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An important goal in neuroscience is to elucidate the causal relationships between
the brain’s different regions. This can help reveal the brain’s functional circuitry and
diagnose lesions. Currently there are a lack of approaches to functional connectome
estimation that leverage the state-of-the-art in deep learning architectures and training
methodologies. Therefore, we propose a new framework based on a vector auto-
regressive deep neural network (VARDNN) architecture. Our approach consists of
a set of nodes, each with a deep neural network structure. These nodes can be
mapped to any spatial sub-division based on the data to be analyzed, such as
anatomical brain regions from which representative neural signals can be obtained.
VARDNN learns to reproduce experimental time series data using modern deep
learning training techniques. Based on this, we developed two novel directed
functional connectivity (dFC) measures, namely VARDNN-DI and VARDNN-GC. We
evaluated our measures against a number of existing functional connectome estimation
measures, such as partial correlation and multivariate Granger causality combined
with large dimensionality counter-measure techniques. Our measures outperformed
them across various types of ground truth data, especially as the number of
nodes increased. We applied VARDNN to fMRI data to compare the dFC between
41 healthy control vs. 32 Alzheimer’s disease subjects. Our VARDNN-DI measure
detected lesioned regions consistent with previous studies and separated the
two groups well in a subject-wise evaluation framework. Summarily, the VARDNN
framework has powerful capabilities for whole brain dFC estimation. We have
implemented VARDNN as an open-source toolbox that can be freely downloaded
for researchers who wish to carry out functional connectome analysis on their
own data.

Keywords: vector auto-regressive deep neural network, directed functional connectivity, fMRI, Granger causality,
Alzheimer’s disease
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INTRODUCTION

There is a rich history of structural and functional connectome
analysis of neuroimaging data of the whole brain, such as
those acquired from MRI (magnetic resonance imaging). One
important goal is to study the causal relationship between activity
in different brain regions and the brain’s functional circuitry. The
estimation of the functional connectome is an important step for
understanding brain function (Gao et al., 2011; Krueger et al.,
2011; Hahn et al., 2019) and for the diagnosis of brain lesions
(Dauwels et al., 2010). In the literature, there is a notable lack
of data-driven approaches to functional connectome estimation
that leverage the advantages of the current state-of-the-art deep
neural network architectures and training methodologies. Such
approaches should have an advantage in terms of representational
power and trainability. Some recent examples of neural network-
based measures of GC have been proposed, such as neural
network GC (NN-GC) (Montalto et al., 2015), RNN-GC (Wang
et al., 2018), Echo State Network GC (ES-GC) (Duggento et al.,
2019), and DNN-GC (Chivukula et al., 2018). Accordingly,
we propose a new approach for whole-brain analytics based
on a vector auto-regressive deep neural network (VARDNN)
architecture that can deal with a large number of time series.
The model comprises a set of nodes with a deep neural network
(DNN) structure. Each node maps with arbitrary divisions
of space, such as an anatomical brain region from where
a representative neural signal (time-series) can be estimated.
At each time step, a node outputs a signal by considering
exogenous signals into the system, signals from all other nodes,
and feedback from the node back to itself. The model can be
trained on time series data of brain activities and recordings
of arbitrary exogenous inputs. Functional connectome measures
can be derived from the model after the training process.
A wide variety of data can be used for training, such as fMRI
BOLD or calcium imaging data; our approach is fully data-
driven. We seek a non-parametric model that not only fits the
data but also describes important dynamical properties and can
complement hypothesis-driven approaches (Valdes-Sosa et al.,
2011). We defined two types of directed functional connectivity
(dFC) measures based on the VARDNN, namely VARDNN-DI
(Directional Influence, our new measure) and VARDNN-GC
(based on Granger causality).

