1978 reflections with $I > 2\sigma(I)$

2 standard reflections

frequency: 60 min

intensity decay: none

 $R_{\rm int} = 0.046$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

13-Hydroxy-4,16-dimethyl-4,16-diazapentacyclo[12.3.1.0^{1,5}.0^{5,13}.0^{7,12}]octadeca-7(12),8,10-triene-6,18-dione

J. Suresh,^a K. Gurunathan,^a R. Suresh Kumar,^b S. Perumal^b and P. L. Nilantha Lakshman^{c*}

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: nilanthalakshman@yahoo.co.uk

Received 20 April 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.120; data-to-parameter ratio = 13.1.

In the title compound, $C_{18}H_{20}N_2O_3$, the *N*-methylpiperidone ring adopts a chair conformation. The pyrrolidine ring and the five-membered cyclopentane rings adopt envelope conformations. The five-membered ring of the ninhydrin system adopts an envelope conformation with the central C atom deviating by 0.217(1)Å from the mean plane through the other atoms. The molecular packing is characterized by intermolecular C- $H \cdots O$ and intramolecular $C - H \cdots O$ and $O - H \cdots N$ interactions.

Related literature

For the cytotoxic and anticancer properties of piperidinones, see: Dimmock et al. (1990, 2001). Piperidinone derivatives have attracted attention due to their predicted mode of interaction with cellular thiols, having little or no affinity for the hydroxy and amino groups found in nucleic acids, see: Baluja et al. (1964); Mutus et al. (1989). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser et al., 1970). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{18}H_{20}N_2O_3$	$V = 1577.70 (12) \text{ Å}^3$
$M_r = 312.36$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 11.0862 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.6152 (5) Å	T = 293 K
c = 12.5670 (6) Å	$0.18 \times 0.13 \times 0.11 \text{ mm}$
$\beta = 102.851 \ (9)^{\circ}$	

Data collection

Nonius MACH-3 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.984, \ T_{\max} = 0.990$ 3226 measured reflections 2764 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	211 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2764 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O2 - H2 \cdots N2 \\ C18 - H18B \cdots O3^{i} \end{array}$	0.82	2.12	2.655 (2)	123
	0.96	2.39	3.288 (3)	155

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

JS and SG thank the Management of The Madura College, Madurai, for their constant support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2770).

References

Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053-2054.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Dimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z.,

- Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug. Des. Deliv. 6, 183-194
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

- Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595-598.
- Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237-243.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

Acta Cryst. (2009). E65, o1163-o1164 [doi:10.1107/S1600536809015293]

13-Hydroxy-4,16-dimethyl-4,16-diazapentacyclo[12.3.1.0^{1,5}.0^{5,13}.0^{7,12}]octadeca-7(12),8,10-triene-6,18-dione

J. Suresh, K. Gurunathan, R. S. Kumar, S. Perumal and P. L. N. Lakshman

Comment

Piperidinones belong to an important class of heterocycles which are found to possess a variety of biological activities, including cytotoxic and anticancer properties (Dimmock *et al.*, 1990, 2001). Derivatives of piperidinones have also attracted wide attention from chemists and biologists due to their predicted mode of interaction with cellular thiols, having little or no affinity for the hydroxy and amino groups found in nucleic acids (Baluja *et al.*, 1964; Mutus *et al.*, 1989). Ninhydrin is used to monitor deprotection in solid phase peptide synthesis (Kaiser *et al.*, 1970).

The molecular structure of the title compound is shown in Fig.1. The n-methyl piperidone ring adopts a chair conformation [Q=0.6668 (19) Å, θ = 13.62 (16)°, Φ = 152.0 (7)°; Cremer and Pople, 1975]. The pyrrolidine ring A(N2—C16) and the five membered cyclopentane ring B(C1—C4) adopt envelope conformations [puckering parameters Q=0.327 (2) Å, Φ =178.8 (4)° and Q=0.483 (2) Å, Φ =162.3 (2)° respectively, Cremer and Pople, 1975]. In the ninhydrin system, in the five membered ring the flap atom C7 deviate from the mean plane formed by other atoms C6/C8/C9/C10/C11/C12/C13/C14 by 0.217 (1)Å adopting an envelope conformation. The sum of the angle at the atom N2 is 338.17 (2)° is in accordance with *sp*³ hybridization.

