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Simple Summary: The clinical efficacy of immunotherapies when treating cold tumors is still low,
and different treatment combinations are needed when dealing with this challenging scenario. In this
work, a middle-out strategy was followed to develop a model describing the antitumor efficacy of
different immune-modulator combinations, including an antigen, a toll-like receptor-3 agonist, and
an immune checkpoint inhibitor in mice treated with non-inflamed tumor cells. Our results support
that clinical response requires antigen-presenting cell activation and also relies on the amount of CD8
T cells and tumor resistance mechanisms present. This mathematical model is a very useful platform
to evaluate different immuno-oncology combinations in both preclinical and clinical settings.

Abstract: Immune checkpoint inhibitors, administered as single agents, have demonstrated clinical
efficacy. However, when treating cold tumors, different combination strategies are needed. This
work aims to develop a semi-mechanistic model describing the antitumor efficacy of immunotherapy
combinations in cold tumors. Tumor size of mice treated with TC-1/A9 non-inflamed tumors and the
drug effects of an antigen, a toll-like receptor-3 agonist (PIC), and an immune checkpoint inhibitor
(anti-programmed cell death 1 antibody) were modeled using Monolix and following a middle-out
strategy. Tumor growth was best characterized by an exponential model with an estimated initial
tumor size of 19.5 mm3 and a doubling time of 3.6 days. In the treatment groups, contrary to the
lack of response observed in monotherapy, combinations including the antigen were able to induce
an antitumor response. The final model successfully captured the 23% increase in the probability
of cure from bi-therapy to triple-therapy. Moreover, our work supports that CD8+ T lymphocytes
and resistance mechanisms are strongly related to the clinical outcome. The activation of antigen-
presenting cells might be needed to achieve an antitumor response in reduced immunogenic tumors
when combined with other immunotherapies. These models can be used as a platform to evaluate
different immuno-oncology combinations in preclinical and clinical scenarios.

Keywords: cold tumors; immuno-oncology; preclinical; drug development; combination of therapeutics;
mechanistic modeling
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1. Introduction

Immuno-oncology (IO), or cancer immunotherapy, focuses on the ability of the im-
mune system to detect and eliminate cancer cells [1]. In this regard, recent development in
checkpoint inhibition therapies, tumor-infiltrating lymphocytes therapies, chimeric antigen
receptor T cell therapies, and cancer vaccines have led to significant advances in cancer
treatment [2]. Although the different immunotherapy approaches have diverse ways of
modulating the natural defenses, tumor cells are still able to evade the immune system and
proliferate over time [1]. Some of the resistance mechanisms developed by tumors include
myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and immunosup-
pressive cytokines and inhibitory proteins, such as transforming growth factor-β (TGF-β),
interleukin (IL)-4, programmed cell death 1 (PD-1), and programmed cell death ligand
1 (PD-L1) [3].

Bearing this in mind, immune-checkpoint inhibitors (ICIs) targeting cytotoxic T-
lymphocyte antigen-4 (CTLA-4), PD-1, or PD-L1, have generated substantial interest [4].
These therapies are characterized by their long-lasting antitumor responses compared
to conventional treatments [5,6]. Different monoclonal antibodies that target PD-1 have
shown an objective response rate of 40–45% for the treatment of non-small cell lung cancer
(NSCLC) [7]. However, in other cancer types, only a fraction of patients benefit from these
therapies. For instance, in triple-negative breast cancer, a modest response rate of 20%
has been shown [8]. With this wide range of responses, there is an increasing interest
in discovering tumor microenvironment predictive biomarkers [7]. The success of ICI
monotherapies has been associated, in part, with tumor immunogenicity, the amount of
T-cells infiltration, and the expression of PD-L1 [9,10]. According to the extent of immune
cell infiltration, among other factors, tumors can be classified as immune desert, immune
excluded, and immune inflamed. Immune desert tumors, also known as cold tumors and
associated with resistance phenotypes, are characterized by the absence of T-cells infiltrated
in the tumor microenvironment, low tumor mutational burden, low expression of PD-L1,
and poor antigen presentation [9].

Treating cold tumors can be very challenging. Nevertheless, tumor inflammation,
which allows tumor-specific T-cell trafficking, has been identified as a key goal of the
immunomodulatory approaches for these tumors [11]. One of the proposed approaches to
overcome the lack of preexisting immune response consists of combining a priming therapy
that enhances T cells responses (such as vaccines or adoptive T cell transfer (ACT)), with
the removal of co-inhibitory signals (through approaches such as ICI or MDSC depletion)
and/or the supply of co-stimulatory signals [9,11]. Therefore, it is important to develop
combination strategies [2,10].

The combination of ICIs with vaccines or toll-like receptor (TLR) agonists has proven
to enhance treatment efficacy in preclinical and clinical scenarios [10,12–14]. A recent
work carried out in mice [15], showed that triple therapy, including a peptide, a TLR,
and an ICI, was the most efficient strategy at remodeling myeloid cells and inducing
antitumor immunity. In a phase Ib trial in pancreatic patients, the combination of anti-
CTLA-4 (ipilimumab) with GVAX vaccine improved overall survival (OS) compared to
ipilimumab monotherapy [14]. In a different clinical trial, HPV-16-positive cancer patients
were vaccinated with a synthetic long-peptide vaccine in combination with nivolumab
with an overall response rate of 33% compared to 16–22% when administered nivolumab
alone [16].

