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Abstract The electronic sensitivity and adsorption behavior
toward cyanogen halides (X–CN; X = F, Cl, and Br) of a
B12N12 nanocluster were investigated by means of density
functional theory calculations. The X-head of these molecules
was predicted to interact weakly with the BN cluster because
of the positive σ-hole on the electronic potential surface of
halogens. The X–CN molecules interact somewhat strongly
with the boron atoms of the cluster via the N-head, which is
accompanied by a large charge transfer from the X–CN to the
cluster. The change in enthalpy upon the adsorption process
(at room temperature and 1 atm) is about −19.2, −23.4, and
−30.5 kJmol−1 for X = F, Cl, and Br, respectively. The LUMO
level of the BN cluster is largely stabilized after the adsorption
process, and the HOMO–LUMO gap is significantly de-
creased. Thus, the electrical conductivity of the cluster is in-
creased, and an electrical signal is generated that can help to
detect these molecules. By increasing the atomic number of X,
the signal will increase, which makes the sensor selective for
cyanogen halides. Also, it was indicated that the B12N12

nanocluster benefits from a short recovery time as a sensor.
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Introduction

Cyanogen halides (X–CN, X = halogen) are colorless, chem-
ically reactive, lachrymatory (tear-producing), and volatile
compounds with a linear structure [1]. They are highly poi-
sonous agents, and symptoms of exposure may include paral-
ysis, vomiting, drowsiness, coughing, convulsion, throat con-
fusion, edema, and death [1, 2]. Thus, finding a portable, fast
response, highly sensitive, simple, and reliable sensor for X–
CN detection is of great importance. Previous methods sug-
gested and investigated include spectrophotometric, electro-
chemical, and gas chromatographic approaches [3–5].Most of
these procedures need complicated instruments and are expen-
sive. With the advent of nanotechnology, gas sensor develop-
ment has accelerated due to the high adsorption capacity, high
surface/volume ratio and unique electronic sensitivity of nano-
structures [6, 7]. To date, numerous nanostructured material
based sensors have been introduced for different gases by both
experimental researchers and theoreticians [8–14]. Boron ni-
tride (BN) nanostructures are an important class of nanostruc-
ture with wide band gap, special electronic, optical and mag-
netic properties [15–18]. Many studies have focused on the
fullerene-like BN nanoclusters, nanosheets and nanotubes as
gas sensors [19–24].

The stability and geometries of (BN)n (n = 4–30)
nanoclusters have been explored previously by different
groups [25–27]. It has been indicated that the B12N12

nanocluster has a magic structure and is highly stable; this
nanocluster has also been successfully synthesized [25].
Several studies have focused on the potential use of the
B12N12 nanocluster in hydrogen storage, Li-ion batteries, drug
delivery, and gas sensors [26–33]. Very recently, it was dem-
onstrated that a fluoride-encapsulated B12N12 nanocluster is a
promising candidate for anode materials in Li-ion batteries
[29]. The hydrogen storage capability of this nanocluster
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was explored by Jia et al. [33] using ab initio molecular orbital
theory. It has also been revealed that B12N12 is the most stable
nanocluster among different X12Y12 (X =Al or B and Y =N
or P) nanoclusters [34]. Herein, we investigate the interaction
between different X–CN (X = F, Cl, and Br atoms) molecules,
and the B12N12 nanocluster using density functional theory
(DFT) calculations to explore the potential application of
B12N12 nanocluster as a chemical sensor.

