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Abstract

Population-scale genomic data sets have given researchers incredible amounts of information from which to infer
evolutionary histories. Concomitant with this flood of data, theoretical and methodological advances have sought to
extract information from genomic sequences to infer demographic events such as population size changes and gene flow
among closely related populations/species, construct recombination maps, and uncover loci underlying recent adapta-
tion. To date, most methods make use of only one or a few summaries of the input sequences and therefore ignore
potentially useful information encoded in the data. The most sophisticated of these approaches involve likelihood
calculations, which require theoretical advances for each new problem, and often focus on a single aspect of the data
(e.g., only allele frequency information) in the interest of mathematical and computational tractability. Directly inter-
rogating the entirety of the input sequence data in a likelihood-free manner would thus offer a fruitful alternative. Here,
we accomplish this by representing DNA sequence alignments as images and using a class of deep learning methods
called convolutional neural networks (CNNs) to make population genetic inferences from these images. We apply CNNs
to a number of evolutionary questions and find that they frequently match or exceed the accuracy of current methods.
Importantly, we show that CNNs perform accurate evolutionary model selection and parameter estimation, even on
problems that have not received detailed theoretical treatments. Thus, when applied to population genetic alignments,
CNNs are capable of outperforming expert-derived statistical methods and offer a new path forward in cases where no
likelihood approach exists.

Key words: population genetics, selective sweeps, demographic inference, recombination, machine learning,
introgression.

Introduction
Using genetic data to make inferences about the natural his-
tories of populations represents a major goal of evolutionary
research. As the ever-increasing throughput of DNA sequenc-
ing technologies makes the generation of large population
genomic data sets more routine, researchers can leverage
patterns of genetic variation across the genome to character-
ize the evolutionary forces at play (Hahn 2018). For example,
advances have been made in identifying historical demo-
graphic events such as population size changes (Marth
et al. 2004; Tennessen et al. 2012; Gazave et al. 2014) and
genetic exchange between populations and species (Martin
et al. 2013; Hellenthal et al. 2014; Sankararaman et al. 2014;
Corbett-Detig and Nielsen 2017; Schrider et al. 2018).
Population genomic analyses have also revealed the pervasive
impact of selection on linked neutral polymorphism (Begun
and Aquadro 1992; Begun et al. 2007; Langley et al. 2012;
Elyashiv et al. 2016), both through positive selection
(Maynard Smith and Haigh 1974; Kaplan et al. 1989) and
purifying selection (Charlesworth et al. 1993). As the volume
of population genomic data sets has increased, so too has the

demand for powerful computational methods capable of us-
ing these data to learn about the fundamental evolutionary
processes shaping genomic variation.

To meet this need, myriad statistical and computational
tools have been devised to answer evolutionary questions
using population genetic data. One particularly common par-
adigm, which predates the high-throughput sequencing rev-
olution, is that of the population genetic summary statistic: a
value (or sometimes a vector of values) designed to capture
the information present in a sequence alignment of individ-
uals from one or more populations. When a particular evo-
lutionary phenomenon acts on a population it alters the
shapes of genealogies, and this effect is manifest in the ob-
served sequence alignment. For example, a population expan-
sion will result in genealogies with longer branches near the
leaves of the tree, which will manifest as an excess of rare
alleles. Many summary statistics seek to uncover the signature
of these genealogical skews through their effect on the align-
ment; for example, Tajima’s D will be negative following a
recent expansion or recovery from a bottleneck (Tajima 1989;
Simonsen et al. 1995). Ideally a summary statistic will only
detect the signal of the evolutionary process it is being used to
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investigate, but in practice summary statistics are frequently
confounded by other forces that may have similar effects on
the shapes and/or sizes of genealogies. For example, Tajima’s
D is sensitive to positive selection as well as population size
changes (Simonsen et al. 1995). Moreover, such summary
statistics do not capture all the information present in the
alignment. Thus, a major challenge of population genetic in-
ference is to create methods that utilize as much information
from the input data as possible in order to maximize our
ability to distinguish among the numerous evolutionary pro-
cesses that can give rise to an observed signal.

One approach researchers have adopted to address this
challenge is to incorporate a larger number of observations
from the data into likelihood-based inference methods.
However, calculating likelihoods of population genomic
data sets is often mathematically and computationally intrac-
table, and therefore such approaches often use composite
likelihoods which ignore the nonindependence of observa-
tions (Hudson 2001; Nielsen et al. 2005). For example, Nielsen
et al.’s SweepFinder (2005), which examines allele frequencies
at polymorphisms flanking a focal region to determine
whether that region has experienced a recent selective sweep
(Maynard Smith and Haigh 1974), treats each allele frequency
as an independent observation despite the partially shared
evolutionary histories linked alleles experience. Another draw-
back of most likelihood-based methods is that they generally
compute the likelihood of only a few features of the data
(often only one), and therefore additional information that
could improve accuracy is ignored. For example, SweepFinder
examines allele frequencies but ignores linkage disequilibrium
(LD), which is elevated in areas flanking the selected site (Kim
and Nielsen 2004). Hidden Markov models (Hobolth et al.
2007; Boitard et al. 2009; Dutheil et al. 2009; Kern and Haussler
2010), including those based on the sequential Markov coa-
lescent (Li and Durbin 2011; Schiffels and Durbin 2014), have
also proved effective at using population genetic observations
along a recombining chromosome to make evolutionary
inferences.

More recently, population geneticists have begun to ex-
plore an alternative strategy of using a large set of comple-
mentary summary statistics for model selection and
parameter estimation, an approach that often results in
more powerful and robust inference (Lin et al. 2011; Pybus
et al. 2015; Gao et al. 2016; Schrider and Kern 2016; Sheehan
and Song 2016). Each summary statistic seeks to measure a
particular attribute of the genealogy, and one can thus design
a customized set of summary statistics to more fully represent
the genealogical information present in the sequence align-
ment. This view deploys summary statistics less for their in-
dividual links to underlying theory, and more for their
collective ability to perform pattern recognition. The chal-
lenge then becomes extracting information about the under-
lying evolutionary processes from the set of summary
statistics. Two exciting approaches for dealing with this chal-
lenge that have garnered increasing attention in recent years
are approximate Bayesian computation (reviewed by
Beaumont [2010]) and supervised machine learning
(reviewed by Schrider and Kern [2018]). Both of these

approaches make use of suites of user-defined summary sta-
tistics and training data generated under known parameters
to identify reasonable evolutionary models and parameter-
izations that could have generated the observed data. Here
we focus on the supervised machine learning approach, as it
sets the scene for the convolutional neural networks (CNNs)
described below.

In the terminology of supervised machine learning, each
summary statistic is called a feature, and the full set of statis-
tics used is called a feature vector. To use supervised machine
learning, a researcher must first obtain training data (often
referred to as “labeled” data)—a set of data points each sum-
marized by a feature vector (the explanatory variables) ac-
companied by a known outcome (the response variable).
Next, a supervised machine learning algorithm is trained to
predict the outcome given the feature vector using the la-
beled training data. Thus, the supervised machine learning
technique automates the process of extracting information
and constructing rules from a set of summary statistics.
Across many areas of research, supervised machine learning
techniques are fast replacing rules developed by human
experts because they are often more accurate (LeCun et al.
2015).

Supervised machine learning methods are increasingly be-
ing applied to numerous problems in population genetics
(Schrider and Kern 2018). In this context, labeled training
data are usually generated via population genetic simulation,
an endeavor that has grown considerably more feasible given
recent improvements in simulation flexibility and efficiency
(Thornton 2014; Kelleher et al. 2016; Haller and Messer 2017;
Kelleher et al. 2018). To date, population genetic applications
of machine learning include demographic inference (Pudlo
et al. 2016; Sheehan and Song 2016), local ancestry inference
(Schrider et al. 2018), inferring recombination rates (Lin et al.
2013; Gao et al. 2016), and detecting genomic regions
experiencing recent selective sweeps (Pavlidis et al. 2010;
Lin et al. 2011; Ronen et al. 2013; Pybus et al. 2015; Schrider
and Kern 2016). Although such methods have great promise,
they still rely on a user-defined set of summary statistics
(ranging in number from dozens to hundreds). Moreover, it
is not known whether it is possible to construct a set of
statistics that sufficiently captures all relevant information
in the input data.

Unlike other machine learning approaches, CNNs (LeCun
et al. 1998) are pattern recognition algorithms that do not
require a predefined feature vector. When fed labeled training
data (e.g., a set of haplotypes simulated under a known bio-
logical scenario), a CNN discovers meaningful features, in es-
sence making a feature vector, and then extracts information
from these features in order to make inferences. CNNs have
proved effective in a number of fields (reviewed by LeCun
et al. [2015]), and particularly in the field of image recognition,
where they have achieved dramatic improvements over pre-
vious efforts (Lawrence et al. 1997; Krizhevsky et al. 2012;
Simonyan and Zisserman 2014). The application of CNNs
to population genomic inference is just beginning, and shows
great promise (Chan et al. 2018). Population genetic ques-
tions may be particularly well suited for CNN-based learning
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because they take matrices as inputs, and alignments of se-
quenced chromosomes are quite naturally represented in this
manner.