The use of peptide-based vaccines is a widely studied approach that increases the
number and/or availability of antigen-specific T cells by activating professional antigen-
presenting cells (APCs) such as dendritic cells and that can be used as a priming ther-
apy [17]. In addition, toll-like receptors (TLR), for instance, can be used to activate the
innate immune system and enhance adaptive immune responses [13,18]. Among TLR
ligands, different response patterns can be observed [19], and thus, the selection of a partic-
ular type matters. Polyinosinic-polycytidylic acid (Poly(I:C)), a synthetic TLR3 agonists,
administered together with peptide vaccination, has been demonstrated to be a viable
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strategy resulting in enhanced proliferative and functional immune response, ultimately
resulting in antitumor immunity [19].

Although there have been great advances in IO, there are still many unanswered
questions about how the immune systems interact with a growing tumor and which
components of the immune system play significant roles in responding to immunotherapy.
In this sense, mathematical modeling provides a useful tool to better understand complex
systems, and identify mechanisms that could explain the observed clinical or preclinical
outputs [20].

With the recent eruption of quantitative system pharmacology (QSP) models in the
IO field, a high degree of granularity of the biological system has been achieved. Exam-
ples include monotherapy and combination scenarios, including nivolumab therapy in
NSCLC [21], HER2-negative breast cancer patients treated with anti-PD1, entinostat, and
anti-CTLA-4 [22], or administration of a vaccine, anti-IL2, and ICIs in prostate cancer
patients [23]. Those models, which are fed with several parameter values obtained from
different data sources, including in vitro and preclinical in vivo experiments, are able to
reproduce adequately the response rates obtained in the clinical trials. However, their in-
herent complexity prevents the estimation of a patients’ specific parameters and covariates
identification.

In this regard, the middle-out modeling approach, in which the known biological
processes and pharmacodynamic mechanisms are included while keeping model and
model parameters identifiable, provides a quantitative platform for model development
in preclinical and clinical scenarios. A semi-mechanistic pharmacodynamic model was
previously developed for the antitumor effects of the combination between an antigen, a
toll-like receptor agonist, and a chemotherapy agent in a hot tumor mice model [12,24].
In addition, Kosinsky et al. [25] developed a model capable of reproducing the dynamics
of a hot tumor in mice after the combined administration of radiation and anti-PD-L1.
Regarding cold tumors, there is a scarcity of mathematical models describing both tumor
dynamics and/or exploring possible predictive biomarkers.

In the current work, we adapted and expanded the former computational work [12]
to cold tumors, mapping the impact of the myeloid cells and regulatory mechanisms on
CD8+ T cell activation, expansion, and exhaustion. As a complementary approach, this
work aims to develop a semi-mechanistic pharmacodynamic population model describing
longitudinal tumor size data gathered in a mice model of cold tumors where different IO
combinations are administered.

2. Materials and Methods
2.1. Study Design

Data gathered from a total of 121 (5-weeks old) immunocompetent C57BL/6J female
mice were used in the current analysis [15]. Tumor cells (1 × 105 TC-1/A9) expressing HPV
E7 protein were inoculated subcutaneously on the right flank (day 0). The cell line used in
the experiments was derived from primary mouse lung epithelial cells, expressed the E7
protein from HPV, and was characterized by a low expression of major histocompatibility
complex class I (MHC I) [15]. Additionally, previous experiments [15] demonstrated that
this cell line presented very low tumor-infiltrated lymphocytes (TILs) and low expression
of PD-L1. Considering this information, the TC-1/A9 tumors may be considered a non-
inflamed or cold tumor model.

When the average tumor diameter reached 5 mm, mice were randomly divided
into groups receiving treatments consisting of mono-, bi-, or triple-therapy based on an
E7 long peptide (Antigen (Ag)), a TLR-3 agonist (polyinosinic-polycytidylic acid (PIC))
(ThermoFisher; Massachusetts MA, USA), and an anti-PD1 (αPD1) (CD279; clone RMP1-14;
BioXCell; New Hampshire NH, USA). Table 1 shows the different treatment groups with
the corresponding number of mice. Ag and PIC were administered intratumorally at days
7 and 14, whereas αPD1 was injected as an intravenous bolus at days 7, 10, and 14 after
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tumor implantation. One group of animals received an additional dose of αPD1 on day 17.
Additional details of the experimental conditions can be found elsewhere [15].

Table 1. Summary of study design characteristics.

Variable Control
Monotherapy Bi-Therapy Triple-Therapy

Ag PIC αPD1 Ag and
PIC

Ag and
αPD1

PIC and
αPD1

Ag and PIC
and αPD1

Number of animals 27 6 6 12 12 12 12 34
Observations 190 61 56 124 256 241 142 894

% of BQL 39.2 0 0 0 33.2 33.1 0 39.2

Antigen dose (µg) 100 100 100 100
PIC dose (µg) 50 50 50 50
αPD1 dose (µg) 200 200 200 200

E7 long peptide (Antigen (Ag)), polyinosinic-polycytidylic acid (PIC), anti-PD1 (αPD1). Percentage of data below the quantification limit
(% BQL).

