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Abstract

This paper presents a stable and fast algorithm for independent component analysis with reference (ICA-R). This is a
technique for incorporating available reference signals into the ICA contrast function so as to form an augmented
Lagrangian function under the framework of constrained ICA (cICA). The previous ICA-R algorithm was constructed by
solving the optimization problem via a Newton-like learning style. Unfortunately, the slow convergence and potential
misconvergence limit the capability of ICA-R. This paper first investigates and probes the flaws of the previous algorithm
and then introduces a new stable algorithm with a faster convergence speed. There are two other highlights in this paper:
first, new approaches, including the reference deflation technique and a direct way of obtaining references, are introduced
to facilitate the application of ICA-R; second, a new method is proposed that the new ICA-R is used to recover the complete
underlying sources with new advantages compared with other classical ICA methods. Finally, the experiments on both
synthetic and real-world data verify the better performance of the new algorithm over both previous ICA-R and other well-
known methods.

Citation: Mi J-X (2014) A Novel Algorithm for Independent Component Analysis with Reference and Methods for Its Applications. PLoS ONE 9(5): e93984. doi:10.
1371/journal.pone.0093984

Editor: Hans A. Kestler, University of Ulm, Germany

Received December 4, 2013; Accepted March 12, 2014; Published May 14, 2014

Copyright: � 2014 Jian-Xun Mi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The funding that has supported the work is from the National Nature Science Committee of China under Grant Nos. 61202276, 61203376. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: mijianxun@gmail.com

Introduction

Independent component analysis (ICA) is a data analysis

technique for uncovering independent components (ICs) which

underlie the observational data [1][2][43]. This technique finds a

mutually independent representation of the original data by

seeking a linear transformation. Let us denote an n–dimensional

observed signal by x = (x1,x2, � � � ,xn)T, which is a linear mixture

of the independent components, say x~As, where

s~(s1,s2, � � � ,sl)
T (usually lƒn) and A is an n|l linear mixture

matrix. And let y~(y1,y2, � � � ,yl)
T denote an l–dimensional

signal, which is the estimated vector of independent components

(ICs). Generally, the ICA problem can be expressed as the

following linear relationship:

y~Wx ð1Þ

where W is an unknown l|n matrix of full rank, which is the

demixing matrix for which ICA is seeking. For the sake of

convenience, here l~n is assumed first.

Most ICA algorithms attempt to recover the same number of

ICs as the observed mixture signals, i.e. complete ICA. However,

in several practical ICA applications only portions of underlying

ICs are interesting while conventional ICA algorithms have to

compute all sources, which is an exhaustive extraction process and

time-consuming sometimes. In many cases, some prior informa-

tion is available to distinguish ICs of interest, especially for

biomedical signal processing problems. For example, in the case of

applying conventional ICA to remove artifacts in electroenceph-

alogram (EEG) or magnetoencephalogram (MEG), the necessary

manual selection of ICs corresponding to artifacts may be

inconvenient and unreliable. A practical alternative is to incorpo-

rate a priori knowledge as an additional constraint into classical

ICA algorithms. Generally the constraints may be adopted to

reduce the dimensionality of the output of the ICA, hence only the

desired ICs are isolated.

Recently a new technique referred to as ICA with reference

(ICA-R) has been proposed under the constrained ICA (cICA)

framework [3–5][40][41][42], to separate a desired subset of ICs

by utilizing prior information as the reference signal. Some earlier

studies [6][7][8] also have used reference signals to extract the

sources. The framework of cICA forms an augmented Lagrangian

function consisting of the ICA contrast function, equality

constraint, and inequality constraint, where the last two are with

regard to additional requests and the incorporation of prior

information, respectively. The Newton-like learning approach is

proposed to give an optimal solution to this optimization problem.

So far, the ICA-R algorithm has been used in different

applications [8–17] [40][41], which justifies the validity of this

technique. The prior information such as interesting frequency,

waveform, and so on, can be used to create reference signals so as

to constrain the output to be the required ICs. For example, an

approach was proposed by Zhang [18] to construct a reference

signal for weak temporally correlated source. A fast algorithm for

one-unit ICA-R was proposed by Lin et al. [19] in which
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normalization of the weight vector at each step is used to expedite

the convergence process, instead of using the equality constraint.

In [3] and [5] by Lu and Rajapake, the local convergence

stability of ICA-R is verified by showing that the optimum output

from their ICA-R algorithm can satisfy Karush–Kuhn–Tucker

(KKT) conditions locally. However the existing ICA-R algorithms

could not ensure the global convergence, because under the cICA

framework the convexity of the Lagrange function is not

guaranteed.

Firstly, this paper is to reveal the flaws of the previous ICA-R

algorithms, that is, they may converge to a fake point and output

artifact IC, which is referred to as misconvergence. And then we

present a new algorithm which ensures that the output of ICA-R is

a true required independent source. Secondly, this paper proposes

several approaches for simple and convenient applications of ICA-

R, including a way of directly obtaining references from observed

channels and reference deflation techniques for easy parameter

selection. Thirdly, this paper aims to extend new ICA-R to extract

entire underlying components, which has superiority over FastICA

in maintaining structure of the original sources and is with the

capability to assist in identifying the number of underlying sources.

The paper is organized as follows. Section II reviews classic ICA

algorithms, the ICA-R algorithm and its fast algorithm briefly at

first, then investigates and analyzes the cause of the misconver-

gence of previous ICA-R methods. In Section III, a new algorithm

for ICA-R is proposed. Section IV discusses the approaches which

could facilitate the application of the new ICA-R algorithm and

extend the application to recover all underlying ICs. In Section V,

the experiments using both synthetic data and real-world signals

demonstrate the performance and superiority of the new

algorithm. Section VI concludes the paper with some discursive

remarks.

Previous algorithms

Classic ICA algorithms
Several algorithms were developed to realize ICA. Pham et al.

[20] formulated the likelihood for noise-free ICA which was

estimated by a maximum likelihood method. In [21] [22],

algorithms were derived from a neural network viewpoint and

based on maximizing the output entropy with non-linear outputs.

Nonlinear principal component analysis was used to perform blind

source separation (BSS) in [23] and the recovered sources of which

is believed to be ICs. The JADE algorithm [24] was presented to

solve the ICA contrast function in terms of a sum of squared

fourth-order cross-cumulants. Based on the concept that non-

Gaussian is independent [25], ICA also can be performed by

maximizing the negentropy which is a measure of non-

Gaussianity. Approximations of negentropy were presented in

[26] which avoid the difficulty of estimation of negentropy and the

non-robustness of the kurtosis. FastICA [27][28] is the most

popular ICA algorithm which maximizes the negentropy to

recover all ICs with low computational load and application

convenience [29]. Since our proposed algorithm [4][5] also

adopted negentropy as contrast function, we pay more attention

on comparing the new algorithm with FastICA than others.