The goal of this study is to assess the effectiveness of CNNs
as a general strategy for population genomic inference. We
demonstrate that CNNs can be successfully applied to a num-
ber of population genomic problems, in some cases achieving
surprising accuracy. In particular, we use simulation to show
that CNNs can leverage images of aligned sequences to ac-
curately uncover regions experiencing gene flow between re-
lated populations/species, estimate recombination rates,
detect selective sweeps, and make demographic inferences.
Indeed, in most cases we observe performance that matches
or exceeds that of current methods. We also use a CNN to
accurately infer recombination rates from read coverage data
in a simulated autotetraploid, demonstrating this approach’s
flexibility in handling noisy data while solving a complex prob-
lem for which no theoretical solution exists. In light of these
encouraging findings, we argue that population genetics
researchers should consider CNNs as a potential solution to
a variety of problems involving evolutionary inferences from
sequence data. Because some readers may have little back-
ground with this tool, we also provide an overview of the
inner workings of CNNs and explore several technical con-
siderations that may impact performance.

Results
Our goal is to use a CNN to make population genetic infer-
ences from an alignment image, which can be thought of as
matrices where each entry represents the allele present in a
given chromosome at a given site. In particular, we focus on
four distinct problems: identifying local introgression, esti-
mating the recombination rate, detecting selective sweeps,
and inferring population size changes. We chose these four
tasks because each represents a different challenge in popu-
lation genetic inference, each with its own attendant branch
of theory. To show the ability of CNNs to solve problems for
which no statistical approaches have been proposed, we ex-
tended our recombination inference to infer recombination
rates in autotetraploids with tetrasomic inheritance.

Below, we address each of these problems in turn, provid-
ing a brief overview of the phenomenon in question and
existing methodology before describing our results using
CNNs. But prior to tackling these problems, we first give an
overview of CNNs and discuss strategies for reorganizing our
input data that we found helpful in making CNNs work more
efficiently with population genetic alignments.

Overview of CNNs
Internally, a CNN is a type of artificial neural network—a
collection of connected layers of combinatorially linked
mathematical functions (termed “artificial neurons”) that
take an input and transform it into an output value
(Mitchell 1997). In a typical fully connected artificial neural
network, the input values are fed through a series of layers of
artificial neurons (fig. 1A), termed hidden layers, before reach-
ing the output layer which transforms its inputs into a final

prediction. The output for the jth neuron within one of the
hidden layers is given by the following:

f
Xn

i

wijxi þ bj

 !
:

In the expression above, xi is the neuron’s ith input value
(either an input value from the data or from a neuron in the
previous layer’s output), wij is the weight attached to the
connection between that node (i) and the current node (j),
and bj is the current node’s bias term. That is, to obtain the
value of neuron j, we compute the linear combination of the
vector containing all values from the previous layer and the
jth neuron’s vector of weights; the results of this summation
are in turn added to neuron j’s bias term and then fed as input
to some function f, termed the “activation function” and
which may be nonlinear. Thus, an artificial neural network
is a mathematical function.

Importantly, by changing the values of the weights and
biases, an artificial neural network can be tuned to detect
informative patterns in the input data in order to produce
the desired output. In the case of image recognition, an image
is first represented numerically, typically as a matrix of pixel
intensities, and then transformed by the artificial neural net-
work to produce an output, for example, a prediction of the
type of object in the image. CNNs (fig. 1B and C) differ from
standard artificial neural networks in that they begin with one
or more convolutional layers, in which a series of smaller
weight matrices referred to as “filters” slide across the input
image—mimicking the manner in which animal cortical neu-
rons each focus on input only from a small receptive field—
and perform a matrix convolution at each step until a series
of filtered image matrices are produced (LeCun et al. 1998).
These filters are constructed during training (see below). Each
convolutional layer is often followed by a pooling layer (see
fig. 1B and caption) which reduces the size of these filtered
image matrices while maintaining potentially important dis-
criminatory information obtained by the convolutional filters.
Finally, these matrices are flattened into 1D vectors and then
fed into a fully connected (or “dense”) artificial neural net-
work (for an accessible overview, see LeCun et al. [2015]).
Thus, salient features derived from the image matrix by the
convolutional and pooling layers are passed into one or more
layers of a fully connected neural network whose output layer
then yields our predicted response value.

CNNs allow for two types of convolutional layers: 1D and
2D, which differ only with respect to the possible shapes that
the convolutional filter can take (fig. 1B and C). 1D convolu-
tions are often used in the application to time-series data
(Dieleman and Schrauwen 2014; Kim 2014) and are thus ap-
plicable to sequence alignment matrices. Despite its name, a
1D filter is not a vector but rather a rectangular matrix that
spans a user-defined number of entries (called the “kernel
size”) in one dimension in the input data (in our case this
dimension is that of the polymorphic sites in the alignment),
and stretches entirely across the other dimension (in our case
across all chromosomes in the sample). A 2D convolutional
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filter, which is more often used with image data, allows the
user to specify both dimensions of the filter matrix (often
using a square matrix). Whether 1D or 2D, the benefit of
incorporating convolutions is that it allows the CNN to
take advantage of structural information in the input data.
For example, from an image of a face, a CNN can learn to
detect the repeated pattern of the eye shape and the location
of both eyes relative to one another and to other features.
When there is meaningful structural information such as this,
CNNs tend to outperform non-CNNs.

Here, our input data are an alignment of linked segregating
sites with partially shared evolutionary histories. Our hope is
that a CNN can discover structural information in these data
in order to make evolutionary inferences—for example, lo-
cating the valley in diversity at the center of a sweep
(Maynard Smith and Haigh 1974), the “shoulders” on the
flanks of a sweep where LD and allele frequencies are both
elevated (Schrider et al. 2015), or even the spatial relationship
between these patterns. We also note that neural networks
such as CNNs can have multiple “branches” each with sepa-
rate architectures and input types—in some of the cases
discussed in this article we incorporate an additional network
branch whose input is the vector of the positions of the
segregating sites (fig. 1B and C).

Like all supervised machine learning methods, a CNN must
be trained on labeled training data before it can make pre-
dictions on unlabeled data (i.e., data whose response variables
are unknown). Training is accomplished by tuning the
weights and biases that control the behavior of its artificial
neurons so that together they maximize the accuracy of the
outputs on the training data. Note that the weights deter-
mined during the training process include the values of the
convolutional filter matrices, and thus different filters will be
algorithmically created for each task we address in this article.
This tuning occurs over a number of iterations using the
backpropagation algorithm (Rumelhart et al. 1986), which
in modern implementations feeds a small number of training
examples (a “mini-batch”) through the network and then
estimates the error gradient on the output vectors produced
for these examples. The error gradient is then propagated in
reverse through the network—a given hidden neuron’s con-
tribution to the error is proportional to the linear combina-
tion of its weight vector and the errors associated with each
neuron in the next layer. The weights are then updated using
one of the many flavors of stochastic gradient descent
(Kingma and Ba 2014). This process repeats until each train-
ing example has been fed through the network, marking the
completion of a single training iteration. Training continues
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FIG. 1. Schematics of a standard feedforward neural network and two convolutional neural network designs used in this study. (A) Diagram of a
fully connected feedforward neural network. Gray circles represent input (left side), output (right side), or hidden (center) neurons. Blue circles
represent collections of bias terms. With the exception of the input layer, the value of any given neuron is a linear combination of values from the
previous layer plus a bias term; this sum is then passed to an activation function (not shown). Each edge represents a distinct-weighted input or
bias term. Outputs may represent class membership posterior probabilities or estimates of continuous variables. (B) A diagram of a 2D CNN similar
to that used in this study to infer demographic parameters. The input is an alignment represented as an image which is passed through a first
convolutional layer in order to create a set of feature maps. These feature maps are then downsized via a pooling step which replaces the values of a
1D or 2D matrix within a feature map with a single value summarizing it (e.g., the mean or maximum value of that matrix). For example, a 2D
pooling operation of size 2 will reduce the size of a feature map by a factor of 4, as each adjacent 2� 2 matrix within the input feature map is
replaced by a single value (e.g., the maximum of those four values). These downsized feature maps are then passed through a second convolutional
filter and pooling step, and the resulting output is flattened into a 1D vector and passed as input into a fully connected feedfoward layer (bias terms
not shown). Also passed into this layer is output from a second branch of this network: the vector of positions of segregating sites in the alignment
which have been passed through their own fully connected layer. Finally, the last fully connected neural network layer yields the predicted output
values. (C) Similar to (B), but showing a 1D CNN with three convolutional layers (each followed by a pooling step), as used for our recombination
rate estimator.
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for a number of these iterations (often called epochs) until a
specified stopping criterion is reached (e.g., a predefined num-
ber of iterations has been performed, accuracy on the valida-
tion set has not improved relative to the previous iteration,
etc.).