Computational methods

Natural bond orbitals (NBO), molecular electrostatic potential
(MEP) and density of states (DOS) analyses, geometry

optimizations, and energy predictions were performed on a
B12N12 nanocluster and different X-CN/B12N12 complexes
at B3LYP level of theory with 6-31G (d) basis set as imple-
mented in the GAMESS suite of programs [35]. The B3LYP
functional was augmented with an empirical dispersion term
[36] (B3LYP-D) to improve its reliability in prediction of
noncovalent interactions. The B3LYP has been demonstrated
to be a commonly employed density functional in the investi-
gation of different nanomaterials [37–53]. In addition, it has
been specified to deliver a well-organized and robust basis for
III–V semiconductor calculations [54]. The GaussSum pro-
gram [55] was selected to obtain DOS plots. Vibrational fre-
quency calculations were performed to verify that all the ge-
ometries are true minima with positive Hessian eigenvalues.
Adsorption energy was calculated as follows

Fig. 1 a Optimized structure, b
density of states, c HOMO, and d
LUMO profiles of the pristine
B12N12 nanocluster. Distances in
Å. The Eg indicates the HOMO–
LUMO energy gap. e Calculated
electrostatic potential on the
molecular surface of B12N12.
Color ranges, in kcal mol−1: red
greater than 15, yellow between
15 and 5, green between 5 and −5,
blue less than −5 (negative)
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Ead ¼ Etot X−CN
.
B12N12

� �
−Etot B12N12ð Þ−Etot X−CNð Þ

ð1Þ
where Etot(X–CN/ B12N12) is total energy of X–CN/ B12N12

complex and Etot(B12N12) and Etot(X–CN) are total energies
of isolated B12N12 cage, and X–CN molecules, respectively.

The enthalpy change (ΔHad) of X–CN adsorption at room
temperature and 1 atm pressure was calculated as follows:

ΔHad ¼ H X−CN
.
B12N12

� �
−H B12N12ð Þ–H X−CNð Þ ð2Þ

where H(X-CN/ B12N12) is the enthalpy of the complex, and
H(B12N12) and H(X–CN) are the enthalpies of the pristine
B12N12 and X–CN molecule, respectively. Zero-point energy
and basis set superposition error (BSSE) corrections [56] were
included in the ΔHad and adsorption energy calculations.

Assessing the sensitivity of the sensor, the shift of the
HOMO–LUMO energy gap (Eg) was computed by:

ΔEg ¼ Eg2− Eg1

� �.
Eg1

h i
*100 % ð3Þ

where Eg1 and Eg2 are the values of the Eg for bare B12N12 and
the X–CN adsorbed state, respectively.

Results and discussion

Specifications of B12N12 nanocluster

As shown in Fig. 1, the B12N12 nanocluster is made of eight
hexagons and six tetragons with Th symmetry. Structurally,
two individual B–N bonds are distinguished, one of which is

Fig. 2 Optimized structures of
X–CN/B12N12 complexes.
Distances in Å
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shared by two hexagons (66-bond) and another between a
tetragon and a hexagon (46-bond) with average bond lengths
of 1.44Å and 1.49Å, respectively, in good agreement with the
experimental results [25]. The 46-bond is larger than the 66-
bond due to the higher strain on the tetragonal ring. The range
of calculated vibrational frequencies is from 323−1 to
1446 cm−1, representing that the geometry is a true stationary
point on the potential energy surface. The DOS plot indicates
that it is a wide gap (∼6.84 eV) nanocluster in which the
HOMO and LUMO are located mainly on the N and B atoms,
respectively (Fig. 1). Figure 1 also shows the MEP on the
surface of the BN nanocluster. It can be seen that the negative
regions above the nitrogen atoms are stronger than the positive
ones of the boron atoms; the former have local maxima of −16
to −18 kcal mol−1, while the local minima of the latter are only
+5 to +7 kcal mol−1. This may be due to the large curvature
and lone pairs of the N atoms.

Adsorption of X–CN molecules on B12N12

For X–CN molecules, the chemistry of molecules indicates
that nucleophile heads X or N should attack the electrophile
sites (B atoms) of the BN cluster. Thus, we optimized the
initial structures in which the X or N atom of the molecules
are located on a B atom of the cage and then a relaxation
occurred. Also, in another attempt, we located the X–CNmol-
ecule on a hexagonal ring so that both the X and N heads wer
close to to the B sites. Finally, we found two local minima for
each molecule as shown in Fig. 2. When the molecules were
located on the hexagonal ring, they are reoriented to the struc-
tures in which the molecule is attached from its N head to the
B atom of the cluster.