FastICA optimizes the contrast function via a fixed-point

learning method which makes the convergence very rapid. For

extracting several ICs, it is necessary to prevent the different

vectors from converging to the same maximum. Hence, two

available techniques, the deflationary orthogonalization approach

and the symmetric orthogonalization approach, are used by

FastICA. However for the deflationary orthogonalization ap-

proach, which recovers ICs one-by-one the earlier recovered ICs

are ‘‘privileged’’ over the later. The estimation errors existed in the

recovered vectors are accumulated in the subsequent ones.

Alternatively, the symmetric orthogonalization process can be

used to estimate ICs in a parallel manner. But the explicit

decorrelation process is usually too strong that it slows the

convergence of algorithm. Furthermore, these two approaches

force the outputs of FastICA to be uncorrelated which could

distort original data if some empirical underlying sources are not

perfectly independent.

Before implementing FastICA, principal component analysis

(PCA) is used to pre-whiten the data and remove the components

with very small eigenvalues, thought to be noise. To avoid losing

real ICs in the mixture, the principal components are used to save

as many as possible, however this may cause the inclusion of the

noise components. Since FastICA has to estimate the same

number of the outputs as the number of the inputs produced by

PCA, the result will contain noise components. Moreover, the

estimation of the noise components is not only time-consuming but

can also harm the true ICs by orthogonalization.

Previous ICA-R algorithms
Considering that there is a priori knowledge about the desired

ICs, ICA-R utilizes such knowledge by incorporating the prior

information in the form of additional equality and inequality

constraints into the ICA contrast function, as given in [12]. Then

ICA-R aims to produce the desired subset of ICs without the post-

selection which is needed in classical ICA methods. According to

the studies by Lu and Rajapake, the mathematical account of

ICA-R algorithm is presented in detail in Appendix 1.

In empirical applications, one-unit ICA-R, extracting one IC at

a time with the corresponding reference signal, is preferred for the

sake of simplicity and straightforwardness [8] [10]. When several

ICs are expected, this can be done by repeated runs of the one-

unit ICA-R algorithm. Hence in the following parts of this paper

only a one-unit ICA-R algorithm will be considered. In our

previous work [11], the one-unit ICA-R algorithm was improved

in rigidity; at the same time, some principles were given for proper

selection of closeness measurement functions. By employing

correlation e(y,r)~{Efyrg and mean squared error (MSE)

e(y,r)~Ef(y{r)2g as the closeness measurement (r is of unit

variance), two learning rules suggested in [11] are given

respectively by:

DwT~{
g

8l{Efr̂rf ’’(y)g (EfJ ’(y)xTg{mEfrxTg

z4l(Efy2g{1)EfyxTg)
X{1

xx

ð2Þ

and

DwT~{
g

2mz8l{Efr̂rf ’’(y)g (EfJ ’(y)xTgz2mEf(y{r)xTg ð3Þ

where S�1
xx denotes the inverted covariance matrix of the observed

signal x (If Sxx is near-singular, it can be transformed into a non-

singular matrix by a whitening process, e.g., PCA); J(y) is the

negentropy of a signal y; J ’(y)~{r̂rf ’y(y); r̂r~2r(Eff (y)g
{Eff (n)g); g is the learning rate which is fixed; m and l are

Lagrange multipliers with the respective gradient ascent learning

rules as:
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Dm~ max {m,cg(y : w)f g

Dl~ch(y : w)

where c is the learning rate.

A fast one-unit ICA-R algorithm was proposed by Lin et al., in

[19]. Compared with the original one-unit ICA-R algorithm, one

aspect of the improvement for the fast one-unit ICA-R algorithm is

to make the observed signals pre-whitened so as to let the

covariance matrix equal the identity matrix, which can expedite

the convergence. Other aspect for the improvement is that the

equality constraint is replaced by normalizing the weight vector w.

The corresponding update rules for Dw is similar to Eqns. (2) and

(3), nevertheless, where
P{1

xx is an identity matrix and the equality

constraint is absent. From the experimental results given in [19], it

can be seen that compared to the original ICA-R algorithm, the

fast algorithm spends approximately half of its time extracting the

desired ICs of the same quality.

Analyses of the convergence stability of ICA-R algorithm
The investigation of the global convergence of previous one-unit

ICA-R algorithm is presented here. First, we make some

statements on parameter choice. As a closeness measurement,

the philosophy for the inequality constraint being incorporated is

to constrain the ICA contrast function so as to make it converge to

the desired IC. Therefore, only the IC which is in the

neighborhood of a given reference signal defined by

e(y,r){jƒ0, where j is a threshold and e(y,r) measures the

distance, can be extracted by ICA-R algorithm. The threshold j is

the most important parameter for the ICA-R problem. Generally,

the right value of j should be lain in the following range:

j[ e(wT
i x,r), min e(wT

j x,r)
n oh �

, i=j ð5Þ

where wi is the required demixing vector and wj is the vector

corresponding to the any other ICs. If j is below the range, then

none of ICs can satisfy the constraint, i.e. there is no IC within the

feasible range defined by the inequality constraint (the possible

output is not a real IC); and if j is selected beyond the upper

bound of the range, then the output y could be the undesired IC

because more than one local minimum is within the inequality

feasible range. A practicable way for selecting j was given in [3].

In the rest of this subsection, the eligible threshold parameter j�

satisfying Eqn. (5) is considered to analyze the stability of ICA-R

algorithm. Meanwhile, y� is denoted as the optimum output of

interest.

In this paragraph we analyze the global convergence of the

algorithms given in Eqns. (2) and (3). Particularly, the point that

should be stressed is that the following analyses are valid for the

algorithms with other closeness measurements as well. First we

review the principle and conclusion of stability analysis in previous

ICA-R literatures. According to Lu’s analyses, the optimum triple

(w�,m�,l�) for KKT conditions [30][31] is defined which satisfies

the first order conditions: +WL(w�,m�,l�)~0, h(y�)~0, g(y�)ƒ0,

m�§0, l�§0, where � indicates the optimum value; and the

stability at the global optima is examined by testing the positive-

definiteness of the Hessian matrix, which is approximated by

+2
WL~D:

P{1
xx in ICA-R algorithms. The Hessian matrixes

(approximate Hessian matrixes exactly) of the algorithms with

Eqns.(2) and (3) are (8l�{Efr̂rf ’’(y�)g)
P{1

xx and

(2m�z8l�{Efr̂rf ’’(y�)g)
P{1

xx ; and they are always positive-

definite because the input covariance matrix
P

xx is nonsingular

(if not, PCA can be used to help it become nonsingular) and the

elements of D are greater than zero (for r̂rf ’’(y�)ƒ0, and all the

Lagrangian multipliers are greater than zero). The local stability of

minimum of the ICA-R algorithm therefore is confirmed.