In the context of population genetics, the CNN’s input
could be a matrix of allelic states at each polymorphic site
(fig. 2). For example, an alignment of haploid individuals M,
where Mij ¼ 0 if the ith individual has the ancestral allele at
the jth segregating site in the alignment, and 1 if this individ-
ual has the derived allele (an input format that can easily be
altered to allow for multiallelic polymorphisms); we adopt
this approach and variants of it below. The output can be a
categorical indicator (e.g., whether or not the genomic win-
dow experienced a recent selective sweep) in which the prob-
lem is referred to as a classification task in machine learning
terminology, a quantitative value (e.g., the population recom-
bination rate) in which case the task is referred to as regres-
sion, or a vector containing both categorical and quantitative
values. Once the CNN has been trained to produce the de-
sired output, it can be applied to unlabeled data (e.g., se-
quence from natural populations).

Because supervised machine learning relies on predictive
functions tuned algorithmically from training data, CNNs can
be applied to any problem for which a training set can be
obtained, and therefore our inference is not limited to prob-
lems for which appropriate likelihood models or statistics
have been derived and implemented. In a population genetics
context, coalescent simulations provide a versatile and com-
putationally efficient (Hudson 2002; Teshima and Innan 2009;
Ewing and Hermisson 2010; Kelleher et al. 2016; Kern and
Schrider 2016) means to generate training data. In this article,
we relied exclusively on coalescent simulations to produce
training data for the CNN. However, compute-intensive for-
ward population simulations may offer greater flexibility than
coalescent simulations in some situations, and recent advan-
ces are making them more computationally feasible (Kelleher
et al. 2018).

Using a CNN to Make Inferences from an Alignment: A
Simple Test Case
We evaluated the performance impact of transposing the
alignment matrix (so that columns rather than rows corre-
spond to chromosomes) and sorting the chromosomes in the

alignment matrix by genetic similarity. We did this using a 1D
CNN trained to estimate the population-scaled mutation
rate, h, in an equilibrium population. We found that both
of these techniques accelerate the decline in root-mean-
square error (RMSE; fig. 3), showing that they help the net-
work achieve better performance. Transposing the alignment
matrix so that chromosomes are represented by rows and
polymorphisms by columns has a particularly notable effect
(compare blue and black lines in fig. 3). Additionally, sorting
the chromosomes by genetic similarity further increases the
accuracy of the CNN when combined with the matrix trans-
position above (magenta line); alternatively, using a
permutation-invariant network architecture would obviate
any need for this step (Chan et al. 2018). The effect of trans-
position should disappear when using 2D convolutions be-
cause in those cases we always used a square convolutional
filter matrix (see Materials and Methods), but we found that
1D CNNs often performed as well as 2D CNNs (data not
shown). Thus, unless otherwise specified we use 1D convolu-
tions for the tasks discussed below.

CNNs Can Accurately Detect Introgressed Loci
Recent studies indicate that closely related species often ex-
change genes (Kulathinal et al. 2009; Martin et al. 2013;
Brandvain et al. 2014; Fontaine et al. 2015). There are several
motivations for locating genomic segments introgressed from
one species into another. For one, the occurrence of cross-
species gene flow raises the possibility of adaptive
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FIG. 2. Example population genetic alignments visualized as black-
and-white images. An unsorted alignment matrix (left) and this same
matrix sorted by genetic similarity among chromosomes (right) are
shown. Each row represents 1 of 20 chromosomes in the sample and
each column represents 1 of 40 segregating sites. Derived and ances-
tral states are encoded as black and white, respectively.
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FIG. 3. The impact of input data reorganization on accuracy. We show
the RMSE of a 1D CNN’s predictions of h as assessed on 1,000 test
alignments after a given number of training iterations. Each line is the
average of ten runs. The blue line shows accuracy after training using
alignment matrices with each row representing one chromosome.
The black line shows accuracy after transposing all matrices so that
chromosomes correspond to columns; this makes 1D convolutional
filters examine each individual at a group of adjacent segregating sites.
The magenta line shows the impact of transposing matrices, and
sorting the chromosomes in the alignment matrix by genetic
similarity.
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introgression, wherein a beneficial allele enters a population
via migration from a related species (reviewed by Hedrick
[2013]). Discovering introgressed loci can therefore identify
alleles underlying rapid ecological adaptation as well as the
source of these alleles. In addition, uncovering genomic
regions that are and are not porous to cross-species gene
flow may help to illuminate the genomic basis of reproductive
isolation (Turner et al. 2005).

Researchers have thus sought to devise methods capable
of detecting introgressed regions from multispecies popula-
tion genomic data sets. These include methods that attempt
to infer the ancestry for each individual at each site (Price
et al. 2009; Lawson et al. 2012; Sohn et al. 2012) and those that
explicitly seek to discriminate between introgressed and non-
introgressed loci (Sankararaman et al. 2014; Geneva et al.
2015; Rosenzweig et al. 2016; Schrider et al. 2018). We trained
a CNN to identify introgression in a scenario modeled after
the demographic history of the Drosophila simulans–D.
sechellia species pair (see Materials and Methods), for which
there is evidence for recent gene flow (Garrigan et al. 2012).

Figure 4A displays the results of these tests in the form of
confusion matrices, which show the fraction of test examples
correctly predicted for each class (diagonal values) as well as
the fractions incorrectly assigned (off-diagonal values). To
compare the performance of our CNN with competing
approaches, figure 4B displays the confusion matrix for
FILET, a method previously shown to outperform several
methods, including two statistics for detecting introgression
(Joly et al. 2009; Geneva et al. 2015), and a tool that infers local
ancestry tracks for each individual (Lawson et al. 2012).
Overall, this CNN classified 88.5% of test simulations correctly
(95% confidence interval: 87.7–89.2%). The most difficult sce-
nario for the CNN was introgression from D. simulans into D.
sechellia, which it misclassified as “no introgression” 23% of
the time. For the other two classes, the CNN accuracy was
>95%. Importantly, for every class this CNN achieved greater
accuracy than FILET (overall accuracy of 82.5%; 95% confi-
dence interval: 81.7–83.4%), a machine learning approach
that leverages a vector of 31 summary statistics (Schrider
et al. 2018). Thus, it is a useful measuring stick for assessing
the CNN’s accuracy, and the CNN’s success in this compar-
ison is encouraging.

Estimating Historical Recombination Rates
Recombination creates new combinations of alleles, and the
degree of linkage between selected sites affects the efficiency
with which natural selection can act on each individual site
(Hill and Robertson 1966). The interplay of selection and re-
combination also influences the landscape of diversity across
the genome (Begun and Aquadro 1992). Knowledge of re-
combination rates is thus key to population genetics research.
As a more practical alternative to estimating rates directly
(e.g., from pedigrees; Kong et al. 2010), one can infer recom-
bination rates from population genetic data by examining
associations among alleles at different sites. A number of
methods have been proposed to solve this problem, including
summary statistic estimation approaches (Hudson and
Kaplan 1985; Hudson 1987; Hey and Wakeley 1997),

composite likelihood-based methods (Hudson 2001;
McVean et al. 2004; Chan et al. 2012), and machine learning
tools using a vector of statistics (Lin et al. 2013; Gao et al.
2016). We sought to determine whether a CNN taking an
alignment image as input could be trained to tackle this task.
To address this problem, we first trained a CNN to estimate
the historical population recombination rate q¼ 4Nr (where
r is the crossover rate per base pair per meiosis) from phased
chromosomes. This is the simplest scenario, as the arrange-
ment of alleles on chromosomes is completely resolved.
Following training, we compared the CNN’s performance
with that of LDhat (McVean et al. 2004), a widely used
composite likelihood method, on the same testing data
(fig. 5). We generated a test set of alignments whose values
of q spanned 3 orders of magnitude, from 0.0002 to 0.2
(expressed per base pair). Overall, both approaches per-
formed well at predicting the true value of q. LDhat had
an R2 ¼ 0.77 and an RMSE ¼ 0.016, whereas the CNN had a
R2 ¼ 0.86 and an RMSE ¼ 0.011 (fig. 5A and B). LDhat
appears to estimate q slightly better than the CNN for lower
recombination rates, whereas the CNN performs better at the
higher values of q (fig. 5C). Additionally, the CNN appears to
provide a roughly unbiased estimator of q, whereas
LDhat’s estimates appear downwardly biased.

Because the CNN was capable of estimating q indepen-
dent of h, we were interested to see how well it could inter-
polate between the h values it was trained with. The CNN was
trained with a large gap between N¼ 20,000 and N¼ 50,000
(and thus a large gap in h; see Materials and Methods), so we
used coalescent simulations to generate an additional test set
with N values drawn uniformly among 30,000, 35,000, 40,000,
and 45,000. When tested on these data the CNN’s predictions
had an R2 ¼ 0.82 and an RMSE ¼ 0.017. This represents a
slight decrease in accuracy from the values obtained when
tested on the same N values used in training, but nonetheless
shows that the CNN can interpolate between training param-
eters without a dramatic loss in accuracy. This could be a
useful property, for example in cases where N (or h) is un-
known, but where one can generate coalescent simulations
across a range of plausible values.