Fig. 2 shows the packing viewed down the c—axis. The molecular interaction through C—H···O (Table 1) hydrogen bonds, generating a graph set motif of $C_1^{1}(7)$ along the b—axis, stabilize the crystal structure. There are neither a marked C—H··· π nor π ··· π interactions in the structure.

Experimental

A mixture of 1-methyl-4-piperidinone 0.200 g (0.002 mol), ninhydrin 0.315 g (0.002 mol) and sarcosine 0.156 g (0.002 mol) in methanol (30 ml) were refluxed in a water bath for 10 h. After completion of the reaction as monitored by TLC, the excess solvent was removed under vacuum and the residue subjected to flash column chromatography using petroleum ether:ethyl acetate mixture (8:2 v/v) as eluent to obtain crystals of title compound in 8% yield along with a other product. Yield: 8%, melting point: 435–436 K.

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.987 and Å, O—H = 0.82 Å. $U_{iso} = 1.2U_{eq}(C)$ for CH, CH₂ groups and $U_{iso} = 1.5U_{eq}(C,O)$ for OH and CH₃ groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. Packing diagram viewed down the *c* axis.

13-Hydroxy-4,16-dimethyl-4,16- diazapentacyclo[12.3.1.0^{1,5}.0^{5,13}.0^{7,12}]octadeca- 7(12),8,10-triene-6,18-dione

Crystal data	
$C_{18}H_{20}N_2O_3$	$F_{000} = 664$
$M_r = 312.36$	$D_{\rm x} = 1.315 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 11.0862 (5) Å	$\theta = 2 - 25^{\circ}$
<i>b</i> = 11.6152 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.5670 (6) Å	T = 293 K
$\beta = 102.851 \ (9)^{\circ}$	Needle, colourless
$V = 1577.70 (12) \text{ Å}^3$	$0.18\times0.13\times0.11~mm$
Z = 4	