However, can we affirm that the Newton-like learning rule will

reach the optimal output y� by proving the local satisfaction of the

KKT Condition? In Figure 1, we illustrate typical examples of

learning processes for the ICA-R algorithm with Eqn. (2), where it

can be seen that a counterexample is against Lu’s standpoint.

Let us present the details of examples in Figure 1. Assuming that

two normalized synthetic ICs, s1 and s2 are used, with the kurtosis

values of 21.2910 and 21.4982, respectively (where

kurtosis~Efx4g{3(Efx2g)2), and are mixed with the observed

data by a matrix A:

A~
�0:0260 0:8134

1:4917 1:5884

� �

Thereafter, a normalized reference signal is created whose

closeness values, measured by e(y,r)~{Efyrg, between each of

the two ICs are 20.8907 and 20.4166, respectively (the

normalization of a random variable means to remove its mean

and let it have unit variance). The threshold j is set to 20.6 so that

only s1, the supposed desired one, can satisfy the inequality

constraint that g(y)~{Efs1rg�jƒ0. Here, we denote the

weight vector as w~(w1,w2). With a small random initial weight

vector, however, the previous ICA-R algorithm has two different

typical learning traces. Figure 1 (a) gives an example of successfully

discovering the accurate demixing vector where the final vector is

at the point around w~(� 1:2660,0:6481) on which the observed

data can project to obtain the desired IC; meanwhile, a

counterexample, called misconvergence, is shown in Figure 1.(b),

where the algorithm fails to find the minimum and is trapped

around the inequality constraint border. As shown in Figure 1, the

damping is a faulty behavior and oscillations also can be persistent

in other cases. The cause whether oscillations are persistent or

damped mainly relates to the position of the feasible boundary.

However, the actual situation is more complicated when

considering the tripartite actions by contrast function and two

types of constraints. Further discussion of this is beyond the scope

of this study.

To investigate the cause of misconvergence, the two graphs in

Figure 1(c) show the obviously different evolutions of Lagrange

multiplier for inequality constraint, m. The left graph (in the case of

a successful extraction), where after a rise m decreases to 0,

indicates that the learning process is led into the feasible area by

inequality constraint exactly; but the oscillation shown in the right

graph (for the case of failure learning) indicates that the learning

process steps into and out the feasible region repeatedly (m
increases when the weight vector is out of the feasible region and

decreases when in feasible region). Furthermore, the right part of

Figure 1(d) shows the details of last steps of the failure learning

process, which confirms that the algorithm vibrates at the wrong

point around (0.8874, 0.1583).

What leads to the failure? Commonly utilizing Newton-like

learning rule to solve the augmented Lagrangian function of ICA-

R, the inequality constraint is considered to draw the learning into

its own feasible region by increment of m as the weight vector is out

of the feasible region. When stepping into the feasible region, the m
will descend to 0, i.e. the inequality constraint will be suspended.

In particular, there is another similar situation that the initial

A Novel Algorithm for ICA-R and Applications
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Figure 1. Illustration of two typical learning traces of demixing vector by previous ICA-R algorithm. (a) An example of accurate
convergence for desired demixing vector (left) along with the evolutions of m vs the number of iterations (right). On w1w20 plane, each step of w is
presented by small cycles and linked by a line; and the ellipse is the confine defined by equality constraint. Below the w1w20 plane, the curve stands
for the values of J(y) for projections as a function of ellipse. The red line highlights the region fulfilling the inequality constraint. (b) An example of
misconvergence (left) where the algorithm is trapped around the inequality constraint border along with the corresponding evolutions of m (right).
(c). 2-D illustration of the misconvergence example on w1w20 plane. (d) The magnification of the black box in (c). The image of magnification
manifests that the learning trace librates and stops at the red dot (the blue cycles are removed for visual convenience).
doi:10.1371/journal.pone.0093984.g001
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weight vector is casually in feasible region so that the inequality

constraint would not be activated at all. As m decreases to a small

value, the algorithm will search towards the direction for

decreasing the value of J(y) in the feasible space of equality

constraint. Unfortunately, it is possible that the weight vector is out

of the basin of attraction of the desired IC when the inequality

constraint has been inactivated already. Under this circumstance,

the learning will head towards the other ICs; then stepping out of

the feasible region once, the inequality constraint will be activated

(i.e., m is increased); subsequently the learning turns back into the

feasible region again (i.e., m is decreased). However, it still could

not be in the attractive region of the desired IC so that the

oscillation starts.

The simple counterexample above indicates that the local

stability analysis is not sufficient. By mathematical analysis and

experimental investigation, it was found that the ICA-R algorithm

can find the desired optimum point only if the algorithm steps into

its corresponding attractive basin. But under the cICA framework,

it cannot ensure that the feasible region of inequality constraint is

within the basin of attraction of desired IC. In other words, the

inequality constraint cannot definitely force the learning process to

step into the attractive region of the desired IC. Given the valid

parameters which let the desired IC be the only local minimum in

feasible region, the probability that the ICA-R algorithm

misconverges is approximately in proportion to the ratio of the

part of inequality constraint beyond the scope of attractive basin to

the part in the scope of attractive basin. The attractive basin of the

desired IC is related to the relative value of the ICA contrast

function. In Appendix 2, the mathematical analyses reveal which

IC the ICA-R algorithm converges to from a vector in feasible

space of equality constraint, i.e. the scope of an IC’s attractive

basin. From the mathematical analyses, we can say that the

smaller J(y�) or the greater the negentropy is, the wider the

attractive basin is. Hence, the IC with relatively larger negentropy

is more likely to find the demixing vector generally. Meanwhile,

the reference signal itself and threshold j are the two factors for

determining the center (please refer to Appendix 3) and the size of

the feasible region of inequality constraint, respectively. To extract

IC with small negentropy without misconvergence, we therefore

do not only need a more reliable reference signal, which means

that the reference signal should strongly correlate with the desired

IC and be uncorrelated with the others, but also need a smaller

feasible region of inequality constraint, which could be achieved

by adjusting the threshold j. Nevertheless, the feasible region is

generally difficult to be settled in advance.

More seriously, when extracting an IC from a mixture

consisting of independent components of both super-Gaussian

and sub-Gaussian distribution, it is possible that the algorithm will

diverge for the negative definite Hessian matrix once the learning

process is in the basin of other ICs with different distribution types.