Many types of functional connectome analysis algorithms are
currently used. Functional connectivity (FC), which is simply
calculated by the correlation coefficient of pairwise time-series,
is the most basic measure to analyze brain region relationships.
This term was originally defined as the temporal correlation of
a neurophysiological index measured in different brain areas
(Gerstein et al., 1989; Friston et al., 1993). Partial Correlation
(PC) is a conditional version of correlation. This is calculated
by the correlation of regression residuals with other time-
series. When two factors show a strong correlation, it may be
necessary to consider the presence of a third factor. PC can
remove this kind of third factor effect and show a normalized
correlation. FC based on both correlation and partial correlation
only consider the zero-lag relationship between signals. On
the other hand, Granger causality (GC) is based on a vector

auto-regression (VAR) scheme and is categorized as a predictive
type measure. The original formulation of GC was for the
pairwise case but has since been extended to the conditional
and multivariate cases (Granger, 1969; Geweke, 1982; Goebel
et al., 2003). Furthermore, an information-theoretic approach to
understanding causal relationships, called transfer entropy (TE),
has been developed (Schreiber, 2000). This has been shown
to be equivalent to GC when the time series dynamics under
study are normally distributed (Barnett et al., 2009). GC and TE
are directional, thus these measures are categorized as directed
functional connectivity (dFC) (Friston et al., 2013), while FC and
PC are categorized as undirected functional connectivity.

Some measures depend on a linear regression scheme, thus
their coefficients and residuals are calculated by ordinary least
squares (OLS). But OLS has several drawbacks: if the predictor
variables (P) are larger than the observed data (N), the solution
faces overfitting (P>>N problem). Furthermore, if the observed
data are strongly correlated with each other, the Gram matrix
cannot be inverted and OLS cannot calculate the correct
solution (multicollinearity problem). In the case of analyzing
functional MRI data, sometimes several regions have strong
correlations, or the observed data may be smaller than the region
number. Here, functional connectome analysis algorithms face
several OLS problems. To avoid these situations, countermeasure
techniques can be applied. For example, PC has been combined
with a L1-norm regularized regression scheme (SPC-EN) (Ryali
et al., 2012), and multivariate GC has been combined with
Principal Component Analysis (PCA-cGCM) (Zhou et al., 2009)
to reduce the data dimension and transform the data into an
orthogonal vector space.

Accurate estimation of the brain’s functional connectome
is an important topic for neuroscience. One challenge is that
the estimated functional connectome values are not consistent
across analysis algorithms, which can cause confusion when
interpreting the results of a particular measure. Dauwels
et al. (2010) attempted to systematically investigate EEG
(electroencephalogram) synchrony with a special focus on the
early diagnosis of Alzheimer’s disease (AD). They evaluated
29 types of functional measures, including the correlation
coefficient and related measures, phase synchrony indices, GC,
and stochastic event synchrony (SES) (Dauwels et al., 2008).
Results showed that only two measures, GC and SES, were able
to convincingly distinguish MCI (mild cognitive impairment)
patients from age-matched controls. Another investigation
was performed by Smith et al. (2011). They evaluated 20
functional methods, including the correlation coefficient and
related measures, mutual information (Shannon, 1948), GC,
the LiNGAM algorithm (Shimizu et al., 2006), and several
Bayes Net modeling algorithms. Twenty-eight types of synthetic
fMRI BOLD (blood oxygen level dependent) signals were
generated by the DCM model (Friston et al., 2003), and all
methods were evaluated for their estimation of the ground
truth connectivity. In the results, the PC regularized inverse
covariance estimation, and several Bayes Net methods showed
the highest sensitivity. Prando et al. (2020) also evaluated
the performance of functional connectome estimation using
a number of methods. They compared sparse vs. spectral
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DCM, multivariate GC, LiNGAM, and several Bayes Net
modeling algorithms. In total, 9 methods were evaluated using
synthetic fMRI BOLD signals generated by the DCM model.
The results showed that the sparse DCM method gave the
highest accuracy and multivariate GC was competitive. Overall,
Granger causality-based measures appear to give consistent
performance for functional connectome estimation from both
empirical and synthetic signals. A purely data-driven approach
makes less assumptions about the underlying system generating
the dynamics; hence, it can be applied more broadly to different
types of phenomena and is less computationally expensive.