Tumor size (TS) measurements were monitored twice a week until mice reached the
maximum TS allowed according to European animal care regulation and to the protocol
approved by the Ethics Committee of the University of Navarra (Ref. 023-17). Tumor
volume was calculated, as shown in Equation (1), assuming that the tumor has an ovoid
form [26].

Tumor Size Volume = Length × Width2

2
(1)

Animals presenting TS shrinkage were monitored for three months in order to detect
possible tumor relapse.

2.2. General Description of the Data

Tumor size profiles for the 8 different treatment groups ((i) control, (ii) Ag, (iii) PIC,
(iv) αPD1, (v) Ag and PIC, (vi) Ag and αPD1, (vii) PIC and αPD1, (viii) Ag and PIC and
αPD1) are presented in Figure 1.
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The exploratory analysis of the data yielded the following processes which were
considered during model development: (i) tumors grow exponentially in the absence of
treatment administration, (ii) Ag administration is crucial to trigger a therapeutic effect [13],
(iii) TS shrinkage is not observed with any of the treatments in monotherapy, nor with PIC
and αPD1 bi-therapy treatment, and (iv) mice receiving bi-therapy of Ag and PIC, or Ag
and αPD1, or triple-therapy (Ag and PIC and αPD1) showed a tumor response associated
with a wide heterogeneity and thus, mice were classified as responders (TS below the limit
of quantification at the end of the study), non-responders (TS profiles similar to those of
the control group), or partial responders (mice able to trigger just a transient response).

2.3. Data Analysis

TS data were logarithmically transformed for the analysis performed in MONO-
LIX (nonlinear mixed effects modeling) Suite 2019R2 [27]. Parameters were estimated by
computing the maximum likelihood estimator of the parameter using the stochastic approx-
imation expectation–maximization algorithm combined with a Markov chain Monte Carlo
procedure. For graphical output and statistical analysis, the R software [28] (version 4.0.4)
was used. Model development was carried out with data from control, monotherapy, and
bi-therapy groups of Ag and PIC and Ag and αPD1, whereas data from the triple-therapy
and bi-therapy of PIC and αPD1 were used for external validation.

TS measurements equal or lower than 4 mm3, considered as the low limit of quantifi-
cation, represented approximately 33% of the total and were thus, considered as censored
information and modeled based on the M3 method [29]. Inter-animal variability (IAV)
was modeled exponentially. Residual error was described with an additive model in the
logarithmic domain.

2.3.1. Model Selection

Selection between models was based on the minimum value of the objective function
provided by Monolix, which is equal to −2 × log-likelihood (−2LL), the precision of
parameters estimates, and the visual exploration of goodness-of-fit plots. For nested
models differing in one parameter, the application of the −2LL ratio test differences of 3.84
were considered significant at the 5% level.

2.3.2. Model Evaluation and Validation

Model evaluation and validation were performed through numerical predictive checks.
For each study, 1000 simulated datasets were generated using inter-animal and residual
variability. The probability of cure—the ratio between the number of responders and
the total number of simulated mice—and the probability of partial response—the ratio
between the number of partial responders and the total number of simulated mice—was
obtained for each treatment group and each simulated dataset. Then, the 5th, 50th, and
95th percentile were computed and compared with the raw data. Additionally, parameter
precision was evaluated from the analysis of 1000 simulated bootstrap datasets.

2.3.3. Model Building

Model development was performed sequentially and following a middle-out approach
because we not only had one response variable, which was tumor size, but also because
not all the treatment groups were informative with respect to certain mechanisms (i.e., bi-
therapy between Ag and PIC, or Ag and aPD1). The final model structure was based on the
experimental data and current knowledge of the system. Table 2 provides an overview of
the biological processes included in the model (Biological Processes), the experimental data
supporting those processes (Experimental data) and the different model assumptions for
each step of model building (Model assumptions). Additionally, a schematic representation
of the dynamics of immune cells, their role in tumor response, and the mechanisms of the
different IO treatments are shown in Figure 2.
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Table 2. Overview of the biological processes considered by the model, together with the different model assumptions and
the experimental data supporting those processes.

Biological Processes Model Assumption Experimental Data

Exponential tumor growth of
unperturbed tumors.

Exponential growth is governed by a
parameter (λ) and dependent on TS

(Equation (2)) [30,31].

Control (untreated) data was used to
estimate unperturbed tumor

growth dynamics.

Once the therapeutic agent enters the
systemic circulation, it distributes

fast and it is eliminated following the
first-order rate process [32].

Exponential decay for all the
administered treatments

(kinetic-pharmacodynamics (K-PD)
approach) [32] (Equation (3))

[24,32–34].

Absence of drug plasma
concentrations for the three

different agents.

Activation of APCs by the Ag is
needed to trigger a therapeutic

effect [1,13,17].

APCs will only be present in the
system if the antigen is administered

(Equation (4) when i = Ag) [24].