The cause should be that the term, {Efr̂rf ’’(y)g, in the Hessian

matrix which can be negative when y is far from y�.
Thus it can be concluded that ICA-R algorithm is not with the

global capability of extracting desired ICs stably, though using

legal parameters, but with probability of misconvergence. In other

words, although the framework of the constrained ICA is known as

a method to incorporate extra constraints into ICA contrast

function, the Newton-like learning technique is not capable of

finding the minimum determinately. Mathematically, it could be

found that the sufficient KKT condition cannot be fulfilled in

cICA framework, since it demands that the contrast function J(y)
is convex in the feasible region of constraints which the cICA

cannot guarantee which is illustrated by Figure 1. Furthermore,

although replacing the equality constraint by normalizing the

weight vector, there is no fundamental alteration for Lin’s

improved version of fast one-unit ICA-R algorithm which will

still suffer from the defect of ICA-R.

In practical applications, it is risky to use the outcome of

previous ICA-R algorithm in a run for the pseudo IC by possible

misconvergence, especially in the case of the pseudo IC being

quite similar to a true IC. It is suggested that the true IC should

appear most in several runs of ICA-R algorithm [4]. Unfortu-

nately, the understanding that the number of the outputs of real

ICs is greater than the number of the outputs of pseudo ones is

incorrect, which was supported by our experiments. Therefore,

even doing the time-consuming reruns, the application of previous

ICA-R algorithms would still confront the additional inconvenient

point of discriminating the true ICs from the fake products.

Methods

In this section, a new stable fast algorithm for one-unit ICA-R is

presented. This algorithm is based on the consideration that there

should be an added mechanism for the algorithm which is able to

detect the possible failure of convergence at an early stage and to

restart the algorithm with a more appropriate initial point. A

simple and efficient method to detect future misconvergence is to

examine the secondary increment of m or the negative definiteness

of the Hessian matrix (when Dv0). When ICA-R extracts IC

successfully, the evolution of m should be no more than one

fluctuation, because the secondary increment of m only means that

the learning process steps out of the feasible region. Thus, once the

secondary increment of m is detected, the algorithm should be

restarted. At the same time, when Dv0, the algorithm should be

restarted as well for the desired minimum cannot be found by

negative definite Hessian matrix. Next, we introduce the

Table 1. The new fast one-unit ICA-R algorithm.

Step 1. Center the observed signals x to remove its mean;

Step 2. Whiten the observed signals;

Step 3. Choose an initial value for m, generally let m~0;

Step 4. Take a random initial vector w of norm 1;

Step 5. Update the Lagrange multiplier m;

Step 6. Update the demixing vector w: w/w{cDw, where c is the learning rate;

Step 7. Normalize the w by w/w= wk k;
Step 8. While detecting the secondary increment of m or a minus D, then restart the algorithm from Step 3 with a new initial w by deflationary orthogonalization
technique;

doi:10.1371/journal.pone.0093984.t001
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deflationary orthogonalization technique to avoid the case that the

next random initial w is with the same direction as the former

ones. Once the algorithm is restarted, the new initial w will be

created to have an angle of round p=2 to all the previous used

vectors via the Gram-Schmidt method [30], which could be

expressed as:

w/w{
Xk

j~1

cj(w
Twj)wj ð6Þ

where wj is one of k vectors which have already been used as the

initial vectors but without extracting the desired IC.

Consequently, the stable fast algorithm of one-unit ICA-R can

be summarized in Table 1. Based on the fact that Lin’s fast one-

unit algorithm converges more rapidly than Lu’s, in our algorithm

we also normalize the length of the weight vector in each iteration

instead of using the equality constraint.

Remark 1: If pre-whitening is not expected, Step 2 should be

omitted and the normalization of weight vector will be replaced by

w/(wT
P

xx w){1=2w in Step 7.

The Discussions on Applications of the proposed
ICA-R algorithm

Methodologies introduced in this Section are to facilitate the

application of ICA-R algorithm. The first subsection presented

two methods to select parameter of the closeness threshold.

Furthermore, instead of concocting a possibly complicated

reference how to use one of the channels as the reference (helpful

in some cases) is introduced in second subsection. In the third

subsection, our new fast one-unit ICA-R algorithm is extended to

estimate all the underlying ICs, which performs better than

FastICA method. Since there is no essential difference between

e(y,r)~{Efyrg and e(y,r)~Ef(y{r)2g when y and r are with

unit variance, the algorithm discussed in this section is assumed to

use e(y,r)~{Efyrg (j[({1,0)) straightforwardly.

Selection of j
Usually the determination of the threshold parameter j is most

critical for ICA-R algorithm, since the closeness between the

desired IC and the reference cannot be known in advance. There

are two types of errors for missing selection of j: Firstly if j is

selected to make the feasible region of the inequality constraint so

small that none of ICs is within it, ICA-R algorithm will not

converge to any IC. Secondly, if j is selected to make the feasible

region so large that other local minima are included, the ICA-R

algorithm probably produces undesired ICs. It is more difficult, to

some degree, for previous ICA-R algorithm to select a proper j
and determine the true IC, since even with right j the previous

algorithms may produce the fake ICs.

In this paper, we introduce two approaches to loose the

selection of j. In this paragraph, we demonstrate the first one. To

ensure true IC is extracted by our ICA-R algorithm, we should set

j to be an appropriate big value; as thus the ICA-R algorithm may

extract the ICs of no interest. Our remedy is if an undesired IC,

say s1, is produced, we can decorrelate it with the reference by:

r̂r~r{E(rs1)s1 ð7Þ

With the newly reconstructed reference r̂r, the next run of ICA-

R algorithm will never converge to the first IC. The reason is

based on the independent property that Efr̂rs1g~Ef(r{
E(rs1)s1)s1g~0. We suggest that in the following run of ICA-R

algorithm with new reference, j, can be decreased a little in order

to let the feasible region be smaller since the proportion of the

desired IC in new reference increases. Under some worse

circumstances, the other undesired ICs could be produced again.

Thus, the approach in Eqn.(7) could be applied repeatedly to

remove the undesired IC from the reference until the expected IC

is obtained. However, considering some real world applications,

the outcomes of maximum negentropy may be not totally

independent, thus directly operating Eqn.(7) to remove the

composition of the next IC from reference could cause the new

reference to become correlated with those former removed ICs.