Data collection

Nonius MACH-3 diffractometer	$R_{\rm int} = 0.046$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293 K	$h = 0 \rightarrow 13$
ω –2 θ scans	$k = -1 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -14 \rightarrow 14$
$T_{\min} = 0.984, \ T_{\max} = 0.990$	2 standard reflections
3226 measured reflections	every 60 min
2764 independent reflections	intensity decay: none
1978 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 0.2971P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2764 reflections	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
211 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.37990 (16)	0.05350 (16)	0.64487 (16)	0.0558 (5)
C2	0.25684 (15)	0.03912 (14)	0.56351 (16)	0.0496 (4)
C3	0.15940 (16)	0.06258 (15)	0.63055 (15)	0.0517 (4)
H3A	0.0772	0.0460	0.5874	0.062*
H3B	0.1744	0.0143	0.6951	0.062*
C4	0.39217 (16)	0.18110 (16)	0.66421 (15)	0.0537 (5)
H4	0.4750	0.2026	0.7051	0.064*
C5	0.29116 (17)	0.21625 (17)	0.72388 (14)	0.0554 (5)
H5A	0.3067	0.1796	0.7950	0.067*
H5B	0.2935	0.2989	0.7349	0.067*
C6	0.36690 (14)	0.22296 (15)	0.54459 (15)	0.0471 (4)
C7	0.26099 (14)	0.14067 (15)	0.48444 (13)	0.0461 (4)
C8	0.14614 (15)	0.21810 (16)	0.45590 (13)	0.0471 (4)
С9	0.18837 (16)	0.33902 (15)	0.47548 (14)	0.0475 (4)
C10	0.31366 (16)	0.34242 (15)	0.52472 (14)	0.0472 (4)
C11	0.37277 (19)	0.44677 (16)	0.54870 (16)	0.0595 (5)
H11	0.4564	0.4498	0.5824	0.071*
C12	0.3053 (2)	0.54695 (17)	0.52175 (17)	0.0680 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12	0.3445	0.6178	0.5363	0.082*
C13	0.1808 (2)	0.54309 (18)	0.47352 (17)	0.0688 (6)
H13	0.1369	0.6114	0.4570	0.083*
C14	0.12088 (19)	0.43966 (18)	0.44954 (16)	0.0602 (5)
H14	0.0370	0.4372	0.4167	0.072*
C15	0.24197 (18)	-0.07110 (18)	0.49582 (19)	0.0671 (6)
H15A	0.3119	-0.1222	0.5203	0.080*
H15B	0.1667	-0.1113	0.5006	0.080*
C16	0.2361 (2)	-0.0302 (2)	0.3805 (2)	0.0798 (7)
H16A	0.2811	-0.0824	0.3431	0.096*
H16B	0.1509	-0.0260	0.3397	0.096*
C17	0.2705 (2)	0.1496 (2)	0.28884 (17)	0.0845 (7)
H17A	0.1830	0.1563	0.2602	0.127*
H17B	0.3075	0.1103	0.2369	0.127*
H17C	0.3061	0.2249	0.3025	0.127*
C18	0.06767 (19)	0.2233 (2)	0.70672 (18)	0.0693 (6)
H18A	-0.0089	0.2123	0.6544	0.104*
H18B	0.0787	0.3036	0.7240	0.104*
H18C	0.0660	0.1808	0.7719	0.104*
N1	0.16914 (13)	0.18280 (12)	0.66132 (11)	0.0479 (4)
N2	0.29314 (14)	0.08429 (15)	0.39070 (13)	0.0603 (4)
01	0.04209 (10)	0.18577 (12)	0.41422 (11)	0.0618 (4)
O2	0.47670 (10)	0.20956 (13)	0.50608 (13)	0.0650 (4)
H2	0.4673	0.1578	0.4606	0.098*
O3	0.45072 (13)	-0.02185 (13)	0.68415 (14)	0.0810 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0474 (10)	0.0498 (11)	0.0671 (12)	0.0042 (8)	0.0059 (9)	0.0104 (9)
C2	0.0446 (9)	0.0392 (9)	0.0636 (11)	-0.0012 (7)	0.0093 (8)	-0.0055 (8)
C3	0.0506 (10)	0.0463 (10)	0.0576 (11)	-0.0046 (8)	0.0110 (8)	0.0019 (8)
C4	0.0431 (9)	0.0535 (11)	0.0569 (11)	-0.0048 (8)	-0.0055 (8)	0.0016 (9)
C5	0.0653 (11)	0.0536 (11)	0.0430 (9)	-0.0058 (9)	0.0026 (8)	0.0004 (8)
C6	0.0342 (8)	0.0477 (10)	0.0585 (10)	-0.0011 (7)	0.0082 (7)	0.0006 (8)
C7	0.0390 (9)	0.0495 (10)	0.0493 (10)	-0.0009 (7)	0.0089 (7)	-0.0065 (8)
C8	0.0395 (9)	0.0594 (11)	0.0416 (9)	0.0023 (8)	0.0073 (7)	0.0001 (8)
C9	0.0505 (10)	0.0509 (10)	0.0434 (9)	0.0056 (8)	0.0150 (7)	0.0053 (8)
C10	0.0504 (10)	0.0472 (10)	0.0463 (9)	-0.0013 (8)	0.0155 (8)	0.0038 (8)
C11	0.0648 (12)	0.0516 (12)	0.0635 (12)	-0.0107 (9)	0.0171 (9)	0.0023 (9)
C12	0.0982 (17)	0.0463 (12)	0.0655 (13)	-0.0053 (11)	0.0311 (12)	0.0055 (10)
C13	0.0958 (17)	0.0522 (13)	0.0640 (13)	0.0185 (11)	0.0300 (12)	0.0143 (10)
C14	0.0639 (12)	0.0639 (13)	0.0544 (11)	0.0184 (10)	0.0168 (9)	0.0104 (9)
C15	0.0553 (11)	0.0494 (11)	0.0965 (16)	-0.0015 (9)	0.0170 (11)	-0.0161 (11)
C16	0.0767 (15)	0.0750 (16)	0.0899 (17)	-0.0090 (11)	0.0229 (12)	-0.0364 (13)
C17	0.0865 (16)	0.117 (2)	0.0548 (13)	0.0058 (14)	0.0251 (11)	-0.0107 (13)
C18	0.0730 (13)	0.0697 (14)	0.0681 (13)	0.0075 (11)	0.0222 (10)	-0.0097 (11)
N1	0.0508 (8)	0.0466 (8)	0.0461 (8)	-0.0003 (6)	0.0105 (6)	-0.0013 (6)