Further complications arise when estimating q from
unphased data. Under this scenario the arrangement of alleles
on chromosomes is not known. One work-around is to first
phase the alleles and then infer q as above, but not all data
sources are easily phased, and phasing errors will, of course,
reduce accuracy. Another approach is to analyze the
unphased data directly. The relevant theory required to tackle
this problem in a probabilistic manner has been worked out
for unphased diploids (Auton and McVean 2007), but
expanding this theory to higher ploidies would require a sub-
stantial effort. Take for example an autotetraploid with tet-
rasomic inheritance, where there are five possible genotypes
(AAAA, AAAa, AAaa, Aaaa, and aaaa). To further complicate
things, after sequencing an autotetraploid genome to a mod-
erate depth of coverage and identifying polymorphisms, the
true underlying genotype may be uncertain. For example,
given a site with ten reads supporting A and ten supporting
a, the true genotype could be AAAa, AAaa, or Aaaa. To show
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A B

FIG. 4. Performance of classifiers for detecting introgression. We use confusion matrices to show the performance of a CNN trained to detect
genomic regions of introgression between two closely related species (A), and a competing method that uses a vector of summary statistics to the
same end (FILET; B). These classifiers were both trained and tested on the same data sets which were simulated under a joint demographic history
inferred from a sample of Drosophila simulans and D. sechellia individuals (as described in the Materials and Methods) with and without
introgression. The classifiers seek to discriminate among three classes: no introgression in the genomic window being examined, introgression
from D. sechellia to D. simulans, and introgression from D. simulans into D. sechellia. Each entry in the matrix shows the fraction of test examples
belonging to the class specified on the y-axis that were inferred by the method to belong to the class specified on the x-axis. Correct classifications
are those found along the diagonals, whereas all off-diagonal entries represent incorrect classifications.

A B

C D

FIG. 5. Accuracy of recombination rate estimates from LDhat and our CNN. (A) and (B) Real q values per base pair on the x-axes and LDhat’s (A)
and the CNN’s (B) predictions on the y-axes. (C) Real q values on the x-axis, and the probability that the CNN was more accurate than LDhat (black
line) on the y-axis. This probability was calculated by scoring estimates where the CNN outperformed LDhat as one and the reciprocal as zero, and
then smoothing these values with a lowess curve with a span of 15%. The red line represents the expectation if both methods had identical
accuracy. (D) Results from the simulated autotetraploid model, with the real q values on the x-axes and the CNN prediction on the y-axes.
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the utility of CNNs in addressing novel population genomic
inference problems, we designed a CNN capable of inferring q
from a simulated set of sequence reads from an unphased
autotetraploid population sample.

We used a simple simulation scheme to produce read
counts for each allele at each site for each individual in a
sample of 12 autotetraploids, each with �25X expected
genome-wide coverage (see Materials and Methods). Rather
than allelic assignments, the input matrix for this CNN con-
tains for every site in each individual the fraction of reads
bearing the a allele. Deriving a likelihood function for q under
this formulation may be challenging, and such a solution has
not yet been attempted. However, appropriately designed
artificial neural networks are universal approximators, mean-
ing that they have the potential to approximate any contin-
uous function over a compact input space (Hornik 1991).
Thus it is possible for a CNN to approximate the desired
likelihood function, even in its absence. To this end, we
trained a CNN with a similar architecture to the one used
above on phased haploid chromosomes (see Materials and
Methods). We evaluated the performance of this CNN on a
set of simulations where q again ranged from 0.0002 to 0.2
(still scaling by 4N, rather than 8N which would be appropri-
ate for tetraploids, so the result can be compared with those
above). The CNN’s predictions had an R2¼ 0.83 and an RMSE
¼ 0.012 (fig. 5D). As before, the estimate of q was made
independent of h, which varied over an order of magnitude.
The fact that this autotetraploid network performed only
slightly worse than the haploid version demonstrates that a
CNN can solve problems for which no model-based likeli-
hood (or even composite likelihood) approach has been
obtained, empowering empiricists untrained in methods de-
velopment to address questions specific to their biological
system.

CNNs Can Accurately Detect and Categorize
Signatures of Recent Positive Selection
When a new mutation is immediately favored by positive
selection, it rapidly increases in frequency until it fixes (i.e.,
completely replaces all other alleles at that site). This phe-
nomenon, referred to as a hard selective sweep, drastically
reduces the amount of linked neutral variation (Maynard
Smith and Haigh 1974), and produces characteristic skews
in the allele frequency spectrum (Fay and Wu 2000) and
LD at linked sites (Kim and Nielsen 2004). Alternatively, in
a process known as a “soft sweep” populations may adapt via
selection on a polymorphism that has been segregating for
some time, such that the adaptive allele exists on numerous
haplotypes (Hermisson and Pennings 2005). To uncover the
mode of recent adaptation and the genomic regions under-
lying recent adaptation, a large number of methods have
been devised to detect and characterize selective sweeps.
These include summary statistics (Kelly 1997; Fay and Wu
2000; Kim and Nielsen 2004; Voight et al. 2006; Garud et al.
2015), composite likelihood-based approaches (Kim and
Stephan 2002; Kim and Nielsen 2004; Nielsen et al. 2005; Vy
and Kim 2015), and supervised machine learning approaches
using a vector of statistics to obtain greater power than

individual tests/statistics (Lin et al. 2011; Pybus et al. 2015;
Schrider and Kern 2016; Sheehan and Song 2016; Sugden et al.
2018). Although these efforts have led to considerable prog-
ress, detecting and distinguishing between hard and soft
sweeps remains a major challenge.

We built a CNN to detect selective sweeps and to discrim-
inate between hard sweeps and soft sweeps. This CNN follows
the S/HIC method of Schrider and Kern (2016) by casting the
problem as a classification task where the genomic region
being examined is assigned to one of five disjoint classes: a
recent classic “hard” sweep, a recent “soft” sweep, a region
linked to a nearby hard sweep, a region linked to a nearby soft
sweep, or a neutrally evolving region.

Like FILET for the problem of detecting introgression, com-
paring the CNN’s accuracy with that of S/HIC is informative
because S/HIC was previously shown under a variety of sim-
ulated scenarios to have greater power than a number of
competing methods (Schrider and Kern 2016). Rather than
adopting S/HIC’s approach of using a large vector of statistics,
the CNN takes an alignment image as input. We tested both
methods against data simulated under a challenging demo-
graphic history estimated from human population data (see
Materials and Methods). As evidenced by the confusion ma-
trices in figure 6, the CNN has slightly higher overall accuracy
than S/HIC (60.6% with 95% confidence interval: 58.8–62.3%
for the CNN; vs. 58.5% with 95% confidence interval: 56.7%–
60.2% for S/HIC). Although S/HIC appears to be somewhat
more sensitive to sweeps, the CNN achieves a more than 3-
fold reduction in false positive rate: 2% of neutral simulations
are classified as sweeps by the CNN, versus 6.35% for S/HIC; all
of these false positives are classified as soft sweeps. This quality
may be particularly desirable when scanning genomes where
sweeps are relatively rare and thus a high degree of specificity
is required to maintain a low false discovery rate, although the
proclivity of either classifier to produce false positives versus
false negatives can be adjusted by imposing a posterior prob-
ability cutoff. Note that these classifiers were both trained
under the same demographic history from which the test
data were generated. We would not expect this CNN to
match S/HIC’s robustness to demographic misspecification
given that S/HIC’s feature vector was designed with this in
mind, though we did not test this. Nonetheless, the fact that
the CNN has similar accuracy to S/HIC under this difficult test
scenario is highly encouraging.

CNNs Can Extract Demographic Information from
Alignments
A major focus of population genetics research is to use ge-
nomic data to elucidate species’ demographic histories—the
extent and timing of population size changes, and the history
of population splits and migration events. For example, a host
of population genetic approaches has been devised to infer
the times and intensities of population contractions and
expansions over the course of a species’ recent history
(Marth et al. 2004; Schiffels and Durbin 2014; Liu and Fu
2015), and to elucidate the history of population splits and
subsequent gene flow (Nielsen and Wakeley 2001; Hey 2010),
and population merging events (Lipson et al. 2013; Loh et al.
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2013). We asked whether CNNs can effectively extract demo-
graphic information from alignment images, focusing on the
task of inferring population size histories. In particular, we
attempted to train a CNN to estimate the parameters of a
three-epoch model of instantaneous effective population size
changes. There are five such parameters: the ancestral popu-
lation size (N2), the time of the more ancient population size
change (T2), the population size after this change (N1), the
time of the more recent change (T1), and the present-day
population size (N0); our response variable is the vector of
these five real-valued parameters. Thus, this analysis also
allows us to assess the ability of CNNs to predict multiple
population parameters simultaneously.

We simulated 50 haploid chromosomes under a variety of
randomly selected population size histories, and trained a
CNN to estimate the demographic model parameters. The
simulated region was roughly equivalent in length to 1.5 Mb
of the human genome (see Materials and Methods). Because
we found this problem to be comparatively difficult, we
experimented with a variety of hyperparameters governing
the neural network structure and input/output format. In
supplementary table S1, Supplementary Material online, we
show the optimal RMSE (i.e., the minimum RMSE across
training iterations) for each hyperparameter combination ex-
amined. This experiment revealed several general trends. First,
1D convolutional networks tended to fare slightly better than
their 2D counterparts (median RMSE of 0.52 across all hyper-
parameter combinations with 1D convolutional filters, and
median RMSE 0.54 for 2D convolutions; P¼ 1.1� 10�4;
Mann–Whitney U test); however, several 2D networks per-
formed nearly as well as the best 1D network, achieving an
RMSE of <0.5 while the best score obtained overall was 0.43.
Second, smaller convolutional filters tended to perform
slightly better than larger ones—we observed a positive cor-
relation of kernel size with RMSE across hyperparameter com-
binations (q¼ 0.26; P¼ 6.9� 10�4; Mann–Whitney U test).