For the case that more than one undesired IC (supposing l
undesired ICs to have already extracted) needs to be removed

from the reference, we should reconstruct the current IC to make

it uncorrelated with the former extracted ICs in the first place by:

ŝsi/si{
Xi{1

j~1

E(siŝsj )̂ssj , i[2, � � � ,l ð8Þ

where ŝsj is the previously reconstructed undesired IC before being

removed from the reference. This process can be replaced by PCA

after each extraction; nevertheless it may take longer. Usually,

even with reference of low quality or a rougher reference, less than

three runs of ICA-R will produce the desired IC. For the above

described approach, actually a deflation scheme [32], we name it

as reference deflation method.

In other case when user cannot distinguish the expected IC and

only want the IC which is ‘‘closest’’ to reference, we could assign a

smaller value to j first so as to make the feasible region of

inequality constraint smaller at first to assure no undesired

minimum lies in the feasible region [3]. However, this will take

the risk that the desired IC is out of feasible region as well.

Fortunately, our algorithm can indicate this situation, since in such

case our algorithm will not converge any more (the previous

algorithm will probably produce fake IC). And to solve this

problem, we can gradually increase the feasible region by

decreasing the value of j. Once the algorithm converges, the

produced IC must be the desired IC. We should remark that the

above approach introduced in this paragraph would be time-

consuming to discover that the algorithm is not convergent by

examining whether or not the iterations of the algorithm reach a

presetting large number.

Providing ICA-R with a direct reference
Since reference signal is required for ICA-R algorithm to

straightforwardly recover the desired IC, several methods have

been developed to provide ICA-R algorithm with a suitable

reference [8] [18]. In some cases, the frequency of the signal is the

most important characteristic, so researchers invented some

approaches to create periodical signals [8], [33] as reference.

For example, sine waves can be used as reference. However, when

Table 2. The algorithm for recovering all ICs.

Step 1. Choose a proper j and an initial reference;

Step 2. Run ICA-R to extract an IC;

Step 3. Reconstruct the reference by reference deflation technique;

Step 4. If not all ICs are recovered, go back to Step 2.

doi:10.1371/journal.pone.0093984.t002
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constructing the periodical reference signal, there are at least three

aspects which have to be carefully considered: (1) the frequency

which is application-dependent; (2) the initial phase which needs a

cautious determination; (3). the morphology of the reference where

the empirical experience is also important. Even though the

aforementioned three points are satisfied, in some situations the

method that provides ICA-R with a periodical reference to extract

a desired IC may still fail. The reason is that some underlying

independent sources coming from complex system seem like

periodic signals but actually are chaotic, which may be ‘‘far’’ from

a periodic signal. On the other hand, it could be tough to concoct

a proper reference to extract the aperiodic independent source.

The designing of a feasible reference sometimes could obstruct the

application of ICA-R so that some researchers would rather

recover all ICs and then pick up their interested sources.

In many practical applications, it can be found that the desired

ICs dominate some observed signal channels. In such cases, a

simple and convenient way to perform ICA-R is to employ

observed signal as reference directly. For example, to remove eye

blink artifacts from the EEG channels, the reference could be one

channel of the observed EEG which is badly contaminated by eye

blink.

Let us denote a normalized signal channel by:

xi~
Xn

j~1

ai,jsj ð9Þ

where ai,j is the mixing coefficient that
Pn

j~1 a2
i,j~1 and we can

suppose Efs2
j g~1. When the observed channel xi is utilized as the

reference and sk (k[ 1,2, � � � ,nð Þ) is assumed as the desired IC

which is the major component of xi, ICA-R can extract sk from

the mixture with a parameter j in the range of

½{ai,k,{ max (ai,j)), where j=k. Since xi mostly consists of sk,

the mixing coefficient ai,k should be much bigger than the

secondary biggest mixing coefficient, thus there could be a wide

value range selection for the threshold parameter. If a reference

channel consists of more than one major IC, the reference

deflation technique can be used to help at extracting the desired

IC.

Recovering complete ICs by ICA-R
Complete ICA can be achieved by method of maximization of

nongaussianity. At present, the most popular ICA method of

maximization of nongaussianity is FastICA [28], which will be the

counterpart to be compared with some characteristics of our

method in this paper. When the ICs are independent, the mixing

vectors produced by FastICA are orthogonal to each other.

Hence, by the compulsive orthogonalization process, FastICA will

not converge to the same ICs but recover all the ICs. The

drawbacks of the compulsive orthogonalization can be found in

Section II. A.

The new one-unit ICA-R algorithm proposed in this paper is

capable of recovering all ICs one by one without error cumulation

and compulsive orthogonalized outputs. Straightforwardly, let us

assume that there is an observed signal channel consisting of all

ICs which is served as initial reference in this case. Then, the

threshold j should be set to a big value, for example j~{0:1, so

as to assure that several ICs are in the constrained feasible region

of inequality. The algorithm constructed for recovering all ICs is

summarized in Table 2.

Here, some commentaries are given for supporting our

approach. After each run of one-unit ICA-R algorithm, a new

reference is created by removing the new extracted IC from

the former reference. This operation will change the feasible

region of the inequality constraint so that the new region will

exclude the extracted ICs and include some ICs which are out

of the feasible region. Though ICs are recovered one by one in

our algorithm, the subsequent ICs would not suffer from the

errors of the first estimated ICs because errors only interfere

with the reference. Moreover, by avoiding using compulsive

decorrelation process to prevent the identical convergence, our

algorithm prevents extracting the same ICs by deflating

reference instead. Under certain circumstance where observed

signals consist of only part of the whole ICs, the initial

reference could be produced by summing several observed

signals together which makes the reference more likely to

contain all underlying sources. It is almost impossible but could

occur that the ICs are counteracted or severely weakened in

summation of channels. To avoid such possible neglect, we can

construct different linear combinations of all channels and then

Figure 2. Results for synthetic data. (a) Four synthetic ICs (b) Observed signals.
doi:10.1371/journal.pone.0093984.g002
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remove the obtained ICs from them; the neglected ICs will

emerge. On the other hand, the above approach is capable of

revealing the composition of a concerned observed signal

without extraction of all ICs when the signal is mixed by only a

few ICs.

Attractively, this algorithm for recovering the whole ICs can still

perform well when Gaussian sensor noise is present. In certain

practical applications of ICA, the observed signal channels is more

than the independent sources; meanwhile, the independent

Gaussian observed noises are present in each sensor [34][35].

Usually, PCA is expected to reduce the dimension of noise, but on

the other hand taking the risk of abandoning the weak ICs. Hence,

the principal components have to be reserved as much as possible.