N2	0.0567 (9)	0.0692 (11)	0.0584 (10)	0.0002 (8)	0.0201 (7)	-0.0161 (8)
01	0.0403 (7)	0.0767 (10)	0.0626 (8)	-0.0001 (6)	-0.0011 (6)	-0.0024 (7)
O2	0.0405 (7)	0.0683 (10)	0.0891 (11)	-0.0026 (6)	0.0207 (6)	-0.0079 (8)
03	0.0642 (9)	0.0617 (9)	0.1068 (13)	0.0116 (7)	-0.0029 (8)	0.0202 (8)
Geometric part	ameters (Å, °)					
C1—O3		1.206 (2)	C10–	-C11	1.3	79 (3)
C1—C4		1.503 (3)	C11–	-C12	1.3	34 (3)
C1—C2		1.521 (2)	C11–	-H11	0.9	300
C2—C15		1.526 (3)	C12-	-C13	1.3	79 (3)
C2—C3		1.535 (3)	C12-	-H12	0.93	300
С2—С7		1.549 (3)	C13–	-C14	1.3	74 (3)
C3—N1		1.446 (2)	C13–	-H13	0.93	300
С3—НЗА		0.9700	C14-	-H14	0.9	300
С3—Н3В		0.9700	C15–	-C16	1.5	13 (3)
C4—C5		1.535 (3)	C15–	-H15A	0.9	700
C4—C6		1.545 (3)	C15–	-H15B	0.9	700
C4—H4		0.9800	C16–	-N2	1.4	66 (3)
C5—N1		1.458 (2)	C16–	-H16A	0.9	700
C5—H5A		0.9700	C16–	-H16B	0.9	700
С5—Н5В		0.9700	C17–	-N2	1.4	61 (3)
C6—O2		1.415 (2)	C17–	-H17A	0.9	500
C6—C10		1.507 (2)	C17–	-H17B	0.9	500
C6—C7		1.571 (2)	C17–	-H17C	0.9	500
C7—N2		1.460 (2)	C18–	-N1	1.44	48 (2)
С7—С8		1.535 (2)	C18–	-H18A	0.9	500
C8—O1		1.2154 (19)	C18–	-H18B	0.9	500
С8—С9		1.484 (3)	C18–	-H18C	0.9	500
C9—C14		1.387 (3)	02—	H2	0.82	200
C9—C10		1.390 (2)				
O3—C1—C4		128.48 (17)	C11–	-C10C6	128	.58 (16)
O3—C1—C2		126.90 (18)	С9—	С10—С6	111	.31 (14)
C4—C1—C2		104.62 (14)	C10-	-C11C12	118	.75 (19)
C1—C2—C15		115.87 (15)	C10–	-C11—H11	120	.6
C1—C2—C3		104.30 (15)	C12–	-C11—H11	120	.6
C15—C2—C3		116.94 (15)	C13–	-C12C11	120	.90 (19)
C1—C2—C7		101.38 (13)	C13–	-C12—H12	119	.6
C15—C2—C7		107.23 (16)	C11–	-C12—H12	119	.6
C3—C2—C7		109.99 (14)	C14-	-C13-C12	120	.86 (19)
N1—C3—C2		107.36 (14)	C14-	-C13—H13	119	.6
N1—C3—H3A		110.2	C12–	-C13—H13	119	.6
С2—С3—НЗА		110.2	C13–	-C14C9	118	.43 (19)
N1—C3—H3B		110.2	C13–	-C14—H14	120	.8
С2—С3—Н3В	_	110.2	С9—	C14—H14	120	.8
H3A—C3—H3I	В	108.5	C16–	-C15-C2	104	.31 (17)
C1—C4—C5		106.95 (15)	C16–	-C15—H15A	110	.9
C1—C4—C6		99.36 (15)	C2—	C15—H15A	110	.9
C5—C4—C6		113.42 (14)	C16–	-C15—H15B	110	.9

