CORRESPONDENCE

Shall We Dance? Extending TANGO's Results to Clinical Practice

To the Editor-After previous evidence from the ASPIRE trial [1], results from the TANGO study [2] definitively proved the efficacy of lamivudine (3TC) plus dolutegravir (DTG) as a maintenance strategy. As trials' populations often differ from real-practice settings, we aimed to assess whether these results are reproducible in an unselected population living with human immunodeficiency virus (HIV). An observational, longitudinal, multicenter research study was conducted. Patients living with HIV who had viral suppression (at least 1 HIV RNA <50 copies/mL) were followed-up from the start of 3TC + DTG. The cohort was divided into 2 groups based on compliance or noncompliance with the inclusion criteria of the TANGO study (the absence of a hepatitis B virus coinfection, of previous virological failure [VF], of a M184V-harboring virus, and of a previous AIDS event other than cutaneous Kaposi's sarcoma and a nadir CD4 count $\leq 200 \text{ mm}^3$).

The times to VF (ie, 2 consecutive HIV RNA determinations ≥50 cps/mL or a single HIV RNA ≥1000 cps/mL) and to treatment discontinuation (ie, the interruption of any of the study drugs) in the 2 groups were compared through a Kaplan-Meier with log-rank test and a Cox-regression model after adjusting for the main clinical and demographic between-groups differences. Changes in immunological parameters were assessed by a linear mixed model for repeated measures.

We analyzed 557 patients with a median follow-up time of 22 months: 145 (26.0%) met the TANGO inclusion criteria (TANGO group; TG). They were mostly men (70.4%) of Caucasian ethnicity (92.1%). The characteristics of the study groups are summarized in Table 1.

There was 1 VF over 248 patientyears of follow-up (PYFU) and there were 11 VFs over 776 PYFU in the TG and non-TG, respectively. The estimated probabilities of maintaining virological suppression were 99.2% (standard deviation [SD] ± 1.6) at 48, 96, and 144 weeks in the TG and 98.5% (SD \pm 1.4) at 48 weeks, 97.7 (SD \pm 1.8) at 96 weeks, and 95.7% (SD \pm 2.6) at 144 weeks in the non-TG (log-rank P = .189). After stratifying for the presence of M184V at historical genotype and for previous VF, the results did not change (P = .253

Table 1. Baseline Patients' Characteristics

	TANGO Group, n = 145	Non-TANGO Group, n = 412	<i>P</i> Value
Age, years, median (IQR)	49 (40–55)	53 (47–58)	<.001
Male sex, n (%)	111 (76.6)	281 (68.2)	.058
Ethnicity, n (%)			
Caucasians	129 (89.0)	384 (93.2)	.112
Sub-Saharan	4 (2.8)	14 (3.4)	
Central or South American	6 (4.1)	6 (1.5)	
Other/unknown	6 (4.1)	8 (1.9)	
Risk factor for HIV, n (%)			
Heterosexual	56 (38.6)	169 (41.0)	<.001
MSM	37 (25.5)	108 (26.2)	
IDU	15 (10.4)	86 (20.9)	
Other/unknown	37 (25.5)	49 (11.9)	
CDC stage C, n (%)	20 (13.8)	62 (15.0)	.854
Anti HCV-positive serostatus, n (%)	25 (17.2)	101 (24.5)	.076
Peak HIV RNA, log ₁₀ copies/mL, median (IQR)	4.95 (4.45–5.35)	4.89 (4.37-5.43)	.780
Nadir CD4+ cell count, cells/mm³, median (IQR)	278 (140–395)	212 (93–309)	.001
Non-B HIV subtype, n (%)	5 (3.4)	13 (3.2)	.875
Years from HIV diagnosis, median (IQR)	9 (5–17)	18 (10–24)	<.001
Years of cumulative ARV exposure, median (IQR)	7 (3–12)	13 (8–19)	<.001
Months of virological suppression, median (IQR)	61.5 (31.5–103.1)	95.4 (51.5-126.9)	<.001
Time of virological suppression ≤6 months (%)	/	13 (3.2)	NA
Baseline CD4+ cell count, cells/mm3, median (IQR)	692 (453–912)	660 (500–876)	.826
Previous virological failure, n (%)	/	223 (54.1)	NA
Previous ARV regimen, n (%)			
2NRTI + bPI	22 (15.2)	55 (13.3)	<.001
2NRTI + NNRTI	90 (62.1)	55 (13.3)	
2NRTI + INI	33 (22.7)	57 (13.8)	
Dual/monotherapy	0 (0)	220 (53.4)	
Other	0 (0)	25 (6.2)	
M184V resistance mutation detection at last genotipic resistance test, n (%)	/	45 (10.9)	NA
Reason for starting DTG + 3TC, n (%):			
Simplification/proactive switch	49 (33.8)	106 (25.7)	<.001
Dyslipidemia	5 (3.4)	87 (21.1)	
Toxicity GI tract	13 (9.0)	31 (7.5)	
Renal toxicity	13 (9.0)	18 (4.4)	
Osteopenia/osteoporosis	20 (13.8)	7 (1.7)	
Other toxicity	10 (6.8)	10 (2.4)	
Drug-drug interaction	6 (4.1)	30 (7.3)	
Other/unknown	29 (20.1)	123 (29.9)	