To evaluate our VARDNN approach we tested the
performance of its dFC measures against 14 other analysis
algorithms, including zero-lag and predictive types, and pairwise
and multivariate strategies. Included in these algorithms,
countermeasure techniques, such as PCA, Elastic Net (Zou and
Hastie, 2005) and Partial Least Squares (PLS) (Wold et al., 2001)
were combined with PC and multivariate GC. All measures were
evaluated on biologically plausible synthetic signals generated by
DCM and the reduced Wong-Wang neural mass model (Wong
and Wang, 2006; Deco et al., 2013). In particular, we found that
both measures, especially VARDNN-DI, were able to consistently
provide competitive and top-ranking performance, especially
when the size of the number of nodes increased. Furthermore, we
evaluated VARDNN performance by analyzing empirical fMRI
BOLD data. Healthy control and Alzheimer’s disease fMRI BOLD

data were acquired from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI2) database, and functional connectomes were
calculated by each of the analytical methods studied. Functional
connectome values were then used to compare group separation
ability of Alzheimer’s disease within a subject-wise evaluation
framework. Functional connectomes estimated by the VARDNN
measure was able to capture the causal relationship between
brain regions and showed a significant difference between
healthy control and Alzheimer’s disease data.

MATERIALS AND METHODS

Vector Auto-Regressive Deep Neural
Network Architecture
Figure 1 shows a schematic diagram of the VARDNN framework.
The architecture consists of a set of nodes that can be assigned to
different regions of the brain from which experimental signals are
recorded. The node state vector is S (t) = (S1 (t) , · · · , Sn (t)),
where Si (t) ∈ R, i = 1,..,n, represents the ith node’s state
at discrete time t = 1,2,. . .. All nodes are part of a fully
connected network structure, receiving input from every other
node. Additionally, each node receives exogenous signals from
outside of the brain, Iq (t) ∈ R, q = 1,. . .,m, expressed as an
exogenous signal vector I (t) = (I1 (t) , · · · , Im (t)). These
signals can arbitrarily represent any external data derived

FIGURE 1 | (A) Whole brain node state network and stimulus coming from outside brain (mainly sensory input) (B) Showing signaling framework of one node state.
A Deep Neural Network node receives the signal state of other brain nodes and exogenous signals (outside brain stimulus). A DNN unit calculates one output signal,
in this case the next time step of the signal state of a node. The DNN unit is trained by teacher signals and the input of other node states and exogenous signals.
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from an experimental paradigm that would be received as
sensory information by the subject. All nodes contain a DNN
unit with trainable weights across two hidden layers. For a
node i, ci,j,p, di,j,q ∈ R are the connection weights between its
first hidden layer neurons xi,j, j = 1,. . .,IN, and the input
from every other deep neural network unit node p = 1,. . .,n
(including its self-connection), or from the exogenous signal
inputs (q = 1,. . .,m), respectively. At each time step, signals pass
between nodes and are processed by the DNN units. Within a
DNN, the output of the first hidden layer for node i is expressed as

OI
i = g(CiS (t)T + DiI (t)T + Bi

T)
T

(1)

where

Ci =

 ci,1,1 · · · ci,1,n
...

. . .
...

ci,IN,1 · · · ci,IN,n

 , Di =

 di,1,1 · · · di,1,m
...

. . .
...

di,IN,m · · · di,IN,m

 ,
Bi =

(
bi,1, · · · , bi,IN

)
where bi,j ∈ R are the bias values on the first hidden layer neurons
and g (x) = max(0, x) is the non-linear ReLU activation
function (Nair and Hinton, 2010; Glorot et al., 2011).OI

i is passed
to the second hidden layer neurons of node i, and its output is
expressed as

OII
i = g(WI

iO
I
i
T
+ βI

i
T
)

T
(2)

where

WI
i =

 ωI
i,1,1 · · · ωI

i,1,IN
...

. . .
...

ωI
i,HN,1 · · · ω

I
i,HN,IN

 , βI
i = (βI

i,1, · · · , β
I
i,HN)

ωII
i,j,k ∈ R are the weight values of the second hidden layer

neurons k = 1,. . .,HN, and βII
i,k ∈ R are the biases. Finally, node

i’s DNN second hidden layer outputs are processed by an output
layer neuron:

zi (t) = WII
i O

II
i

T
+ βII

i (3)

where WII
i = (ωII

i,1, · · · ,ω
II
i,HN) is the output neuron’s weight

vector, and βII
i ∈ R is its bias. Finally, the VARDNN’s new state at

t+1 for all nodes is taken as the value of each node’s output:

S (t + 1) = Z (t) = (z1 (t) , · · · , zn (t)) .