C1—C4—H4	112.1	С2—С15—Н15В	110.9
С5—С4—Н4	112.1	H15A—C15—H15B	108.9
C6—C4—H4	112.1	N2—C16—C15	105.95 (17)
N1—C5—C4	110.85 (14)	N2—C16—H16A	110.5
N1—C5—H5A	109.5	C15-C16-H16A	110.5
C4—C5—H5A	109.5	N2—C16—H16B	110.5
N1—C5—H5B	109.5	C15-C16-H16B	110.5
C4—C5—H5B	109.5	H16A—C16—H16B	108.7
H5A—C5—H5B	108.1	N2—C17—H17A	109.5
O2—C6—C10	112.31 (14)	N2—C17—H17B	109.5
O2—C6—C4	108.33 (14)	H17A—C17—H17B	109.5
C10—C6—C4	115.51 (15)	N2—C17—H17C	109.5
O2—C6—C7	112.10 (14)	H17A—C17—H17C	109.5
C10—C6—C7	104.91 (13)	H17B—C17—H17C	109.5
C4—C6—C7	103.35 (13)	N1-C18-H18A	109.5
N2—C7—C8	114.40 (14)	N1-C18-H18B	109.5
N2—C7—C2	102.91 (14)	H18A—C18—H18B	109.5
C8—C7—C2	117.03 (14)	N1—C18—H18C	109.5
N2—C7—C6	111.76 (13)	H18A—C18—H18C	109.5
C8—C7—C6	104.37 (14)	H18B—C18—H18C	109.5
C2—C7—C6	106.28 (13)	C3—N1—C18	113.60 (15)
01—C8—C9	126.74 (16)	C3—N1—C5	113.99 (14)
O1—C8—C7	125.32 (17)	C18—N1—C5	114.19 (15)
C9—C8—C7	107.53 (13)	C7—N2—C17	116.69 (17)
C14—C9—C10	120.94 (17)	C7—N2—C16	107.45 (16)
C14—C9—C8	128.68 (16)	C17—N2—C16	114.03 (18)
C10—C9—C8	110.36 (14)	С6—О2—Н2	109.5
С11—С10—С9	120.10 (17)		
O3—C1—C2—C15	-22.8 (3)	C6—C7—C8—O1	-175.36 (16)
C4—C1—C2—C15	157.13 (17)	N2—C7—C8—C9	-110.88 (16)
O3—C1—C2—C3	107.2 (2)	C2—C7—C8—C9	128.67 (15)
C4—C1—C2—C3	-72.83 (18)	C6—C7—C8—C9	11.57 (17)
O3—C1—C2—C7	-138.5 (2)	O1—C8—C9—C14	-1.2 (3)
C4—C1—C2—C7	41.44 (18)	C7—C8—C9—C14	171.71 (17)
C1—C2—C3—N1	66.97 (17)	O1—C8—C9—C10	-179.96 (17)
C15—C2—C3—N1	-163.63 (15)	C7—C8—C9—C10	-7.01 (19)
C7—C2—C3—N1	-41.05 (18)	C14—C9—C10—C11	0.1 (3)
O3—C1—C4—C5	-112.9 (2)	C8—C9—C10—C11	178.94 (16)
C2—C1—C4—C5	67.20 (18)	C14—C9—C10—C6	-179.82 (16)
O3—C1—C4—C6	129.0 (2)	C8—C9—C10—C6	-1.0 (2)
C2—C1—C4—C6	-50.92 (17)	O2-C6-C10-C11	-49.6 (2)
C1C4C5N1	-56.50 (19)	C4—C6—C10—C11	75.3 (2)
C6—C4—C5—N1	52.0 (2)	C7—C6—C10—C11	-171.64 (18)
C1—C4—C6—O2	-80.09 (16)	O2—C6—C10—C9	130.29 (15)
C5—C4—C6—O2	166.74 (14)	C4—C6—C10—C9	-104.79 (17)
C1-C4-C6-C10	152.95 (14)	C7—C6—C10—C9	8.28 (18)
C5-C4-C6-C10	39.8 (2)	C9—C10—C11—C12	-0.7 (3)
C1—C4—C6—C7	38.98 (16)	C6-C10-C11-C12	179.21 (17)
C5—C4—C6—C7	-74.19 (17)	C10-C11-C12-C13	1.1 (3)