Table 1 shows that the complexes in which the molecule is
attached from its N head to the B atom of the cluster are more
stable than those in which it is attached from the X head. For
example, the adsorption energy of complex F.2 (Fig. 2) in
which the F–CN is linked from the N atom to the B atom of
the cluster is about −24.2 kJ mol−1 and the ΔHad is about
−19.2 kJ mol−1, while the adsorption energy and ΔHad are

about −8.7 kJ mol−1 and −6.6 kJ mol−1 for complex F.1 in
which the F–CN is attached from the F head to the B atom.
The weak interaction of halogens with B sites is somewhat
enigmatic: the halogens are viewed as usually being negative
in nature; why should not they interact strongly with electron
deficient sites? This matter can be understood based on the σ-
hole concept [57]. The σ-holes are regions of positive electro-
static potential of halogens along the extensions of the cova-
lent bonds, which were initially introduced by Murray et al.
[58]. As shown in Fig. 1, the B atoms have a positive electro-
static potential, which hinders adsorption of X–CN from its X-
head. For example, Fig. 3 illustrates the σ-hole on the Br–CN
as a representative model. The positive electrostatic of the σ-
hole in halogens somewhat precludes a strong interaction be-
tween the halogen and the positive electrostatic surface of the
B atoms. The molecular surface electrostatic potential (MEP)
has been frequently used as a guide to reactive behavior
[59–62].

By increasing the atomic number of the X atom, the inter-
action between the cyanogen and the cluster becomes stron-
ger, which may be due to the fact that the larger molecules
have larger polarizability, and thus show stronger interaction
in the case in which the X–CN interacts with its X atom. But in
cases where this molecule interacts with its N atom via the B
site, the electron withdrawing nature of F, Cl and Br atoms
may affect the interaction. Fluorine has the highest electroneg-
ativity, and, significantly, can withdraw electrons from the –
CN group, compared to Cl and Br atoms. Thus, it can

Table 1 Adsorption energy (Ead, kJ mol−1), change of enthalpy (ΔHad

kJ mol−1) for different cyanogen halides (X–CN; X = F, Cl, and Br)
adsorption on the B12N12 nanocages. Vibrational frequencies and bond

lengths of C–N and C–X bonds of cyanogen halides in different
complexes. The numbers in parentheses are values for the free
molecule. Complexes are shown in Fig. 2

Complex Ead ΔHad υC–N (cm−1) υC–X (cm−1) RC–N (Å) RC–X (Å)

F.1 −8.7 −6.6 2427 (2429) 1094 (1098) 1.161 (1.161) 1.273 (1.273)

Cl.1 −9.2 −7.5 2326 (2337) 741 (742) 1.163 (1.163) 1.646 (1.646)

Br.1 −10.8 −8.7 2309 (2309) 578 (580) 1.163 (1.163) 1.793 (1.793)

F.2 −24.2 −19.2 2547 (2429) 1173 (1098) 1.148 (1.161) 1.257 (1.273)

Cl.2 −29.6 −23.4 2410 (2337) 820 (742) 1.152 (1.163) 1.626 (1.646)

Br.2 −35.1 −30.5 2387 (2309) 678 (580) 1.152 (1.163) 1.772 (1.793)

Fig. 3 Molecular surface electrostatic potential (MEP) of Br–CN,
computed on the 0.001 au contour of the electronic density. Color ranges,
in kcal mol−1, are: red greater than 15, yellow between 15 and 5, green
between 5 and −5, blue less than −5 (negative). The σ-hole along the
extension of the Br–C bond is shown in red
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significantly weaken the interaction, as was shown in Table 1.
The adsorption energy for F.2, Cl.2 and Br.2 is about −24.2,
−29.6, and −35.1 kJ mol−1, respectively, indicating that the
order of the reactivity of X–CN molecules toward BN cage
is Br–CN>Cl–CN > F–CN.