For our current implementation, we defined 2 hidden layers
for each DNN unit in the VARDNN architecture. However,
the DNN unit is not limited to 2 hidden layers, and other
forms of DNNs can also be used in the framework. Our
decision was based on this work’s focus on analyzing whole
brain fMRI BOLD type data, and 2 layers were empirically
determined (see Supplementary Figure 1 for a description of

the procedure). Although neural networks with single hidden
layers are known as universal approximators (Cybenko, 1989;
Hornik, 1989), a single hidden layer requires an exponential
increase in the number of hidden neurons proportional to
the problem size (Goodfellow et al., 2016; Liang and Srikant,
2016). Theoretically and experimentally, deep hidden layers with
smaller numbers of neurons have shown higher accuracy than
shallow (single) hidden layer networks (Delalleauand Bengio,
2011; Goodfellow et al., 2014).

VARDNN can learn to reproduce specific time series data
through training on teacher data. The teacher data can be defined
as Teach (t) =

(
S
′

1 (t) , · · · , S
′

n (t) , I
′

1 (t) , · · · , I
′

m (t)
)

, where

S
′

i and I
′

iare the experimentally obtained signals of “neural
activity” and (if any) exogenous inputs, respectively, for each
node. Here, t = 1,2,. . .,L, where L is the number of frames
of data at a sampling period TR. The number of nodes, n,
corresponds to the number of input time series. This number
is arbitrary and should reflect some spatial sub-division of the
brain, based on the nature of the teacher data. For example, if
fMRI BOLD data is used, then one can average the voxel values
within each anatomical region to generate a set of representative
teacher signals.

Each node is independently trained with the aim to iteratively
reduce the error between the VARDNN-generated t+1 state and
the teacher data at time t+1, when the current state is set by
the time t teacher data. With teacher data of length L frames,
the training set for a node i comprises {φi (1) , . . . ,φi (L− 1)},
where φi

(
k
)
= {Teach

(
k
)
, S
′

i
(
k + 1

)
} is an input/target pair,

k = 1,2,. . .,L-1. Even though these pairs are derived from time
series data, they can be used independently. Thus, the shuffling
and minibatch techniques can be applied in each training epoch.
This feature of VARDNN is clearly different from recurrent
neural network (RNN) architectures as VARDNN is simply
trained by input/target patterns but not sequences.

Within each training epoch, for each training pair φi
(
k
)
, the

VARDNN node state and exogenous input are set to Teach(k),
and the output scalar value zi

(
k
)

is calculated. Then, the
error is evaluated as the difference zi

(
k
)
− S

′

i(k + 1). The
training error for node i is expressed over all L-1 training
pairs as Erri = yi − z̃i, where yi = (S

′

i(2), . . . , S
′

i(L)) and
z̃i = (zi (1) , · · · , zi (L− 1)). This error is used to drive the
optimization procedure.

After a number of epochs, the training is completed for
the current node, and this process is repeated for all nodes of
the VARDNN system. Currently, the VARDNN framework was
implemented in MATLAB using the Deep Learning Toolbox
version 12.1. Training was optimized using Adam (Kingma
and Ba, 2014) with L2 regularization for the hidden layers to
avoid over-fitting.

Vector Auto-Regressive Deep Neural
Network-Granger Causality Measure
Granger causality is a well-established method for the causal
analysis of time series data, and the multivariate version (mvGC)
has successfully been used to analyze fMRI BOLD signals
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(Goebel et al., 2003; Menon and Uddin, 2010; Marinazzo et al.,
2011; Wen et al., 2012). The traditional approach to multivariate
Granger causality uses a vector auto-regressive model involving a
state vector S (t), time lag p, coefficient vector Aik, and residual
εi (t) . The state of node i can be described by the following
model:

Si (t) =
p∑

k = 1

AikS
(
t−k

)T
+ εi (t) . (4)

Removing the past dependency of node i on j, the model can
be written as

Si\j (t) =
p∑

k = 1

Aik\jSi\j
(
t−k

)T
+ εi\j (t) . (5)

