sensor as shown in Figure 18. The
proposed sensor was characterized using the intensity interrogation, where the change in
transmission power was induced by light-filed interaction. Narrow groove structures with
lengths of 5 mm were fabricated using an ultraviolet laser, and a gold layer was sputtered
to the surface of the whole fiber. The experiment results showed that the sensor had a
liner RI sensing response between 1.340 and 1.356. The highest sensitivity could reach
12.5 dB/RIU (126 µW/RIU) when the machining pitch was 400 µm.

Figure 18. The schematic diagram of the narrow grooves structure, POF-based surface plasmon
resonance sensor [118].

5. Comparison of Intensity Modulation POF-Based RI Sensors

Table 1 shows the review of sensing performances, in terms of RI sensing range
sensitivity, and resolution for various structures of POF-based RI sensors. After comparing
the results from Table 1, some useful considerations can be concluded. The intensity
modulation POF-based RI sensors can measure the RI in the range from 1.333 (water) to
the RI closing to fiber core (or cladding). Although the units of sensitivity given in Table 1
are different, it can be also derived that the RI sensitivities are different for POFs with
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different structures, and the sensitivity of this type of sensor can satisfy the RI measurement
in general applications. It can be also seen that the POF probe with an LPG structure
possesses a higher sensitivity. On the other hand, the limitation of this type of sensor
should be pointed; that is, their measurement accuracy is not very high, because the
intensity modulation method is easily affected by light source fluctuation, detector noise,
and environmental disturbance. So, in order to improve their performance, the more stable
light sources and detectors are recommended, and it is necessary to choose the appropriate
devices to build the sensor system according to the requirements of the applications.

Table 1. Review of various structures of POF-based RI sensors.

Sensor Structure RI
Measurement Range Sensitivity Detection Limit or

the Resolution Ref.

Tapered POF 10–50 ethanol
concentration 1.527 mV/% 6.55 × 10−3 [71]

Double-tapered POF 1.33–1.41 950 µW/RIU - [73]

Tapered POF 1.333–1.410 107 dB/RIU - [75]

Tapered POF 0–12% NaCl
solution concentration 0.0024 mV/% - [79]

Tapered POF coated with
carbon nanotubes 0–500 ppm uric acid 0.0023 mV/% 6.95 ppm [80]

Macro-bending, tapered POF 1.33–1.41 937%/RIU 2.22 × 10−3 [87]

Side-polished,
macro-bending POF 1.33–1.44 154 dB/RIU - [90]

U-shaped, double-sided,
polished POF 1.33–1.39 1541%/RIU 5.35 × 10−4 [92]

Macro-bending micro-POF 1.33–1.45 500%/RIU - [94]

Side-polished POF 1.33–1.48 - - [100]

Macro-bending, side-polished POF 1.33–1.44 864%/RIU 3.3 × 10−4 [101]

D-shaped POF 1.333–1.455 - - [102]

U-shaped, multi-notched POF 1.333–1.410 1130%/RIU 8.44 × 10−4 [107]

Thin POF with LPG structure 1.33–1.45 2815%/RIU 1.39 × 10−4 [108]

D-shaped POF with LPG structure 1.33–1.45
2676 %/RIU (1.33–1.40)
9786 %/RIU (1.40–1.45)
2277%/RIU (1.33–1.37)

4.17 × 10−5

1.14 × 10−5

3.10 × 10−4
[109]

Screw-shaped POF 1.33–1.45 4318%/RIU (1.37–1.40)
4399%/RIU (1.41–1.45)

1.63 × 10−4

1.60 × 10−4 [110]

Twisted tapered POFs 1.37–1.44 1700%/RIU (1.37–1.41)
−3496%/RIU (1.41–1.44) - [112]

Side-hole structure POF 1.335–1.475 36,071.43 mV/RIU - [113]

Side-hole structure POF 1.333–1.473 18 dB/RIU - [114]

Narrow groove POF coated with
gold film 1.340–1.356 12.5 dB/RIU

(126 µW/RIU) - [118]

6. Conclusions

In this review, the POF-based RI sensors working in intensity modulation were sum-
marized. The properties of POF were introduced briefly, and a general description of the
operation principles of the evanescent wave was presented as well. Several configurations
of intensity modulation POF-based RI sensors were discussed, including the tapered POF,
the bending POF, the side-polished POF, the side-hole POF, the POF with LPF structure,
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and the coupling structure POF. Different POF structure-based RI sensors show different
sensing performances, and these kinds of sensors can achieve the satisfactory sensing range
and sensitivity by optimizing the structure parameters. The relative simplicity, ease of
implementation, and low cost are their main advantages, and by employing the low-cost
light source and detector, it is easy to realize the intensity modulation fiber RI sensing
system. However, most of the measured RI involved in this review refers to the bulk RI,
which cannot meet the requirements in practical applications. To measure the RI changes
of a specific substance, the additional bio-function modifications should be implemented
on the fiber, which will have a potential application value in biochemical sensing fields.
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