Then, the FastICA algorithm recovers all the remainder compo-

nents as ‘‘ICs’’, which not only makes the algorithm spend more

time for estimating the noisy ‘‘ICs’’ and needs the post-

identification to choose the real ICs but also abides the noisy

ICs to harm the real ICs by orthogonalization [36]. However,

theoretically, our ICA-R will not converge to the noisy sources

after all real ICs are recovered (assuming that none of real ICs is of

Gaussian distribution), because the negentropy value of Gaussian

noise is equal to 0. Empirically, the negentropy of the noise

components are not perfectly equal to 0, but still very small, i.e. the

attractive basin of noisy ICs is very small (Please refer to Appendix

2 for the details). Therefore, in practical applications, once all ICs

are extracted no source can be extracted, which means ICA-R

cannot produce any result which has correlation with reference.

Hence if ICA-R cannot converge, it indicates that all ICs have

been extracted. Specifically, when ICA-R runs up to a pre-set

maximum step and does not converge, we consider that all ICs are

recovered.

Results

To demonstrate the effectiveness of the newly proposed ICA-R

algorithm, both synthetic data and real-world data were used and

the comparison of the results with the previous algorithms and

other ICA methods were exhibited. In the following, we take four

examples to illustrate the performance of our approach.

Testing with self-supplied reference
Four synthetic sources were respectively depicted in Figure 2 (a),

which could be considered independently to each other, where

Sources 1 and 3 are with sub-Gaussian distribution, and the rests

are with super-Gaussian distribution.

To linearly mix the four ICs, a special designed matrix was

given as:

A~

1:2300 �0:8202 0:8780 � 0:6380

0:6147 0:7308 � 0:4812 � 0:4482

�0:1809 0:3950 0:6458 � 0:3252

�0:8987 0:8245 0:7917 1:0184

2
6664

3
7775

where there are two numbers in each line going to be multiplied

by ICs of the same distribution, and only the absolute values of

the diagonal elements are bigger than 0.5 when normalizing each

line to unit length. For instance, the normalized second line was

[0.5302, 0.6303, -0.4150, -0.3866] in which only the absolute

value of 0.6303 was bigger than 0.5 to mix the super-Gaussian

source (0.5302 would be used to multiply a sub-Gaussian source).

In Figure 2 (b), the mixtures were shown as observed signals.

Theoretically, if j was set to 20.5, the desired IC could be

extracted by ICA-R with reference, xi (i~1,2,3,4). We tested the

previous fast ICA-R algorithm on this problem instead of original

ICA-R algorithm since they are inherently similar whereas the

fast algorithm converges rapidly. In this experiment, we gave a

random initial weight vector in each trial. Here, two fault

learning were counted: misconvergence and negative Hessian

matrix.

According to Table. 3, the probability that the previous fast

ICA-R misconverged was higher than 10%. Although previous

algorithm could produce accurate results even with the

unguaranteed positive Hessian matrix, we still defined such

learning process as a fault. Generally, the Newton-like

optimization with a negative Hessian matrix should diverge,

i.e. the weight vector grew fleetly (Lu’s original ICA-R

algorithm diverged in this case). However, for the every step

normalization of weight vector, previous fast ICA-R would not

diverge (still with probability of misconvergence); nevertheless

the trajectory of the learning exhibited a period of the

‘‘haphazard’’ behavior.

Compared with the drawbacks of the previous algorithm

including both faults above, the complete accurate extractions

by our proposed ICA-R algorithm was dazzling. In the Table. 3,

the mean CPU time of previous ICA-R excluded cases which

committed any of the two types of fault convergences. For the new

ICA-R algorithm, since steps for anti-misconvergence and anti-

negative Hessian matrix were implemented, the computational

consumption increased but not too much. Therefore, the added

mechanism in the new algorithm is efficient and works well.

Recovering images from the mixtures
There were two experiments conducted in this subsection, both

of which were to recover all images from the mixtures. Since the

Table 3. The comparison of fault convergences (two defective learning behaviors) and mean time (s) consumption between
previous and new ICA-R algorithms on synthetic data.

IC 1 IC 2 IC 3 IC 4

Faults of previous fast ICA-R Number of Misconvergence 189 210 112 122

Number of negative Hessian matrix 613 523 707 447

Intersection of both faults 43 90 26 18

Misconvergence of new ICA-R 0 0 0 0

Mean CPU time of previous ICA-R for accurate convergence 0.097 0.105 0.130 0.121

Mean CPU time of new ICA-R 0.113 0.111 0.150 0.127

EACH ALGORITHM WAS RUN FOR 1000 TIMES WITH LEARNING RATE EQUAL TO 0.1.
doi:10.1371/journal.pone.0093984.t003
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images would have to be normalized, the signal-to-noise ratio

(SNR) was used to measure the accuracy of each recovered image

compared to its original image in dB

SNR~10log10

s2

MSE

� �
ð10Þ

where s2 was the variance of the normalized images with the

vector norm being 1. In the first trial, the four images, as illustrated

in Figure 3 (a), containing two face images with size of 128|128
pixels, were mixed by a 4|4 random mixing matrix to produce

four mixture images, as illustrated in Figure 3 (b). The kurtosis of

the original images were 2.5905, 1.6587, 21.3736 and 20.1626,

respectively. The covariance matrix of the four original images was

computed as:

X
~

1:0000 0:0567 0:2692 0:1116

0:0567 1:0000 � 0:0069 � 0:0622

0:2692 � 0:0069 1:0000 0:5979

0:1116 � 0:0622 0:5979 1:0000

2
6664

3
7775

where there is a high correlation existing between the two face

images. We used the new ICA-R algorithm to recover all the

original images from their mixtures, where the first mixed image

was used as the initial reference. And the results were shown in

Figure 3 (c). To fairly compare it with the FastICA tools on SNR

downloaded from [37], let the FastICA be fixed with symmetric

orthogonalization approach to avoid the error cumulation. We

also compared our method with other well-known ICA methods

including EFICA (Efficient Variant of FastICA)[45], JADE[44],

and NGFICA(Natural Gradient Flexible ICA) [24]. The EFICA is

an improved vision of FastICA, which is believed to achieve better

performance than FastICA. JADE and NGFICA are two widely-

used classical ICA methods. The recovered images by different

methods were shown in Figure 3(c)–(g) respectively. The compar-

isons of the SNRs of the outputs were given in Table 4. We can see

that our method has the highest value of SNR for each recovered

image and particularly the quality of the recovered face images by

ICA-R is very good compared with others. EFICA produced the

second best result in total SNR which indicates its superiority over

its predecessor, FastICA. NGFICA may be incapable of recover-

ing images from their mixtures, since it hardly recovered any clear

IC.