For example, the median validation RMSE was 0.51 for a ker-
nel size of 2 versus 0.56 for a kernel size of 10. Third, log-scaling
the demographic parameters to be estimated increased ac-
curacy (RMSE decreased from 0.55 to 0.52; P¼ 0.020; Mann–
Whitney U test). For this problem, sorting chromosomes by
relatedness resulted in a small improvement (RMSE de-
creased from 0.54 to 0.53; P¼ 0.034). Encoding ancestral
and derived alleles as “0” and “255” (i.e., black and white in
a grayscale image), respectively, versus “�1” and “1” had a
significant influence on accuracy, with the former yielding
better performance than the latter (RMSE of 0.51 vs. 0.60;
P¼ 1.5� 10�15). Finally, using dropout resulted in a slight
decrease in accuracy (median RMSE increased from 0.52 to
0.55) though this was not statistically significant (P¼ 0.092).
We note that these trends may change if the amount of
training data is increased or decreased, and may not neces-
sarily hold for other tasks.

In figure 7, we show the correlation between the true and
inferred values for each of these five parameters for the best
performing network. For N0 and T0, these correlations are
quite high, implying that our CNN can recover the true values
reasonably well. However, for the remaining parameters, the
correlation is lower (though still highly significant), and our
CNN produces downwardly biased estimates when the values
of these parameters are larger. Although our accuracy is far
from perfect, we consider these results fairly encouraging be-
cause we are only examining a single moderately sized geno-
mic region, whereas other modern demographic inference
methods use data from across the genome. For example,
@a@i (Gutenkunst et al. 2009) uses allele frequencies mea-
sured at a large number of polymorphisms (e.g., those found
in all distal intergenic regions across the genome; Gazave et al.
2014). PSMC and MSMC (Li and Durbin 2011; Schiffels and
Durbin 2014) take data from a single very large recombining
region such as an entire chromosome. In essence, we are
currently only able to utilize information about the coalescent

A B

FIG. 6. Confusion matrices showing accuracies of two methods that seek to detect recent positive selection by discriminating among hard sweeps,
soft sweeps, unselected regions closely linked to hard and soft sweeps, and neutrally evolving regions. (A) Confusion matrix summarizing the
performance of our CNN, which uses an alignment image as input. (B) Performance of S/HIC, which uses a vector of summary statistics each
measured in windows surrounding the region to be classified. These two classifiers were both trained and tested on the same data sets described in
the Materials and Methods section.
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histories of the region in question—and this collection of
histories may not match that of the entire population, which
would be more accurately reflected in genome-wide data. In
the Discussion, we address prospects for incorporating
genome-scale data in demographic inference.

Discussion

CNNs Are Well Suited for Population Genetic
Problems
Population geneticists have devised a wide array of compu-
tational methods to make evolutionary inferences from ge-
nomic data. Typically the goal of these efforts is to aggregate
information across genomic sites in order to make an accu-
rate inference. These methods include likelihood-based
approaches (Kim and Stephan 2002; Nielsen et al. 2005;
Gutenkunst et al. 2009; Liu and Fu 2015), probabilistic graph-
ical models such as hidden Markov models (Turner et al.
2005; Boitard et al. 2009; Lawson et al. 2012), and those
that rely on the use one or more summary statistics designed
to characterize patterns of variation within a genomic region
(Tajima 1989; Fu and Li 1993; Kelly 1997; Fay and Wu 2000;
Kim and Nielsen 2004; Voight et al. 2006; Ferrer-Admetlla
et al. 2014). Although these approaches differ substantially
from one another, they all have one thing in common: They
make use of population genomic theory to connect the fea-
tures of a data set to the underlying evolutionary process.
Here, we have demonstrated the potential of an alternative

approach: treating population genetic inference as an image
recognition problem where the “image” is the population
genetic alignment, which is directly fed as input to a CNN.
In contrast to most mainstream approaches, this CNN ap-
proach makes use of the entirety of the data, rather than
using theoretically derived estimators or closed-form likeli-
hood functions to connect a small number of features of
the data to an evolutionary process.

Here, we have shown that CNNs perform remarkably well
on a number of problems in population genetics. We devel-
oped CNNs with comparable if not greater power to detect
selective sweeps, identify introgressed loci, and infer local re-
combination rates when compared with current methods on
simulated data sets. The CNNs for detecting sweeps and in-
trogression demonstrate the ability to use an alignment im-
age to distinguish among multiple evolutionary models,
whereas the recombination rate estimator demonstrates
that continuous parameters can also be inferred. Finally, al-
though our demographic parameter estimates were fairly im-
precise, they were only based on a short stretch of the
genome, and nonetheless demonstrate that CNNs have the
potential to infer multiple parameters from a sequence align-
ment. While we were in the process of preparing this article,
Chan et al. (2018) completed an important study demon-
strating that a CNN can accurately detect recombination
hotspots. Taken together, these results suggest that CNNs
have enormous potential as a general paradigm for popula-
tion genetic inference.

FIG. 7. Accuracy of demographic inference CNN. The scatterplots show the correlation between true and predicted demographic parameter values
using our best-performing CNN for this task when applied to an independent test set. Note that there may be some monotonicity in the
relationship between the true and predicted values of some of these parameters, which may affect calculations of the Spearman correlation
coefficients shown above each scatterplot. These estimates should thus be viewed as a rough summary of this relationship, whereas the RMSE
values reported in the text better summarize our accuracy. The inset on the bottom right shows the demographic model and its five parameters.
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The effectiveness and generality of CNNs in population
genetic inference should not be surprising. CNNs offer a num-
ber of intrinsic advantages that make them particularly ame-
nable to population genetic data. First, there have been a
number of efforts to move in the direction of making infer-
ences on the basis of the full complement of data present in
an alignment rather than one or more summary statistics (Li
and Stephens 2003; Lawson et al. 2012; Smith et al. 2018).
CNNs represent a natural way of examining the entirety of an
alignment in order to increase inferential power. The devel-
opment of novel CNN architectures to better handle spatial
associations in the data across multiple scales (Yu and Koltun
2015) has the potential to improve CNN-driven population
genetic inference even further. For example, improved ability
to detect both the localized reduction in diversity at a sweep
(Maynard Smith and Haigh 1974) as well as the potentially
confounding skews in patterns of diversity produced in its
flanking regions (Schrider et al. 2015) would be beneficial in
sweep detection.

Another desirable property of CNNs is that they effectively
perform automated feature detection (LeCun et al. 2015).
Because they discover discriminatory information directly
from the image, there is no need to manually construct an
optimal set of features. CNNs may thus outperform methods
based on a set of manually curated features as observed here,
although this may not be the case for all tasks (Bellot et al.
2018). This brings up perhaps the strongest quality of CNNs in
the context of evolutionary inference: Because CNNs can
make inference in the absence of statistics or a likelihood
function, they can make predictions for phenomena for
which there exists no analytical expectation.

Indeed, CNNs can tackle problems for which no relevant
summary statistics have been devised—vectors of such sta-
tistics are required for other likelihood-free methods such as
approximate Bayesian computation (Beaumont 2010) or tra-
ditional supervised machine learning techniques (Schrider
and Kern 2018). On a related note, neural networks are par-
ticularly amenable to the incorporation of disparate data
types with no prior knowledge of their relationships. For ex-
ample, here we have included both genotype information
and positional information for segregating sites as branches
to our networks, allowing both to be used together in pre-
diction despite the fact that our network is not instructed
how these two pieces of information relate to one another.
All that is required is appropriate training data. Thus, we may
not have to wait for theoretical advances in order to draw
inferences from data, provided we are concerned with evo-
lutionary models for which training data can be obtained
from simulation—including the wide range of scenarios
that could potentially be investigated via increasingly flexible
and efficient forward simulators (Thornton 2014; Haller and
Messer 2017; Kelleher et al. 2018).

This point is driven home by the success of our CNN for
estimating recombination rates in autotetraploids from read
pileup information alone—despite the input’s lack of geno-
type calls, let alone phased haplotypes, these inferences are
nearly as accurate as those that we obtained from haplotype
alignments. This result also suggests that CNNs may be well

suited for other inferences where genotype calls are unreliable
(e.g., low-coverage sequencing data; Korneliussen et al. 2014)
or unobtainable (e.g., pooled population sequencing;
Schlötterer et al. 2014). Given CNNs’ flexibility, future studies
should evaluate their potential to tackle not only those prob-
lems examined in this article but also the myriad additional
important challenges in evolutionary genetics to which they
could be readily applied, including but not limited to uncov-
ering adaptive introgression (Racimo et al. 2016), joint infer-
ence of selective and demographic histories (Sheehan and
Song 2016), and even inferring structured outputs such as
ancestral recombination graphs (Rasmussen et al. 2014).