Abbreviations: 3TC, lamivudine; ARV, antiretroviral; bPI, boosted-protease inhibitor; CDC, Centers for Disease Control and Prevention; DTG, dolutegravir; GI, gastrointestinal; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, intravenous drug users; INI, integrase inhibitor; IQR, interquartile range; MSM, men who have sex with men; NA, not applicable; NNRTI, nonnucleoside reverse transcriptase inhibitor.

and P = .186, respectively). Moreover, belonging to TG was not predictive of VF (adjusted hazard ratio, 0.35; 95% CI, .04–2.84; P = .327) after adjusting for age, anti–hepatitis C virus serostatus, and HIV duration. No resistance-associated mutations emerged after VF.

The estimated probabilities of remaining on 3TC + DTG were 86.6% $(SD \pm 5.9)$ at Week 48 and 79.5% (SD \pm 7.5) at both Weeks 96 and 144 in the TG, and 85.8% (SD ± 3.5), 78.9% (SD \pm 4.3). and 73.9% (SD \pm 5.1) at Weeks 48, 96, and 144 in the non-TG (log-rank P = .654), respectively, with no significantly increased hazard of treatment discontinuation for the TG (vs non-TG; adjusted hazard ratio, 0.97; 95% CI, .60-1.57; P = .894) after adjusting for confounders. A significant increase in the CD4/CD8 ratio (mean changes at 96 weeks, +0.05 in TG and +0.07 in non-TG) was observed over time, with no difference between groups.

Previous studies on 3TC + DTG as a switch strategy reported a low rate of VF in clinical practice [3, 4]. However, some demographic and viro-immunological characteristics seemed to increase the risk of VF during 3TC + DTG [5], possibly limiting the widespread use of this strategy in experienced patients.

Overall, our findings from clinical practice are in line with the TANGO study results. However, a higher—albeit not statistically significant—number of VF was seen in the non-TG. Pending results from longer follow-up studies, in our opinion, caution should be advised when

considering 3TC + DTG for selected patients (eg, those with previous VF or a shorter time of viral suppression).

Notes

Acknowledgements. The authors thank all collaborators of the study: Alessandra Latini, Manuela Colafigli, Luigi Celani, Gabriella d'Ettorre (Roma), Andrea Giacometti (Ancona), Filippo Lagi (Firenze), Andrea Giacomelli, and Maria Vittoria Cossu (Milano).