Even though tumor shrinkage is not
observed in any of the mice receiving
the Ag in monotherapy, there is one

that slows tumor progression and can
do to the cold nature of the tumor

that can be considered as a responder.
Tumor shrinkage was only observed
in bi-therapy of Ag and PIC, or Ag

and αPD1, or triple-therapy (Ag and
PIC and αPD1)

APCs trigger the activation and
proliferation of naïve CD8 T

cells [1,35].

CD8 cells are activated by APCs
(Equation (5)) [23].

Activated CD8 have demonstrated to
play an essential role in the
antitumor response [1,15].

Tumor cell death is promoted by the
activated CD8 T cells (CD8act)

(Equation (6)) [23,36,37].

PIC in combination with an antigen
such as E7 long peptide, induces an

increase in CD8+ T cells [15,38].

Exacerbation and maintenance by a
toll-like receptor of the process

activated by the antigens
(Equations (7) and (8)) [12].

Mice treated with Ag and PIC
showed a higher tumor response
compared to Ag monotherapy.

Some of the resistance mechanisms
developed by tumors include the
expression of PD-1 in CD8 cells,

regulatory T cells, or MDSCs. The
administration of immune

checkpoints will inhibit some of these
mechanisms, increasing the response

to immunotherapy [2,15,18].

Presence of tumor resistance
mechanisms used to evade CD8 T
cells-mediated death such as the

recruitment of immune suppressor
cells (e.g., Treg) and expression of the
PD-L1 ligand leading to CD8 T cell

exhaustion, αPD1 inhibits the tumor
resistance mechanisms, which can be

at least partly blocked by immune
checkpoint inhibitors

(Equations (8) and (9)) [21,23,39,40].

After the administration of Ag and
αPD1, tumor response is observed in

a certain number of mice.

2.3.4. Model for Unperturbed Tumor Growth

The model describing unperturbed tumor growth was developed using only data from
the control group (in the absence of any therapeutic agent). Different models, including lin-
ear, exponential growth, and Gompertz [41,42], were evaluated to describe the continuous
TS growth depicted in Figure 1. Tumor growth was described by the exponential model
(Equation (2)), where λ (first-order rate constant) should be interpreted as the difference
between cell proliferation and degradation. The initial condition of the tumor system is
TS0, the value of TS at the time of cell inoculation.

dTS
dT

= λ × TS (2)
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Figure 2. Schematic representation of the immuno-oncology therapy model, including the interactions of immune cells
with cancer cells after the administration of antigen Ag, PIC, and αPD1. Dashed green arrows indicate activation, dashed
red blocked arrows indicate inhibition, dashed yellow arrows indicate the effect of PIC, and solid sharped arrows indicate
the transit between compartments. TRT and TR denote treatment and transit compartments, respectively. APC stands for
antigen-presenting cells, and RES for the resistance mechanisms developed by the tumor. A description of the parameters
can be found in Material and Methods.

2.3.5. K-PD Models

To generate the signals triggered by Ag, PIC, and αPD1 administration, a cascade of
transit compartments for the Ag, PIC, and αPD1, was implemented as follows:

dTRTi
dt

= −Ki × TRTi (3)

dTRi
dt

= Ki × TRTi − Ki × TRi (4)

where K is a first-order rate constant, and TRTi and TRi stand for treatment and transit
compartments from where drug effects are elicited, respectively, and where i takes the form
of Ag, PIC, and αPD1. For the three therapies, the initial conditions for TRTi and TRi were
1 and 0, respectively. From a modeling point of view, the inclusion of transit compartments
allows predicting a treatment response with a certain delay regarding administration time.
Delayed responses are quite common (they represent the rule rather than the exception)
and can be explained by a great variety of possible mechanisms. In the current model, the
Ag transit compartment (TRAg) might represent the APCs (Table 2). Nevertheless, TRPIC,
and TRαPD1 could reflect different drug distribution into the target compartment as well as
tumor infiltration mechanisms (Table 2).
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2.3.6. Model for CD8 Activation, Expansion, and Tumor Response

As it has been depicted in Table 2, in this model, the tumor cell death is promoted
by the activated CD8+ T cells (CD8act) yielded by Ag administration (TRAg), which were
further expanded by the presence of PIC.

dCD8act

dt
= KCD8 × TRAg − KCD8 × CD8act (5)

dTS
dt

= λ × TS − θCD8 × CD8act × TS (6)

where KCD8 is a first-order rate constant for CD8 activation, constrained to have the
same value as KAg to ensure parameter identifiability, and θCD8 is a second-order rate
constant representing the efficiency of CD8+ T cells to promote tumor cells death. The
initial condition for CD8act was set equal to zero. The first term of Equation (6), which
describes tumor proliferation (λ × TS), is assumed to remain unaffected upon treatment
administration.