To What Extent Are CNNs Robust to Model
Misspecification?
Another particularly encouraging result of our recombination
rate estimation analysis is that we were able to infer rates for
data generated from a range of parameter values to which the
CNN had not been exposed during training with very little
decrease in accuracy. This ability to interpolate between train-
ing values is a particularly desirable property. First, it implies
that CNNs can be used to create flexible inference tools using
a modest training data set, and second that researchers can
focus training between reasonable parameter bounds, with-
out knowing the true (and often unknowable) underlying
parameters; future efforts must explore the possibility of
training networks to be robust to more extreme cases of
model misspecification.

One illustrative example of the potential pitfalls of model
misspecification is the problem of detecting selective sweeps
without accounting for confounding demographic events.
For example, population bottlenecks will skew genealogies
in a manner similar to sweeps (Simonsen et al. 1995), and
thus may result in a large fraction of false positives (Jensen
et al. 2005; Nielsen et al. 2005). Schrider and Kern (2016) were
able to mitigate this problem by designing a feature vector
that is sensitive to the spatial skews in patterns of variation
created by a sweep but insensitive to genome-wide skews
produced by demographic events. Although this strategy is
not possible with CNNs because they perform automated
feature extraction, it may be that incorporating training
examples generated under potentially confounding scenarios
could alleviate this issue.

Therefore, future work must thoroughly 1) assess how
CNNs trained on data simulated under one range of evolu-
tionary parameters fare when applied to different parameter-
izations, and 2) determine whether robustness to such
misspecification might be achieved by training a CNN under
a wide range of parameter values that are likely to encapsulate
the correct values—the recombination rate estimator’s suc-
cessful interpolation suggests that this may be a possibility.
Model misspecification is not a concern for tasks where train-
ing data may be obtained without simulation (e.g., detecting
selective constraint; Schrider and Kern 2015), though in such
cases one must take care to prevent dependencies between
training and test examples because of shared evolutionary
histories due to physical linkage or paralogy/orthology rela-
tionships (Washburn et al. 2018).
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Outstanding Practical Challenges Associated with the
Application of CNNs to Sequence Data
Although the CNN approach outlined above has great po-
tential, there are several outstanding challenges with applying
CNNs to a wider spectrum of problems. One important ob-
stacle is the large amount of training data required by CNNs,
which makes applications requiring alignments of large
regions (e.g., entire chromosomes) more difficult. This chal-
lenge includes both the generation of large labeled training
examples, and time- and memory-efficient training with these
large examples given limited computational resources.
Fortunately, continued improvements in simulation speed
(Kelleher et al. 2016, 2018) and the efficiency of CNN training
(Chilimbi et al. 2014; Yu and Koltun 2015; Jouppi et al. 2017;
Köster et al. 2017) are mitigating this problem. Such advances
would be a boon for efforts to infer demographic parameters,
which require simultaneously examining data sampled from
across the genome or along an entire chromosome, unlike
scans to infer locus-by-locus histories of selection/recombi-
nation/introgression. Advances in handling large or high-
resolution images may also prove fruitful. For example,
CNN-based strategies that simultaneously examine a number
of smaller “patches,” each covering a portion of the image
rather than the entirety of the image (Lu et al. 2015), may aid
efforts to extract demographic information from genome-
scale data.

Another challenge with the application of CNNs is that
their performance can be sensitive to network architecture
(Szegedy et al. 2015). There is no underlying theory for select-
ing optimal network architecture, though improved architec-
tures are sure to continue to arise, and automated methods
exist for optimizing the many hyperparameters of a given
architecture (Snoek et al. 2012). Though we uncover some
promising CNN architectures for population genetic infer-
ence, we suspect that substantial improvements can still be
made.

We have also demonstrated that CNNs are sensitive to the
input format of the population genetic alignment, and our
work has yielded several insights along this front. First, we
found that the ordering of haplotypes within the alignment
can impact accuracy, and our results suggest that it is often
beneficial to reorder haplotypes so that more similar chro-
mosomes appear next to one another. This may be a sub-
optimal solution, and more creative approaches may be
required to provide a more general strategy. To this end,
research into permutation-invariant neural networks
(Zaheer et al. 2017) may prove promising when dealing
with sequence alignments. This is evidenced by Chan et al.’s
(2018) recent findings that a permutation-invariant architec-
ture improves both training speed and final accuracy of their
CNN for detecting recombination rate hotspots. Chan et al.’s
network avoids any convolution or pooling operations that
combine information across individuals until an operation
that collapses each column of the (filtered) alignment matrix
down to a single value in an order-invariant manner (e.g., site-
wise maximum). This design choice means that permuting
the order of individuals within the alignment will have no
impact on their network’s output. We also observed that 1D

convolutions in the proper orientation perform as well as the
more widely used 2D convolutions in many cases. Also, scal-
ing response variables for regression problems (both log-
scaling and standardization) may also affect accuracy. We
therefore recommend that users experiment with these dif-
ferent ways of representing their data, as well as different
CNN architectures, in order to find the design that works
best for the task at hand.

Another important consideration of CNNs is that once
trained, they are specialized to a particular problem as defined
by the training set. That is, a CNN trained to infer recombi-
nation rates under a European demographic history may have
reduced accuracy when applied to an African sample.
Training under a variety of demographic scenarios may
make a CNN more robust to this problem, but a question
for further study is whether this can be accomplished without
a loss in power relative to a more specialized CNN. Even a
change as subtle as adding another chromosome to a data set
will make one of our previously trained CNNs inapplicable, as
the input matrix would no longer be the proper size and
either a new CNN must be trained or the data subsampled.
Importantly, Chan et al. (2018) describe an architecture that
can allow for variation in the number of individuals in the
input matrix. It is also important to note that in spite of their
limitations, recent advances have greatly simplified training
CNNs, and it will often be practical—or even preferable—for
a researcher to create a CNN tailored to their specific data set.

Are CNNs a Black Box?
Artificial neural networks are algorithms that seek to maxi-
mize their predictive accuracy by optimizing their internal
mathematical operations on training data, and CNNs are
an extremely flexible subclass of these methods because
they can act directly on the input data matrix (in our case,
a sequence alignment). However, one consequence of this is
that CNNs are in some ways a “black box.” For example, a
CNN cannot “explain” why it made a particular prediction
given its input. Supervised machine learning algorithms in
general have perhaps been unfairly maligned with this “black
box” label. These methods can in principle reveal much about
underlying processes by determining which features are most
informative under certain scenarios (i.e., feature ranking; see
Breiman 2001). For example, the observation that certain
features are highly informative for recent but not ancient
introgression (Schrider et al. 2018) suggests some key differ-
ences between the genealogies produced under these two
scenarios. Due to their complex inner workings, less progress
has been made in breaking through the CNN “black box” as
compared with more traditional supervised machine learning
techniques. However, some successful explanatory tools are
available for CNNs (Ribeiro et al. 2016), and there is ongoing
research in this area. Moreover, because the CNN framework
we adopt here works on images, it may be possible to trans-
late future breakthroughs in CNN interpretation from other
fields (e.g., image recognition) into population genetic infer-
ence. Thus a more optimistic view is that as CNNs and related
methods become more interpretable, these likelihood-free
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image recognition approaches may help to reveal theoretical
insights into evolutionary processes.

In the near-term, CNNs may remain useful only as a pre-
dictive tool, and we will continue to rely on theoretical advan-
ces to improve our understanding of population genetic
processes. In spite of the shortcomings noted above, the
highly encouraging results that we have laid out here suggest
that CNNs are able to discover information about the under-
lying genealogies from alignment images and to use this in-
formation to more accurately elucidate the evolutionary
phenomena that have shaped these genealogies. CNNs
have enormous potential for population genomic inference.
We believe that progress on a host of problems could accel-
erate appreciably were this technology to be embraced by the
field. Indeed, when it comes to the business-end of popula-
tion genetics—drawing accurate evolutionary inferences
from data—we predict that increasingly, likelihood-free
approaches such as the ones we have describe here will prove
most effective at solving existing problems, and expand the
universe of problems that researchers can investigate.

Materials and Methods

Computational Environment for Training CNNs
All CNNs used in this study were developed using two open
source Python packages: Keras (version 2.0.6; https://keras.io/)
to define neural network architecture and orchestrate train-
ing and testing, and TensorFlow (version 1.1.0; https://www.
tensorflow.org/) as the backend (i.e., TensorFlow performs the
computation during training/testing). CNN training is com-
putationally intensive, but cloud-based GPU resources have
made it affordable. As an example, our network for detecting
selective sweeps was trained on a cloud-based system with
one Nvidia K80 GPU. It took 6.6 h to train, and at US$0.90 per
hour the total cost was under $7. All code used for training is
available online (https://github.com/flag0010/pop_gen_cnn).

CNN Validation Strategy
For each task, we divided our simulated inputs into three sets:
a training set, a validation set, and a test set. The training set
was used to optimize the weights and biases of the CNN. The
validation set was used during training to determine how well
the CNN generalizes to unseen data, and adjustments were
made to the CNN to improve its performance on the valida-
tion data. We also used the validation set to terminate train-
ing once accuracy on this set appeared to plateau—this
process took different numbers of iterations for different
tasks. Finally, the test set was used to obtain a performance
assessment of the final trained network. Importantly, this test
set was previously unseen by the CNN and therefore yields an
unbiased evaluation of its accuracy. We used binom.test in R
to estimate 95% confidence intervals for classification
accuracies.