Experiments on electrocardiogram (ECG) signals
The extraction of the fetal electrocardiogram (FECG) from

maternal cutaneous electrode recordings has accepted ICA

formulation [38]. To represent the superiority of the outputs by

our algorithm, we used the famous ECG data set [39], and

assumed nothing was known about the period of the FECG.

Meanwhile, the results by other well-known ICA methods were

shown for comparison.

First, our ICA-R algorithm was applied. From the observed

ECG recordings shown in Figure 4 (a), the FECG can be

obviously observed in the first channel, thus it can be used as

the reference. Here, we set the closeness threshold parameter j
to 20.1 in our ICA-R algorithm. For the FECG was weaker

than the maternal ECG (MECG), it was most likely that the

ICs of the MECG were extracted first. By means of reference

deflation, the FECG could be extracted for at most three runs

of ICA-R algorithm. Two ICs of the MECG and one IC of the

FECG were shown in the first three lines of Figure 4(b). And

then, to explore the entire potential independent sources, we

first summed all raw channels to produce a reference

assumedly consisting of all potential ICs. Then, j was reduced

to 20.05 and the maximum running step was augmented to

10000. The first three sources in Figure 4 (b) could be easily

extracted within 150 learning steps while there were around

300 iterations of learning required for the fourth source. It was

very hard to extract next 2 sources within 1000 steps

Figure 3. Results for image separation (The individual in this
manuscript has given written informed consent (as outlined in
PLOS consent form) to publish these case details). (a) Four
original images; (b) Four mixture images; (c) Recovered images by new
ICA-R; (d) Recovered images by FastICA; (e) Recovered images by EFICA;
(f) Recovered images by JADE;(g) Recovered images by NGFICA.
doi:10.1371/journal.pone.0093984.g003
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(sometimes 10000 steps of learning were even not enough).

And by repeatedly running the ICA-R algorithm, it could be

confirmed that only 6 possible sources could be extracted. The

kurtosis values of 6 sources were 24.332, 20.409, 7.6149, 2

0.657, 20.391 and 20.2906, respectively. For the last two low

absolute values of kurtosis, the corresponding extracted results

were most likely to be noise. Further, we could deduce that

there were not more than four ICs existing in the observed

signals (under the assumption that ICs are of nongaussian

distribution). Actually, the first two extracted sources were the

MECGs while the third one was the FECG, and the fourth one

perhaps was produced by breath or some other causes. The

correlation coefficient between two MECG sources was

computed, which was 0.305, and the correlation coefficients

between FMCG sources and two MECG sources were 2

0.0066 and 0.0067, respectively. From these results it can be

seen that the existing correlation between two MECG sources

as well as the independence between MECG sources and

FMCG sources were reasonable.

We can see that the results produced by FastICA and EFICA

(shown in Figure 4(c) and (d)) are very similar. JADE (shown in

Figure 4 (e)) did not extract a source, which may be caused by

breath, as others. NFGICA had good performance (shown in

Figure 4 (f)) in this case that the first and second ICs are clear.

Compared with the results of our ICA-R, it can intuitively

reveal that the results for FastICA and EFICA were of lower

quality, which probably was caused by the sensor noises.

Except ICA-R, classical algorithms have to produce the same

number of the outputs as the number of the inputs. However, it

was very hard to give a rational physiological explanation

about what the mass-produced ICs stand for. It could be

concluded from this experiment that in practical applications

besides extracting ICs with high quality, our algorithm was

also capable of helping to reveal the number of underlying

sources when the observed signals are more than ICs but

others were not. Moreover, unlike the results by our algorithm

which maintains the inherent correlation between two MECG

sources, the results of FastICA were uncorrelated to each other

completely. Thus, at this point, our algorithm has superiority

over FastICA on preserving essential property of the original

underlying sources.

Remark 2: In practical applications, how is the learning rate of

c selected? This is an important problem. Although it is not

difficult to choose a proper learning rate c (typically c[(0:1,1)),
what still have to be noted is that too small value of c can make the

algorithm learn slowly while too large value of c may cause the

algorithm to ignore some ICs with small negentropy values. A

strategy is to set up a big learning rate at first, and if the algorithm

does not converge in a given number of iterations, then the rate is

reduced in half.

Conclusions

The cICA framework of incorporating the extra requirement

as constraints into ICA contrast function is an attractive

method. In this paper, a new ICA-R algorithm was proposed

under the cICA framework and applied to solve some

independent components extraction problems. The ICA-R

algorithm is an optimization algorithm in which the minimum

of the objective function is searched by Newton-like learning.

It has been shown that the previous ICA-R algorithms cannot

guarantee convergence to the desired independent components

but may produce fake ICs. Our proposed new algorithm fixes

this problem by adding a few extra steps to prevent the

misconvergence. This ensures that only the true ICs are

extracted.

Another contribution of this paper is to facilitate and extend

the applicability of the ICA-R algorithm. A reference deflation

technique was introduced to help choose the critical parameter,

the closeness threshold. A simple approach was proposed to

provide the ICA-R algorithm with a direct reference from the

observed signals instead of process of using an ad hoc reference

construction. The above two techniques could broaden the

applicability of the ICA-R algorithm. The proposed one-unit

ICA-R algorithm is also extended to recover all of ICs from their

mixture. Although the original ICA-R algorithm was designed to

extract only one IC of interest, the successful application of

recovering all of ICs using the new ICA-R algorithm indicates

that our approach improves significantly upon the previous work.

Compared to FastICA, we have shown that our approach is

advantageous in four ways: firstly, no error accumulates when

iteratively recovering the ICs; secondly, no compulsive decorr-

elation is required between the outputs which could help to

maintain the original underlying sources; thirdly, our new

algorithm can aid determination of the exact number of the true

ICs in the case where the number of the observed signals is more

than underlying components; fourthly, when sensor noise is

present, our new algorithm can produce the results that are less

affected than FastICA. All the advantages mentioned above have

been validated in the previous experimental section, which also

opens and develops the potential application fields for the ICA-R

algorithms.

In conclusion, from all the above encouraging results and

analyses, the proposed ICA-R algorithms can not only extract the

desired ICs reliably and efficiently but also is appealing for

enabling wide use of ICA-R.

Table 4. The comparison of the results of all the recovered images.