Given the fact that tumor response was obtained after Ag and PIC bi-therapy, and
not with either of the two treatments given alone, the following model building strategy
was used to identify the parameters: First, tumor response after bi-therapy with Ag and
PIC was characterized to obtain the estimate of θCD8, assuming the two treatments as
a single active compound. Equations (5) and (6) represent the model structure used to
describe CD8act and TS dynamics. In a second step, using the value θCD8 from the first
step, the parameter KAg (Equations (3) and (4)) was obtained by analyzing the subject
in the Ag monotherapy group showing tumor response. Then, KAg was adjusted and
calibrated to provide TRAg levels that would trigger insufficient CD8act to cause tumor
response (resembling the case of non-responder animals, which was the main behavior in
that treatment group) (Figure 1). Finally, TS profiles data after Ag and PIC bi-therapy were
re-analyzed. Treating both as different therapies and using the last estimates of θCD8 and
KAg, the parameter KPIC (Equations (3) and (4)) was estimated, and a model structure for
the effect of TRPIC on KAg/KCD8 (EPIC) was selected.

2.3.7. Model for Tumor Resistance to Treatment Effects

A resistance parameter (Resistance) was incorporated to account for regulatory T
cells, MDSCs, or the expression of PD-1 (Table 2). The effect of αPD1 (EαPD1) led to
enhanced tumor response by inhibiting the tumor Resistance, diminishing the relapse
phenomena (Resistance/EαPD1)). Resistance was included in the model, assuming an
arbitrary value of one for all mice and during the entire period of the study. Parameter
KαPD1 (Equations (3) and (4)) and the structure of the model for the inhibitory effect of
TRTαPD1 on Resistance were obtained from the analysis of the animals receiving bi-therapy
with Ag and αPD1, and using the obtained estimates of θCD8 and KAg described above.

2.4. Model Exploration

During the model exploration, simulations were performed in order to evaluate the
impact of the amount of CD8act and the Resistance on response rates. For KPIC and KαPD1,
a sequence of 10 values inside the 90% confidence interval was obtained for each of them
and subsequently combined to create 100 different combinations while the rest of the
parameters were fixed to the final estimates of the selected model. Then, for each parameter
and treatment combination, one thousand TS profiles were simulated. The percentage
of response status—responders, non-responders, and partial responders—was calculated
together with the area under the curve (AUC) of CD8act and resistance inhibition induced
by αPD1 time profiles (AUCCD8 and AUCresistance inhibition, respectively).
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3. Results
3.1. Mathematical Model

Among the different models explored to describe tumor growth in the absence of
treatment administration, TS profiles were best characterized by exponential growth,
assuming that the growth rate is proportional to the tumor burden. The model provided
estimates for TS0 and λ of 19.5 mm3 and 0.194 days−1 (time for doubling the size of the
tumor is 3.6 days), respectively. IAV was found significant (p < 0.01) with a low magnitude
estimate (13.5%) for λ, but not significant for TS0 (p > 0.05).

Once the model for tumor progression was established, the parameters for the
APC activation by the Ag and CD8+ T cell activation/expansion by PIC were identi-
fied. The analysis of the group of mice receiving Ag and PIC but treated as monotherapy
(Equations (3)–(6)) yielded an estimate of θCD8 of 1.63 au × days−1, with an estimate of
IAV of 46%.

In the second step, using the estimate of θCD8, the value of KAg obtained from the single
animal showing tumor response after administering Ag in monotherapy was 0.931 days−1.
The fine-tuning analysis revealed that a value of KAg of 4.93 days−1 was high enough
to trigger a fast elimination of Ag and thus, suppress its induced response. The model
adequately described the data, but the number of transit compartments could not be
estimated with precision. Consequently, one intermediate (transit) compartment was
introduced at a time, and the AIC and model performance was compared for the different
number of compartments. In this case, one transit compartment (TRAG) where the amount
of signal (APCs) would be responsible for inducing CD8 cell activation proved to be enough
to describe the data successfully (∆AIC of −12.47, −0.5, and −1.65 points compared with
no delay, two or three transit compartments, respectively).

Following model building, therapy of Ag and PIC was re-analyzed using the above
new estimates of θCD8 and KAg to isolate now the contribution of PIC to CD8 activation
and expansion and subsequent tumor response. Linear and nonlinear (i.e., Emax, sigmoidal
Emax) drug exposure-effect relationships were explored for these processes. In this case, the
EPIC was best characterized by a linear model with the structure of 1/(1 + θPIC × TRPIC).
This effect enabled to decrease APCs elimination (Equation (7)) and sustain the amount
of CD8act present in the system by modulating both the proliferation and elimination
processes (Equation (8)). Similar to the Ag, we could not estimate the number of transit
compartments for PIC with precision either. In this case, the data was best described with
one transit compartment. Additionally, it was found that the estimate of KPIC was ~7 times
lower than KAg.

Finally, αPD1 elicited its effects (EαPD1), decreasing the mechanisms of CD8act ex-
haustion (Resistance, Equation (8)) and enhancing CD8act efficacy to induce tumor death
(Equation (9)). The structure selected for EαPD1 had the form of (1 + θαPD1 × TRαPD1). For
αPD1, an additional transit compartment was introduced (∆AIC of −653.58, −91.71, and
−13.29 points compared with no delay, one or three transit compartments, respectively)
(Equation (4)). KαPD1 was estimated with a value of 2.3 × 10−3 days−1 and the estimate of
θαPD1 resulted 68% lower than the one obtained for θPIC.