Evaluating Techniques for Rescaling and Reordering
Inputs to Improve CNN Accuracy
To evaluate the impact of alternative data preparation tech-
niques, we developed a simple CNN that estimates the

locus-wide population mutation rate h¼ 4NlL where l is
the mutation rate per base pair per generation and L is the
physical length of the locus being examined. This CNN is
trained using alignment images with 40 chromosomes and
h drawn uniformly between 10 and 50 as simulated for a
panmictic, constant sized population by ms (Hudson 2002).
We trained this CNN to minimize the RMSE between its
prediction and the true value of h using 4,000 training matri-
ces. Then, its accuracy was scored on 1,000 test matrices that
the CNN was never trained on. These values were compared
under different data preparation approaches described below.

First, the matrices output by most coalescent simulation
software, including ms, encode ancestral and derived alleles
for bialleleic sites as 0 and 1, respectively, and present the
matrix with phased haploid chromosomes as rows and sites
as columns. When doing 1D convolutions, we sought to use
row-wise convolutional filters (fig. 1C), that is, those that ex-
amine each chromosome in our sample across a small num-
ber of contiguous segregating sites (specified by the
“kernel_size” parameter in Keras) before sliding the filter for-
ward one site (our stride length, “strides” in Keras, was always
set to 1). At present Keras does not allow for row-wise 1D
convolutions, so we accomplished this by transposing the
alignment matrix and performing column-wise convolutions.

We also assessed the impact on accuracy of sorting the
chromosomes in the alignment by genetic similarity. For ex-
ample, the matrices in figure 2 contain identical information,
but chromosomes in the matrix on the left are randomized,
whereas on the right they are sorted by genetic similarity. We
offer a fast algorithm for sorting matrices by genetic similarity
(https://github.com/flag0010/pop_gen_cnn/blob/master/
sort.min.diff.py).

Introgression Detection
To detect introgression, we simulated phased haploid training
and test examples with msmove (https://github.com/ge-
neva/msmove) from the same demographic model that
Schrider et al. (2018) used to train the FILET classifier for
detecting introgression between D. simulans and D. sechellia.
In total, we produced 237,500 coalescent simulations from
three classes: 112,500 without no migration between species
(No Introgression), 112,500 with gene flow from D. simulans
into D. sechellia (sim!sech), and 12,500 with gene flow from
D. sechellia into D. simulans (sech!sim). We used fewer
sech!sim examples because test runs on smaller training
sets suggested that the network could detect this class fairly
accurately, which allowed us to increase the sampling of the
other two more challenging classes by simulating more exam-
ples from them. To the best of our knowledge this approach
of intentionally inflating the number and proportion of train-
ing examples from the more challenging classes is unusual, as
typically a balanced training set is preferred. However, we
found that including additional examples from classes into
our data set substantially improved our ability to correctly
them. The simulations were randomly assigned to training
and validation sets so that the training set included 107,500
examples each from the No Introgression and sim!sech
classes, and 7,500 examples from the sech!sim class. Both
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the validation set and the test set contained 2,500 of each
class (i.e., 7,500 total). Importantly, because our test and val-
idation sets were evenly balanced, they provided unbiased
estimates of our accuracy.

As in the Drosophila data set to which Schrider et al. ap-
plied FILET, each of our coalescent simulations generated 34
chromosomes (14 D. sechellia and 20 D. simulans). Each col-
umn in the alignment corresponded to a biallelic polymor-
phism, which was encoded as “0” (ancestral allele) or “1”
(derived allele) for each chromosome. In practice, the ances-
tral and derived states may not be known with 100% cer-
tainty, and one may instead use major/minor alleles, or
randomly mispolarize a fraction of sites in the training data
if one has an estimate of the fraction of mispolarized sites in
the true data. The effects of these design choices on perfor-
mance may then be evaluated on test data. Each matrix was
organized so that individual chromosomes were grouped by
species. Each coalescent simulation produced a different
number of segregating sites (with the largest containing
1,201 polymorphisms). Because the CNN’s input matrices
must all have the same dimensions, we padded the right
side of all matrices with fewer than 1,201 polymorphisms
with columns containing only “0” until the total number of
columns reached 1,201. Finally, we transposed this matrix
resulting in a 1,201� 34 matrix for each coalescent simula-
tion. In practice, one will have to set the image width to the
largest number of single nucleotide polymorphisms encoun-
tered across all training, test/validation, or real data examples
included in the analysis. Alternatively, one may select a fixed
number of segregating sites to include in the analysis, in which
case each example may correspond to a different physical size
(creating additional variance in total recombination rates).
Thus, when using this alternative approach, one should adjust
the lengths of simulated examples accordingly.

We trained a CNN architecture with three 1D convolutional
layers (kernel size¼ 2), each followed by average-pooling, and
finally two densely connected layers (i.e., the same network
architecture as the main network branch illustrated in fig. 1C,
but with one additional dense layer). These layers contained
256, 128, 128, 128, and 128 neurons, respectively. To avoid
overfitting during training, each layer used dropout regulariza-
tion (randomly removing 25% of neurons between convolu-
tional layers during each training iteration, and 50% between
densely connected layers) and rectified linear unit activation
functions (i.e., ReLUs; Hahnloser et al. 2000; Nair and Hinton
2010). Dropout regularization encourages the CNN to learn
redundant representations of the data, thereby reducing the
network’s dependence on individual weights (Srivastava et al.
2014). The last layer was a sigmoid output layer with three
neurons, each corresponding to the three classes given above.
The CNN was trained using the Adam optimization procedure
(Kingma and Ba 2014), a categorical cross-entropy loss func-
tion, and a mini-batch size of 256. The CNN was run for 19
training iterations through the training data.

Recombination Rate: Phased Haplotype Version
For the recombination rate estimator we used ms (Hudson
2002) to simulate 50 phased chromosomes, each with a target

length of 20 kb. To do so, we drew a population size (N) from
the following values: 5,000, 10,000, 15,000, 20,000, and 50,000,
and set the population-scaled mutation rate parameter h ¼
4NlL (letting l¼ 1.5 � 10�8 and L¼ 20 kb). We also set a
population-scaled recombination rate, q ¼ 4NrL, where r is
the per base pair crossover rate per meiosis, by drawing r from
a bounded exponential distribution raging from10�8 to 10�6.
This yields a range of q per base pair of 2� 10�4 to 2� 10�1.
These values roughly encompass the range of recombination
rates experienced in humans and Drosophila. Following this
procedure, we generated 156,275 coalescent simulations.
Approximately 92% were used to train the CNN, and �4%
each were set aside for validation and testing. To assess our
CNNs’ ability to interpolate to unseen population sizes, we
also created 5,000 additional test matrices using the proce-
dures above, but with N drawn uniformly from the following:
30,000, 35,000, 40,000, and 45,000.

Each simulation was represented by a matrix of 50 rows,
one for each chromosome, and 418 columns (the largest
number of segregating sites). As before, we encoded the an-
cestral allele with “0” and the derived allele with “1.” Because
not all simulations resulted in the same number of polymor-
phisms, we padded both the genotype matrix and the posi-
tion vector in the same manner as for the introgression CNN,
bringing the total size of each matrix to 50� 418. Next, we
sorted each matrix by genetic similarity among chromosomes
as described above and then transposed the matrix to
418� 50. We also extracted the segregating site positions
vector from the ms output which represents each position
as a real number between zero (the leftmost position on the
simulated chromosome) and one (the rightmost position).
For simulations with fewer than 418 segregating sites, we
padded the positions vector with “�1”s.

We transformed the q values for the training, validation,
and test sets by taking the natural log of each value and
centering them on the mean of the training set. By using
the mean from the training set for all transformations, we
ensure that there is no leakage of information between train-
ing and validation/testing.

We trained a CNN with two input branches. The first
branch took the haplotype matrices as input and included
three 1D convolutional layers (kernel size¼ 2), each followed
by average-pooling. These layers contained 1, 250, 256, and
256 neurons, respectively. Each of these layers uses dropout
normalization (25%), L2-regularization of the weights (k ¼
0.0001), and ReLU activation functions. The second branch
took the position vector as input and contains one densely
connected layer with 64 neurons, again using dropout nor-
malization (10%) and a ReLU activation function. The two
branches are then merged into another densely connected
layer of 256 neurons with ReLU activation functions. Finally,
the output layer is a single neuron with a simple linear acti-
vation function that predicts the continuous q value. The
CNN was trained using the Adam optimization algorithm,
using mean-squared error as our loss function, and a mini-
batch size of 32. The CNN was trained for 16 iterations.

We compared our CNN’s results with those of LDhat
version 2.2a (https://github.com/auton1/LDhat). We chose
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LDhat because it is widely used to estimate historical re-
combination rates, and because it can be efficiently run on
large data sets. LDhat will estimate q only for a specified
population mutation rate (h ¼ 4Nl), and we supplied it
with the exact h value used for each coalescent simulation.
This was done by creating five likelihood lookup tables using
the complete program, all set for 50 haploid chromo-
somes, for the following h values: 6, 12, 18, 24, and 60.
Respectively, these correspond to N¼ 5,000, 10,000, 15,000,
20,000, and 50,000 (the same values we used for training our
CNNs). LDhat only predicts values within the bounds of the
lookup table. Therefore, to facilitate a fair comparison to
results from our CNN, which is unbounded, we selected
the maximum q value in the likelihood lookup table to be
133.3% of the true maximum for each h. We then set the grid
size of q equal 1, and estimated q on the test set using
LDhat’s pairwise program.