C1—C2—C7—N2	102.34 (15)	C11—C12—C13—C14	-0.9 (3)
C15—C2—C7—N2	-19.57 (17)	C12-C13-C14-C9	0.3 (3)
C3—C2—C7—N2	-147.71 (14)	C10-C9-C14-C13	0.1 (3)
C1—C2—C7—C8	-131.31 (15)	C8—C9—C14—C13	-178.51 (17)
C15—C2—C7—C8	106.79 (17)	C1-C2-C15-C16	-113.14 (18)
C3—C2—C7—C8	-21.4 (2)	C3—C2—C15—C16	123.18 (18)
C1—C2—C7—C6	-15.26 (17)	C7—C2—C15—C16	-0.81 (19)
C15—C2—C7—C6	-137.16 (14)	C2-C15-C16-N2	21.1 (2)
C3—C2—C7—C6	94.70 (15)	C2-C3-N1-C18	168.67 (15)
O2—C6—C7—N2	-9.8 (2)	C2-C3-N1-C5	-58.18 (19)
C10—C6—C7—N2	112.33 (16)	C4—C5—N1—C3	53.1 (2)
C4—C6—C7—N2	-126.26 (15)	C4—C5—N1—C18	-174.04 (16)
O2—C6—C7—C8	-133.98 (15)	C8—C7—N2—C17	35.0 (2)
C10—C6—C7—C8	-11.83 (17)	C2C7N2C17	163.01 (16)
C4—C6—C7—C8	109.58 (15)	C6—C7—N2—C17	-83.3 (2)
O2—C6—C7—C2	101.72 (16)	C8—C7—N2—C16	-94.49 (19)
C10-C6-C7-C2	-136.13 (14)	C2C7N2C16	33.53 (18)
C4—C6—C7—C2	-14.72 (16)	C6-C7-N2-C16	147.18 (16)
N2—C7—C8—O1	62.2 (2)	C15—C16—N2—C7	-35.3 (2)
C2—C7—C8—O1	-58.3 (2)	C15—C16—N2—C17	-166.26 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H2…N2	0.82	2.12	2.655 (2)	123
C15—H15A…O3	0.97	2.56	2.974 (3)	106
C18—H18B···O3 ⁱ	0.96	2.39	3.288 (3)	155

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2.

Fig. 2