Algorithm New ICA-R FastICA EFICA JADE NGFICA

SNR (dB) Image 1 15.416 6.434 8.509 2.113 1.682

Image 2 21.447 14.810 16.092 12.099 3.137

Image 3 25.966 10.642 15.935 1.922 1.129

Image 4 7.323 4.057 4.122 6.679 1.773

Total SNR 70.151 35.952 44.65 22.813 7.721

THE SNR RATE INDICATES THE SUPERIORITY OF THE NEW ICA-R ALGORITHM OVER THE CLASSICAL FASTICA GREATLY.
doi:10.1371/journal.pone.0093984.t004
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Appendix 1

Introduction to ICA with reference
According to [3], ICA-R is a constrained optimization problem

as follows:

minimize J(y)

subject to g(y)ƒ0 and =or h(y)~0
ðS1� 1Þ

where J(y) denotes the ICA contrast function approximating

negentropy, which equals {
Pl
i~1

r(Effi(yi)g{Effi(n)g)2 with r

being a positive constant and v a Gaussian variable having zero

mean and unit variance, and fi(:) is a nonquadratic function; g(y)

is the inequality constraint term, g(y)~ g1(y1),g2(y2), � � � ,gl(yl)ð ÞT
with gi(yi)~ei(yi,ri){ji, where ri is the related reference signal,

ei(yi,ri) is the closeness measurement between the output and the

reference signal, and ji is the threshold parameter;

h(y)~(h11(y1),h12(y1,y2), � � � ,h21(y2,y1), � � � ,hll(yl))
T is the equal-

ity constraints term, where hij(yi,yj)~(Efyi,yjg)2~0,Vi,j~

1,2, � � � ,l; i=j and hii(yi)~(Efy2
i g{1)2, Vi~1,2, � � � ,l. There

are generally two version functions, f (y), chosen as the negentropy

approximation function. These are the super-Gaussian and sub-

Gaussian, respectively:

fsup(y)~log cosh (ay)=a, ðS1� 2Þ

fsub(y)~by4
�

4: ðS1� 3Þ

The corresponding augmented Lagrangian function is:

L(W,m,l)~J(y)zG(y : W,m)zH(y : W,l) ðS1� 4Þ

where m and l are Lagrangian multipliers for inequality and

equality constraints, respectively; G(y : W,m)~(1=2t)P
l
p~1f( maxf0,mpztgp(y : W)g)2{u2

pg and H(y : W,l)~

lT h(y,W)z(t=2) h(y,W)k k2
with :k k denoting the Euclidean

norm and tw0 being the penalty parameter.

Appendix 2

The derivation of the attractive basin of an IC
Given a linear mixture x~As, where ICs are assumed to be

vectors with zero mean and unit variance, and assume si to be the

target IC with wi (i[(1, � � � ,n)) being the corresponding demixing

vector. Then we have:

si~wT
i x~wT

i As ðS2� 1Þ

Figure 4. Results for ECG data. (a) The 8 channel ECG recordings
obtained from a pregnant woman; (b) The results by our ICA-R
algorithm; (c) The outputs by FastICA; (d) The outputs by EFICA; (e) The
outputs by JADE; (f) The outputs by NGFICA.
doi:10.1371/journal.pone.0093984.g004
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(qi)T~wT
i A is a transformed vector, where qi~( 0, � � � ,0

zfflfflffl}|fflfflffl{i{1

,1,0,

� � � ,0)T and si~(qi)Ts. To find the basin of attraction of si in the

feasible space of the equality constraint, where Efy2g~1, we

could alternatively measure the size of area in which the gradient

of w, Dw, is pointing to wi. When there is no inequality constraint,

the gradient Dw can be written as:

DwT~{
g

8l{Efr̂rf ’’(y)gEfJ ’(y)xTg
X{1

xx
ðS2� 2Þ

Given a vector, w, in the equality constraint space, we note

qT~wTA, so:

Efy2g~Ef(qTS)2g~qTq~1 ðS2� 3Þ

where q~(q1,q2, � � � ,qn). Based on Eqn.(S1-2), the gradient of q is:

DqT~DwTA~{
g

8l{Efr̂rf’’(y)gEfJ’(y)sTATg
X{1

xx
AðS2� 4Þ

Since
P{1

xx ~(EfxxTg){1~(AEfssTgAT){1, based on the

independence property of s, there is a
P{1

xx ~(AT){1A{1.

Therefore, we have:

DqT~{
g

8l{Efr̂rf ’’(y)gEfJ ’(y)sTg ðS2� 5Þ

For the simplicity and without loss of generality, we let f (y)~y4

and negentropy approximation function J(y)~{(kurt(y))2

where kurt(y) is the kurtosis of y defined by

kurt(y)~Efy4g{3. Since only the direction, i.e.

DqT!{Ef(qT s)3sTg is concerned then by the independence

property we have:

DqT!{((q3
1kurt(s1), � � � ,q3

i kurt(si), � � � ,

q3
nkurt(sn))Tz3qT)

ðS2� 6Þ

Since the second term in the right side of Eqn.(S1-6), 3qT, only

prolongs the length of qT, so (q3
1kurt(s1), � � � ,q3

i kurt(si)

� � � ,q3
nkurt(sn))T determines the gradient. This is easily derived

that when Dq3
i kurt(si)DwDq3

j kurt(sj)D (i=j, j[(1, � � � ,n)), DqT will

point to (qi)T and qT will converge towards (qi)T.

Then, the condition is:

Dqi

qj
DwD ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kurt(sj)
3
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kurt(si)

3
p D ðS2� 7Þ

So the region in the feasible space of the equality constraint

which satisfies Eqn. (S2-7) is the attractive basin of si. It can be

concluded that the IC’s attractive region is related to its

relative value of the corresponding negentropy. If an IC has

a larger negentropy than the others, it will have larger

attractive basin in the feasible space of equality constraint

and vice versa.

Appendix 3

The derivation of the center of inequality constraint
If iteration of ICA-R is outside of the feasible region of

inequality constraint then the algorithm will draw the learning

into the feasible region, towards the center of inequality

constraint, by increasing the Lagrangian multiplier m. Gener-

ally, the closeness measures can be selected as e(y,r)~{Efyrg,
e(y,r)~Ef(y{r)2g, e(y,r)~1=(Efyrg)2

, and so on, which can

be expressed as e(y,r)~Y(Efyrg) where y and r have zero

mean and unit variance. The center of the feasible region of

the inequality constraint is e(y,r), which can be found by

solving the following optimization problem:

minimize Y(Efyrg)
subject to Efy2g~1

: ðS3� 1Þ

The corresponding Lagrangian function is given by:

L~Y(Efyrg)za(Efy2g{1) ðS3� 2Þ

Then, we let:

LL

LqT
~Y’(Efyrg):EfsTrgz2a:qTEfssTg~0 ðS3� 3Þ

where aw0. And since only the direction is of interest:

qT~bEfsTrg~ b(Efs1rg,Efs2rg, � � � ,fsnrg)T ðS3� 4Þ

where b is some constant that makes qTq~1 satisfied. Thus the

center is determined by the correlation between the reference

signal and the ICs.
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