Equation (7) illustrates the Ag transit compartment (TRAg) (Equation (4)), representing
the APC activation by the Ag, and Equations (8) and (9) generalize expressions 5 and 6
respectively to account for the PIC and αPD1 effects.

dAPC
dt

= KAg × TRTAg − KAg × APC × EPIC (7)

dCD8act

dt
= KCD8 × APC × EPIC − KCD8 × CD8act × EPIC × Resistance

EαPD1
(8)

dTS
dt

= λ × TS − θCD8 ×
CD8act(

Resistance
EαPD1

) × TS (9)
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Figure 3 shows the typical profiles of the resulting CD8 (3A) and TS responses (3B)
response for the typical parameters in the different steps of the model building. For the
responder mice in the Ag monotherapy (dark green), the amount of CD8 cells exceeds
0.25 arbitrary units, which is reflected in a delayed tumor growth. However, for non-
responder mice (light green) it can be observed the profile of CD8 dynamics eliciting an
inefficient tumor response.
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Figure 3. The typical model-predicted profiles of activated CD8 cells (A) and tumor size (TS) (B) over time, corresponding
to the different treatment groups: antigen monotherapy for responder (dark green) and non-responder mice (light green),
Ag and PIC treated as monotherapy (dark blue) and as bi-therapy (light blue), and Ag and αPD1 (red). Arrows indicate the
day of dosing time for antigen (green), PIC (blue), and αPD1 (red).

Moreover, the figure illustrates the effect of both PIC and αPD1 in combination with
the Ag. The administration of PIC (dark and light blue), delayed the turnover of both
TRAG and CD8 cells (Equations (7) and (8)), increasing the levels of CD8act and inhibiting
tumor growth dynamics. Despite this, when Ag and PIC are treated as a bi-therapy (light
blue), a relapse at around day 40, similarly to the raw data (Figure 1), can be observed.
Furthermore, Figure 3 shows in red the profiles after the administration of PIC and αPD1.
The CD8 cells increase remarkably after the second dose of αPD1, and the tumor growth is
inhibited without showing relapse.

Table 3 lists the final parameter estimates of the model. All parameters were estimated
with acceptable precision as reflected by the relative standard errors, which assume sym-
metric distribution of the confidence intervals and the non-parametric bootstrap analysis
results. Note that precision associated with the parameter KAG is not provided as the
corresponding estimate was obtained through a fine-tuning exercise, as described in the
methodology section. The magnitude of IAV associated with KPIC and KαPD1 exceeds 100%
resembling the heterogeneity seen in the TS profiles in all the treatment groups (Figure 1)
in which a certain degree of response was achieved (responders, partial responders, and
non-responders).
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Table 3. Model parameter estimates.

Parameter Estimate (RSE %) (5th–95th) IAV (RSE %) (5th–95th)

TS0 (mm3) 19.5 (6.88) (16.03–22.74) NE NE
KAg (day−1) 4.93 NE NE NE

λ (day−1) 0.194 (3.32) (0.183–0.209) 0.557 (15.8) (0.483–0.603)
θCD8 (au × day−1) 1.63 (17.2) (1.27–2.27) 1.24 (43.2) (0.607–1.36)

KPIC (day−1) 0.721 (42.4) (0.347–4.194) 3.17 (67.7) (1.44–953)
θPIC (au−1) 1200 (4.48) (601.8–1765) NE NE

KαPD1 (day−1) 2.3 × 10−3 (79.1) (6.43 × 10−5–9.09 × 10−3) 5.16 (42.5) (1.67–214)
θαPD1 (au−1) 821 (2.17) (548.2–913.3) NE NE

Residual error (Log (mm3)) 0.597 (4.12) (0.513–0.678) NE NE

Results from 1000 bootstrap analysis are shown in round brackets and with the 90% confidence interval. Parameters are defined in the text.
Value of ε-shrinkage calculated as 1-sd (IWRES) is 15%. IAV inter-animal variability expressed as coefficient of variation (

√
eω2 − 1), NE

not estimated, RSE relative standard error.

The value of ε-shrinkage was 15%. Therefore, individual predictions can be considered
informative for the evaluation of model performance. Observed and predicted individual
profiles are shown superimposed in Figure 4, where an excellent agreement can be observed
for the vast majority of the mice between observations and predictions, not only for those
treatment groups used during model development but also for the triple therapy (validation
treatment group).
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Figure 4. Individual model predictions. Tumor size observations (points) and individual model predictions (lines) for all
the treatment groups included in the analysis. 4 mm3 was considered as the limit of quantification (dashed lines). For those
treatment groups with a higher number of animals, more than one TS profile was included in each panel.

3.2. Model Evaluation and Validation

Figure 5 explores model performance through simulation-based diagnostics using the
probability of responder and partial responder animals within each treatment group as the
metrics of interest. The metrics computed from the raw data fall close to the median derived
from the simulated studies for all treatment groups. Overall simulated data resembled the
percentage of response found in the raw data for each treatment group. Remarkably, the
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model was able to adequately capture the 23% increase in the probability of cure in the
group of animals administered with triple-therapy compared to the bi-therapies of Ag and
PIC and Ag and αPD1.
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Figure 5. Simulation-based model diagnostics. The percentage of cure (A) and partial response (B)
calculated over 1000 simulated studies is presented and compared with the percentage calculated
from the raw data. Grey areas represent 90% prediction interval of the simulated data, with the
horizontal line in black showing the median of the distribution. Dots correspond to the percentages
obtained from the observed data (blue for the treatment groups used for model development and red
for the triple-therapy group used for external validation).