When the adsorption process occurred from the X head, no
discernable local structural deformation occurred and the mol-
ecules were located at a somewhat large distance from the
cage, while upon the adsorption process via the N head, the
adsorbing B atom is projected out slightly and the correspond-
ing N–B–N angles decrease, indicating a stronger interaction.
Table 1 lists the vibrational frequencies of X–C and C–N
bonds of X–CN molecules in the free state and in complex
forms; the corresponding bond lengths are also indicated. It
can be seen that, in the X-head adsorption, neither the vibra-
tional frequencies nor the bond lengths are changed markedly,
indicating a noncovalent interaction. In the free X–CN mole-
cules, the vibrational frequency of the C–N bond is about
2547 cm−1, 2410 cm−1, and 2387 cm−1 for X = F, Cl, and
Br, respectively. This trend indicates that the stronger
electron-withdrawing atom with higher electronegativity
strengthens the C–N bond more and increases the bond order.
This may be because of more electron-withdrawing from the
antibonding orbital of the C–N bond.

After the adsorption process via the N-head, the vibra-
tional frequency of the C–N bond is decreased significant-
ly in the order Br > Cl > F. It seems that charge transfer
from the molecule to the cluster may be responsible for
the frequency reduction because of electron depletion
from the antibonding orbital of the C–N bond. NBO anal-
ysis indicates that the charge transfer from X–CN is about
0.287 e, 0.311 e, and 0.324 e (Table 2) for X = F, Cl, and
Br, respectively, which is in agreement with the trend of
vibrational frequency reduction. Also, C–N bond length is
somewhat shortened after the adsorption process, which is
consistent with the charge transfer and frequency change.
By electron reduction on the –CN group, its interaction

with the high electron –X group becomes stronger, and
the C–X bonds are shortened, as shown in Table 1, and
their vibration frequencies are also increased.

Electronic properties

The main purpose this work was to explore the capability of
B12N12 to detect X–CN gases. In addition to expensive exper-
imental methods, numerous computational approaches have
been used to investigate the sensing behavior of different
nanostructures toward several poisonous gases [63–72]. One
of the most widespread theoretical methods [11, 73–79] de-
pends on the Eg change of the sensor upon gas adsorption. The

Fig. 4 Density of states (DOS) plots of the different complexes shown in
Fig. 2

Table 2 The energies of HOMO, LUMO, and HOMO−LUMO gap
(Eg) in eV for different structures. %ΔEg indicates the change in Eg

after the adsorption process. Q is the calculated natural bond orbital
(NBO) charge on the adsorbed X-CN (X = F, Cl, and Br) molecule. The
complexes are shown in Fig. 2

Structure EHOMO ELUMO Eg %ΔEg Q

B12N12 −7.70 −0.86 6.84 - -

F.1 −7.78 −0.95 6.83 −0.2 0.001

Cl.1 −7.79 −0.98 6.81 −0.4 0.005

Br.1 −7.76 −1.15 6.61 −3.3 0.018

F.2 −6.87 −1.26 5.61 −17.9 0.287

Cl.2 −6.79 −1.87 4.92 −28.0 0.311

Br.2 −6.74 −2.49 4.25 −37.9 0.324
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conduction electron population is responsible for the electrical
conductivity in a semiconductor, which can be formulated as
[80]:

N ¼ A T
3

.
2
exp −Eg

.
2kT

� �
ð4Þ

where k is Boltzmann’s constant, and A is a constant with unit
electrons/m3K3/2. A gas sensor operates based on the change
of its electrical conductivity upon the gas adsorption and
charge transfer. Equation 4 indicates that the population of
conduction electrons of the B12N12 nanocluster will change
exponentially by changing the Eg and will thus alter the elec-
trical conductivity.

Table 2 indicates that, upon the adsorption process via X-
head, the HOMO, LUMO and Eg are not changed meaning-
fully, and also the NBO charge transfer is negligible, while the
adsorption process from N-head significantly changes the
electronic properties of the cluster, as shown by the DOS plots
in Fig. 4. It should be noted that, in reality, the most favorable
interaction will be from the N-head because of the large ener-
gy release. The DOS plots indicates that, after the adsorption
process, new states appeared within the Eg that significantly
reduce it. Overall, HOMO levels are destabilized slightly, and
LUMO levels are largely stabilized, and thus Eg is decreased.
NBO charge analysis demonstrated that, compared to the X-
head adsorptions, in the case of N-head adsorption a large
charge is transferred from the X–CN to the cluster, which
may be responsible for the large electronic property changes
accompanying the structural deformations.