In contrast, the CNN was not provided information about
h, and instead had to infer q independent of h. This ability
would be a desirable property for an estimator, as h is likely to
vary considerably across the genome and outside of simulated
data sets one may never know h precisely. On the other hand,
the CNN was provided with the physical distance between
segregating sites, information LDhat does not utilize but
which will generally be available when making inferences on
real data. Both of these factors make our direct comparison of
the CNN with LDhat imperfect because each had access to
information the other lacked when producing its estimate.
Nonetheless, we consider this example a useful illustration of
the CNN’s performance.

Recombination Rate: Autotetraploid Version
We sought to train a CNN to estimate a locus-wide recom-
bination rate in autotetraploid genomes. To add a level of
methodological realism to this problem, we did so from a
matrix storing a simple summary of read pileup information
at each site for each individual.

To this end, we generated new coalescent simulations with
48 chromosomes each following the procedure outlined
above for the haploid CNN. This approach is reasonable be-
cause it has been shown that the standard coalescent approx-
imates the appropriate coalescent for autotetraploids as long
as N is larger than a few hundred (Arnold et al. 2012). We
generated 217,500 coalescent simulations, and randomly
assigned 200,000 to the training set, 10,000 to the validation
set, and 7,500 to the test set. Next, within each coalescent
simulation, we randomly partitioned our 48 chromosomes
into 12 sets of 4. Each set represents one synthetic autotet-
raploid genome, and every site has five possible genotypes
(AAAA, AAAa, AAaa, Aaaa, and aaaa). For each autotetra-
ploid genome i and each site j, we simulated the number of
reads covering the site (Cij) by drawing a random sample from
a Poisson distribution with k ¼ 25. Then we selected the
number of reads representing the a allele Rij� Binom(n¼Cij,
p¼xij), where xij represents the frequency of the a allele in the
tetraploid genotype (i.e., 0, 0.25, 0.5, 0.75, and 1 for the five
genotypes listed above). For each individual i at site j, the
corresponding entry in the input matrix was the fraction

Rij/Cij, that is, the fraction of reads supporting the derived
allele. The AAAA and aaaa genotypes were always 0 and 1,
respectively. For the three heterozygous genotypes (AAAa,
AAaa, and Aaaa), Rij/Cij varied based on sampling error but
had expected values of 0.25, 0.5, and 0.75, respectively. Thus,
at each site the original 48 chromosomes were reduced to a
set of 12 values corresponding to the fractions of reads sup-
porting the a allele in a pool of sequence reads from an
autotetraploid sequenced at �25� coverage. Note that this
scheme includes neither sequencing error, nor the site-
specific depth which would be necessary to calculate a like-
lihood, but is nonetheless adequate for our proof of concept.

As above, we sorted the rows of this matrix by genetic
similarity and padded each matrix with zeros to a length of
460 (the most segregating sites of any of the simulated ma-
trices) before transposing, yielding a 460� 12 matrix. Again,
we recorded the padded vector of positions from the simu-
lation output. Our CNN architecture was identical to the one
given above for the phased haplotype version, except for the
dimensionality of the input changed to 460� 12, and we
reduced the first convolutional layer from 1,250 to 256 be-
cause of the smaller second dimension of the input. The CNN
was trained for nine iterations.

Detecting Selective Sweeps and Discriminating
between Modes of Selection
For detecting selective sweeps, we used the same coalescent
simulations that Schrider and Kern (2017) used to train a
classifier to detect sweeps in the JPT population (Japanese
individuals from Tokyo) from Phase 3 of the 1000 Genomes
data set (Auton et al. 2015). The JPT demographic scenario is
one where detecting selective sweeps is fairly difficult (see
supplementary figure S1 from Schrider and Kern 2017), as
expected for bottlenecked populations (Jensen et al. 2005).
For this CNN, we began with a set of 269,000 simulated ge-
nomic windows with the five following classes: a recent hard
sweep (i.e., fixation of a de novo beneficial mutation), a recent
soft sweep (i.e., fixation of a beneficial but previously neutral
segregating polymorphism), a region linked to a nearby hard
sweep, a region linked to a nearby soft sweep, and a neutrally
evolving region. Each simulated alignment contained 208
chromosomes and we kept only coalescent simulations
that contained �5,000 segregating sites, and again padded
with zeros so that all matrices were 208� 5,000. This left
238,655 simulations, and from those we constructed a train-
ing set of 233,655 simulations. In trial runs, we found that
regions flanking hard and soft sweeps were the most difficult
classes to predict, so we again simulated additional examples
from these more challenging classes. This shifted the balance
of our training set so that it comprised approximately 13%
neutral regions, 17% each for hard and soft sweeps, and 26.5%
each for regions linked to nearby hard and soft sweeps win-
dows. We then set aside an evenly balanced set of 2,000
simulations for validation and 3,000 for testing.

As before, we sorted each matrix by genetic similarity
among chromosomes and then transposed the matrix to
5,000� 208. We also extracted the segregating site positions
vector from these simulations which were generated by
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discoal (Kern and Schrider 2016), which like ms repre-
sents each position as a real number between zero and one.

As above, we trained a CNN with two input branches. The
first branch took the haplotype matrices as input and in-
cluded five 1D convolutional layers (kernel size ¼ 2), each
followed by average-pooling. These layers each contained 256
neurons and used dropout normalization (20%). The second
branch took the position vector as input and contained one
densely connected layer with 64 neurons, again using dropout
normalization (10%). The two branches were then merged
into another densely connected layer of 256 neurons with
25% dropout. Each hidden layer of the network used L2-
regularization of the weights (k ¼ 0.0001) and ReLU as the
activation function. Finally, the output of this layer was fed to
a five-neuron layer with softmax activation functions that
predicts the five classes given above. The CNN was trained
using the Adam optimization algorithm, the categorical cross-
entropy loss function, and a mini-batch size of 32. The CNN
was trained for three iterations.

Inferring Population Size Histories
To show how CNNs can be used to infer species’ demo-
graphic histories, and how CNN architecture can impact
this inference, we experimented with a variety of CNN
approaches to infer the five parameters of a three-epoch
model of instantaneous population size changes (i.e., three
population sizes and two times of size change). We also use
this challenging problem as an opportunity to evaluate how
alternative approaches to building a CNN can influence its
performance. In effect, we conducted a full grid search of the
following attributes of both our CNN architecture and input/
output format: the dimensionality of our convolutions (1D or
2D), the kernel size (i.e., the width of our 1D convolutional
filters and both the height and width of our square 2D filters;
we tried each multiple of 2 ranging from 2 to 10), whether to
include dropout (yes or no) following max pooling steps or
dense layers, whether to sort our rows based on similarity (yes
or no), whether to log-scale our response variables (yes or no),
and whether to represent ancestral and derived alleles as�1/
1 or as 0/255. When included, our dropout layers immediately
followed both max pooling steps, the dense layer following
the distance input layer, and the final dense layer. Each of
these dropout steps randomly removed 25% of neurons. Each
response variable was transformed to a Z-score according to
the sample mean and variance for that variable across all
simulated examples.

The network we used for this task had two branches: a
standard CNN like that depicted in figure 1B and C but with
more convolutional layers (four CNN layers each producing
128 filters and each followed by a max pooling layer with a
kernel size of 2), and a dense neural network layer (consisting
of 32 nodes) taking positional information as its input, and
concatenating its output with that of the final max pooling
layer of the CNN prior to being fed into the final dense layer
(256 nodes). The positional information was a vector, d,
whose length was the maximum of the number of segregat-
ing sites observed across all simulated examples minus one.
Each value in the vector di was simply the distance (scaled

between zero and one where one is the total length of the
simulated region) between segregating site i and site i � 1.

In total, we simulated 100,000 alignments of phased chro-
mosomes using ms. In total, 10,000 each were set aside for
testing and validation, whereas the remaining 80,000 were
used for training. The simulated population size histories
were generated randomly—each demographic model param-
eter was drawn uniformly from a range listed in supplemen-
tary table S2, Supplementary Material online. Each simulated
region was roughly equivalent 1.5 Mb in the human genome,
assuming per base pair mutation and recombination rates of
1.2� 10�8 and 1� 10�8, respectively. However, in order to
make the size of the simulation output more tractable for
processing in a CNN we divided the mutation rate by 10
(equivalent to randomly downsampling the number of poly-
morphisms included in the input by a factor of 10). During
training we used a batch size of 200, trained our networks for
up to ten iterations, and retained the best-performing CNN as
assessed on the validation set. Often, the best CNN was
obtained prior to completing all ten training iterations. We
then evaluated the performance of the best CNN for each
network architecture and input format on the test set by
calculating total RMSE (our loss function for this task); we
also calculated Spearman correlation coefficients between the
true and predicted values for each of the five demographic
model parameters.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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