3.3. Model Exploration

Systematically, results indicated a strong relationship between the degree of response
(represented in this exercise as a percentage of animals responding, non-responding, or
with a partial response to the treatment) and the exposure of CD8 cells (AUCCD8) or the
different resistance mechanisms (AUCresistance inhibition). In Figure 6A,C, it can be observed
that the AUCCD8 does not exceed 1 (in arbitrary units) when vaccine is administered alone
or in combination with aPD1, and that none or very low percentage of cured mice is
reached. The co-administration of the Ag with PIC (Figure 6B) is needed to achieve at least
2 arbitrary units of AUCCD8, which will provide at least a probability of complete response
of 25%. Similar findings can be found in Figure 3, in which also, the higher exposure of
CD8 cells is observed in the bi-therapy of Ag and PIC.
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Figure 6. Effect of the area under the levels of activated CD8 (A–D) and resistance inhibition induced by αPD1 (E,F) vs.
time curve (AUCCD8 and AUCresistance_inhibition, respectively) on response rates expressed as a percentage of mice showing
total response (red), transient response (blue), and absence of response (green). One thousand animals for each of the
100 different parameter combinations were simulated for the multiple treatment groups: (A) Ag, (B) Ag and PIC, (C,E) Ag
and αPD1, and (D,F) triple-therapy.

Results presented in the lower panels of Figure 6E,F suggest that inhibition of the
tumor-related resistance mechanisms, represented by AUCresistance inhibition, is less efficient
with respect to antitumor effects than CD8 proliferation and expansion. The bi-therapy
of Ag and PIC is able to achieve at least a response rate of 25%, while high values of
AUCresistance inhibition in the Ag and αPD1 treatment group do not reach 15% of the response.

The interaction between CD8 expansion and tumor resistance inhibition mechanisms
appears to be synergistic as the AUCCD8, and AUCresistance inhibition in the triple-therapy
groups (Figure 6D,F) increased beyond additivity with respect to the expectation from the
two bi-therapy groups with Ag. For intermediate AUCCD8 values (between 1 and 2 in
arbitrary units) and bi-therapies treatments, response rates below 25% is observed; whereas
for the triple-therapy, between 25–70% of the animals respond to the treatment.

4. Discussion

In this work, we have developed a semi-mechanistic model for the antitumor effects
of combination treatments based on three immune-modulators—a tumor-antigen, a toll-
like receptor-3, and an αPD1—in a cold tumor. A middle-out approach was followed
during model building since; (i) selection between competing models was evaluated
through their ability to describe the longitudinal tumor size measurements, and (ii) model
structures were constrained to resemble the current knowledge of the systems [12,43,44].
The mechanisms of action characterized for these therapies included the activation of
APCs, the activation and expansion of CD8 cells, and the inhibition of tumor resistance
mechanisms (Table 2). The model proposed integrates some immune components and
pathways of the complex biological system, however, its development was mainly data-
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driven based on just a single response variable (tumor size). This fact justifies both the
number of model assumptions and that the model parameters represent, in this case,
several biological processes that cannot be shred. Notwithstanding this, the selected model
showed very good performance at both individual and population levels with precise
parameter estimates and demonstrated to be robust across the validation set of data.

Under the assumption that the lack of responses observed in a variety of cancer
patients receiving ICI monotherapies [18,45] is likely due to reduced tumor immunogenic-
ity [9,10], we have attempted to mimic the actual clinical scenario. Firstly, performing the
animal experiments inoculating a cell line characterized by a cold tumor [15], and secondly,
following the current treatment paradigms where a variety of combinatorial approaches
are being investigated [2,4,18].

Among the three different immunotherapeutic agents included in the analysis, tumor-
antigens are the main stimuli that trigger the immune response. They are able to activate
APCs and then promote a T cell-mediated immune response capable of recognizing and
eliminating cancer cells expressing specific tumor-associated antigens [1,13,17,35]. How-
ever, in our experiments, when Ag monotherapy is administered, all animals except one
showed a complete lack of response when the Ag was administered in monotherapy
(Figure 1). The possibility that those results are due to an experimental artifact and not to
the cold nature of the tumor model is unlikely as the individual TS profiles are comparable
to other published results [35,46], which also treated poorly immunogenic tumors with
different IO combination approaches. Therefore, in the present work, the characterization
of APC activation caused by the injection of the Ag in the tumor represents a modeling as-
pect that deserves consideration, as it allowed us to dissect quantitatively the mechanisms
involving CD8 dynamics. Alternatively, a simpler approach would have been to treat the
combination of Ag and PIC as a monotherapy (as we did in the previous modeling steps)
and describing the result of both effects together. The additional efforts here performed to
isolate the individual drug contributions and mechanistically characterize their interactions
allowed us to suggest that APC activation is required for PIC to trigger CD8 activation
and expansion. This might have important implications as, based on our results, APC
activation is required to achieve a tumor response and might be a key element involved in
turning a cold tumor into hot tumor [9,11].