Potential conflicts of interest. A. B. has received nonfinancial support from Bristol-Myers Squibb (BMS) and ViiV Healthcare and personal fees from Gilead Sciences and Janssen. S. R. has received research grants to his institution from ViiV Heathcare, BMS, Gilead Sciences, and Janssen, outside the submitted work, and was a paid consultant for ViiV Heathcare, Gilead Sciences, Merck Sharp & Dohme (MSD), BMS, Mylan, and Janssen. A. C. has received personal grants from Abbvie, Gilead, and ViiV. G. S. has received speaker's fees from Gilead, Merk, Janssen, Abbvie, and ViiV. C. M. has participated in advisory boards, received study grants, and/or received speaker honoraria from Abbvie, Gilead, Viiv, Janssen, Angelini, BMS, and MSD. S. D. G. was a paid consultant or member of advisory boards for Gilead, ViiV Healthcare, Janssen-Cilag, MSD, and BMS. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Alberto Borghetti, ¹ Arturo Ciccullo, ^{2, ©} Gianmaria Baldin, ^{3, ©} Stefano Rusconi, ⁴ Amedeo Capetti, ⁵ Gaetana Sterrantino, ⁶ William Gennari, ⁷ Cristina Mussini, ⁸ Vanni Borghi, ⁸ and Simona Di Giambenedetto ^{1, 2}

¹Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Unità Operativa Complessa Malattie Infettive, Rome, Italy, ²Dipartimento di Sicurezza e Bioetica Sezione Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy, ³Mater Olbia Hospital, Olbia, Italy, ⁴Infectious Diseases Unit, Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, University of Milan, Milan, Italy, ⁵Division of Infectious Diseases, Department of Infectious Diseases, Luigi Sacco University Hospital, Milan, Italy, ⁶Infectious Diseases Unit, Department

of Clinical and Experimental Medicine, University of Florence, Florence, Italy, ⁷Laboratorio di Microbiologia e Virologia, Azienda Ospedaliero Universitaria di Modena, Modena, Italy, and ⁸Clinica Malattie Infettive e Tropicali, Azienda Ospedaliero Universitaria di Modena, Modena, Italy

References

- Taiwo BO, Marconi VC, Berzins B, et al. Dolutegravir plus lamivudine maintains human immunodeficiency virus-1 suppression through week 48 in a pilot randomized trial. Clin Infect Dis 2018; 66:1794--7.
- van Wyk J, Ajana F, Bisshop F, et al. Efficacy and safety of switching to dolutegravir/lamivudine fixed-dose two-drug regimen versus continuing a tenofovir alafenamide-based three- or four-drug regimen for maintenance of virologic suppression in adults with HIV-1: Phase 3, randomized, noninferiority TANGO study. Clin Infect Dis 2020. doi:10.1093/cid/ciz1243
- Maggiolo F, Gulminetti R, Pagnucco L, et al. Lamivudine/dolutegravir dual therapy in HIVinfected, virologically suppressed patients. BMC Infect Dis 2017: 17:215.
- Hidalgo-Tenorio C, Cortés LL, Gutiérrez A, et al. DOLAMA study: effectiveness, safety and pharmacoeconomic analysis of dual therapy with dolutegravir and lamivudine in virologically suppressed HIV-1 patients. Medicine (Baltimore) 2019; 98:e16813.
- Borghetti A, Moschese D, Cingolani A, et al. Lamivudine-based maintenance antiretroviral therapies in patients living with HIV-1 with suppressed HIV RNA: derivation of a predictive score for virological failure. HIV Med 2019; 20:624–7.

Correspondence: A. Ciccullo, Department of Safety and Bioethics, Section of Infectious Diseases, Catholic University of the Sacred Heart, L.go F.Vito1, 00168 Rome, Italy (arturo.ciccullo@gmail.com)

Clinical Infectious Diseases® 2020;71(7):e200–1

© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

DOI: 10.1093/cid/ciaa313