By increasing the atomic number of the halogen in theX–CN
molecule, the LUMO level is stabilized much more, and the
charge transfer is also increased more. Thus, the Eg is decreased
more, which increases exponentially the electrical conductivity.

In the case of complex Br.2, after the adsorption of Br–CN, the
LUMO level is shifted from −0.86 eV in the bare BN cage to
−2.49 eV in this complex, indicating a large stabilization. The
LUMO levels of complexes F.2 and Cl.2 are about −1.226 eV
and −1.87 eV, respectively, which are less stabilized compared
to that of the complex Br.2. Also, the Eg of the Br.2 complex is
reduced by about 37.9%, i.e., a reduction of about 17.9% and
28% for F.2 and Cl.2 complexes, respectively.

After charge transfer from the X–CN to the BN cluster, the
X–CN molecule becomes partially positive and suitable for
LUMO level in the complexes. By increasing the charge trans-
fer, the X–CN becomes more positive and the LUMO level is
more stabilized (Table 2). Our partial DOS plot analysis for
complexBr.2 (as a representative model) in Fig. 5 indicates that
the newly appeared state is LUMO level, and is created mainly
by the contribution of the Br–CN molecule. Frontier molecular
orbital analysis shows that, in accordance with the energy
change, the LUMO level is shifted from the surface of the BN
cage to the surface of Br–CN (Fig. 5). These findings indicate
that the presence of X–CN molecules will boost the electrical
conductivity of the B12N12 nanocage, which, by increasing the
atomic number of X atoms, increases the electrical conductivity
more. It can be concluded that X–CN can be detected selectively
by B12N12 because a different electrical signal will be produced
upon adsorption of the B12N12 nanocluster.

Recovery time

Sensor recovery from the adsorbed gases is of great impor-
tance. Experimentally the recovery process is done by heating
to upper temperatures or by UV light exposure [81]. The re-
covery time can be calculated from transition theory:

τ ¼ υ−1exp −Ead

.
kT

� �
ð5Þ

Fig. 5 Partial density of states
(PDOS) of complex Br.2, and its
HOMO and LUMO profiles
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where k is Boltzmann’s constant (∼8.31 × 10−3 kJ mol−1.K), T
is temperature, and υ the attempt frequency. If one employs an
attempt frequency of about 1012 s−1 (which has been used to
recover carbon nanotubes at room temperature [82]), the re-
covery time of Br–CN, Cl–CN, and F–CN molecules in com-
plexes Br.2, Cl.2, and F.2 will be about 1.43, 0.15, and 0.02
ms, respectively. This shows that the B12N12 nanocluster ben-
efits from a short recovery time as a sensor. As a comparison,
it has been shown experimentally that the recovery time for
NO2 desorption from the surface of N-doped carbon nano-
tubes is about 9 ms, which is excellent [83].

Conclusions

We investigated the adsorption of X–CNmolecules on the BN
nanocage using DFT calculations. We found that this cluster
may be a promising gas sensor for detection of X–CN gases
because of a large charge transfer and the reduction of Eg of
the cage. It was shown that the cage can selectively detect
these gases because of their different effect on the electrical
conductivity. Increasing the atomic number of the X atom, the
LUMO level is much more stabilized, and the Eg is much
more reduced. The X–CN molecules prefer to be adsorbed
on the B sites of the BN cluster via their N-head, with ΔHad

values of about −19.2 kJ mol−1, −23.4 kJ mol−1, and
−30.5 kJ mol−1 for X = F, Cl, and Br, respectively. Also, the
recovery time of the Br–CN, Cl–CN, and F–CN molecules in
complexes Br.2, Cl.2, and F.2 was calculated to be 1.43ms,
0.15ms, and 0.02ms, respectively.
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