As regards the exacerbation and maintenance of the Ag effects by PIC, our result can
be compared with previous experiments [10,13,18]. Zalba et al. [15] found similar kinetics
of CD8+ T lymphocytes when E7 long peptide and PIC were administered in combination
compared to typical model-predicted profiles of activated CD8 cells (Figure 3). Moreover,
we compared our findings with our previous work [12] in which an antigen, a toll-like
receptor 9 (TLR-9), and a chemotherapeutic agent were administered in combinations to a
murine hot tumor model. Using the past model and the corresponding parameter estimates,
the impact of the TLR agonist over the effector cells was calculated and compared to the
results obtained in the current analysis summarized in the typical activated CD8 cells
profiles represented in Figure 3. The TLR-9 was able to double and accelerate the immune
response elicited by the antigen when both agents were administered in combination.
Conversely, in the present work, when Ag and PIC were administered to a cold tumor, a
larger increase and delayed in time was observed. The discrepancies might be explained
due to the different response patterns observed across the TLR ligands [19]. In particular,
the TLR-9 agonists are known to induce a faster response to peptide administration [47],
whereas PIC enhances the expansion and delays the contraction of antigen-specific CD8+ T
cells [19].

Lastly, the inclusion of αPD1 effects entailed also the inclusion of tumor resistance.
Different mechanisms have previously been incorporated in mathematical models, such as
a regulatory compartment controlled by tumor size [12], the proliferation and accumulation
of immune-suppressive cells (Tregs), and the PD-1/PD-L1 expression on cancer cells [21,25].
In the actual work, contrary to other models developed using data of experiments in
which treatments were administered at different times after cell inoculation [12,24], the
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three therapeutic agents are always administered at the same time. This fact hinders the
development of a time-variant model for tumor resistance. For this reason and given the
fact that a temporal or complete lack of tumor response is observed for some animals in
every treatment (Figure 1), the magnitude of the tumor resistance is considered to remain
constant through all the experimental period and only decreased under the presence of
αPD1. A recent work developed by Jafarnejad et al. [21] showed a flat profile of CD4+

T cells up to 3 months for the different responses (complete or partial response, stable
disease, or progressive disease), suggesting that our assumption is reasonable. This QSP
model also incorporated the effects of an αPD1, nivolumab, as the binding of the agent
and the blocking of the PD-1 receptor on the surface of T cells (CD8 cells and regulatory
T cells). A later model expansion [25] also included the expression of PD-L1 expression
in antigen-presenting cells [39]. In a different work [25], the ICI was similarly able to
inhibit the PD-L1 expression and thus, suppress the negative feedback that facilitated the
process of effector T cells exhaustion and apoptosis. The analysis revealed that 250 effector
T cells/µL were reached when mice were treated with radiation monotherapy, but the
administration of an αPD-L1 concurrently with radiation was capable of increasing this
amount to a maximum of 700 effector T cells/µL.

In both preclinical [12,13,25] and clinical [7,8,21,22], a high degree of variability in
response to cancer treatments is observed. Similarly, our experiments show that, despite
the success of the triple-therapy (Ag, PIC, and anti-PD1), there is still a wide response
heterogeneity (Figure 1). Previous works [12,24,25] described differences between re-
sponders, non-responders, and partial responders with the use of mixture models which
allocated individuals to different subject populations independently from specific covari-
ates/biomarker indicators. In contrast, the current work handles such differences between
tumor size profiles using unimodal distributions of random effects. Consequently, the high
heterogeneity seen in the tumor size profiles of the mice under treatment is reflected in the
magnitude of variability estimated for certain parameters of the model.

As has been noted, a deep understanding of immune response dynamics and the
interplay with tumor-infiltrating processes and tumor cell growth can help to overcome
the current challenges in IO and, in this sense, the mathematical model plays an important
role. Several QSP models have been published for single agent or combination thera-
pies and applied to different types of tumors, including melanoma, breast cancer, and
NSCLC [21,23,25,40]. However, the development of these types of models is challenging
due to the large number of parameters, many of them taken from different sources, and
the relatively small amount of observed data usually available. In this respect, the type of
model developed in the current work is complementary to the QSP models as it fulfills the
gap related to complex models allowing to retrieve individual parameter estimates and
magnitude of variabilities. Its final structure is likely to be applied to clinical data, similar
to the works by Ouerdani et al. [48] or Betts et al. [49], in which a strict data-driven model
developed in mice led to a simpler and less mechanistic model that could also be applied
in the clinical scenario.

5. Conclusions

In the current investigation, a semi-mechanistic model to account for the pharma-
codynamic effects of three different immuno-therapeutic agents in monotherapy or in
combination was developed, incorporating the dynamics of immune cells and their in-
teraction with the tumor. This quantitative analysis has shown that; (1) efficacy can be
derived from a combination of agents that show no efficacy as monotherapy, and (2) APC
activation is a required component of an effective combination in cold tumors. The model
can be further used to leverage parameters components and parameters estimates of recent
system pharmacology models, explore the impact of treatment sequences and schedules,
and serve as a structural platform for model development in clinical scenarios.
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