Then the mvGC causal index is expressed as

Fj→i = log
(
var

(
εi\j
)
/var (εi)

)
(6)

where εi and εi\j are time series of residuals, and var()
denotes the statistical variance. For mvGC, the coefficients and
residuals of the vector auto-regressive model are calculated by
OLS. However, as mentioned in section “Introduction,” neural
network-based measures of GC have recently been proposed.
VARDNN can also calculate this type of Granger causality. We
simply use Erri = yi − z̃i of a single node i as the residuals εi and
the error when removing the signal generated from node j from
the optimization, Erri\j = yi − z̃i\j as the residuals εi\j. Then,
the VARDNN-GC measure is defined as

FVARDNN−GC
j→i = log

(
var

(
Erri\j

)
/var (Erri)

)
(7)

In the context of neuroscience, the process of removing
the signal from another node can be thought of as performing
a simulated lesion (Honey et al., 2007; Alstott et al., 2009).
This virtual impairment can allow us to understand the
effect of possible lesions in terms of their (Granger causal)
connectivity relationships. Therefore, VARDNN can also
function as a lesion model.

Vector Auto-Regressive Deep Neural
Network-Directional Influence Measure
Vector auto-regression is a well-known statistical approach to
model the relationship between a scalar response and one or more
explanatory variables. From this perspective, we can describe the
state of a node i as

Si (t) = αi,0 + αiS (t−1)T + εi (t)

= αi,0 +

n∑
k=1

αi,kSk (t−1) + εi (t) (8)

with state vector S (t), linear relationship vector
αi =

(
αi,1, · · · , αi,n

)
and a residual term εi (t) . Now,

if we set all inputs into the node as 1, in other words
S (t − 1) = (1, · · · , 1) we get

Sone
i =

n∑
k = 0

αi,k + εi (t) (9)

If input to node j is set to 0, Sone
i\j is expressed as

Sone
i\j =

∑
k=/ j

αi,k + εi (t) (10)

Then, the magnitude of the linear relationship, αi,j, or
directional influence (DI), from node j to i is expressed as

αi,j = Sone
i − Sone

i\j (11)

The VARDNN formula is complex, but non-linearly extended
from this VAR formulation. After training the VARDNN, the
deep neural network weights of each node encode its non-linear
relationships with all other nodes. In a similar manner to the
linear case, we defined a new measure of directional influence,
VARDNN-DI, that extracts the non-linear magnitude of causal
relationships from the network weights. Here, the DI from node
j to node i is defined as

FVARDNN−DI
j→i =

∣∣∣zone
i −zone

i\j

∣∣∣. (12)

In this case, zone
i is calculated by setting all inputs into the

node to 1, that is S (t) = (1, · · · , 1) and I (t) = (1, · · · , 1),
and passing these values through its DNN. zone

i\j is also calculated
in the same way but with the connection weight from node j set
zeros in the first hidden layer neurons of the DNN of node i. As
a result, the learned non-linear relationship from node j to node i
can be extracted.

Pre-processing of Vector
Auto-Regressive Deep Neural Network
Teacher Data
Although it is not a restriction, the VARDNN was designed
to preferably deal with data in the range [0, 1]. In practice it
may occur that the teacher signals are not normalized to this
range. For example, resting state fMRI (rsfMRI) BOLD data has
a normal distribution centered around zero (Chen et al., 2003).
Thus, we need to transform experimentally derived time series
data into the [0, 1] range. To do this, the mean and standard
deviation of the data are first estimated:

µ
∗

=
1

nL

n∑
i = 1

L∑
t = 1

Si (t), (13)

σ
∗

=

√√√√ 1
nL

n∑
i = 1

L∑
t = 1

(
Si (t)−µ

∗
)2
. (14)
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The values of a particular time series, mapping to a node i are
normalized by

θi (t) =
(

Si (t)−µ
∗
)
/σ
∗

. (15)

Then, a sigmoid function is used to transform the signal into
the [0, 1] range:

S
′

i (t) = 1/
(

1 + e−αθi(t)
)
, (16)

where the coefficient α = 1 was used for our current experiments.
This transformation was chosen as it deals with potential signal
outliers (that, for example, can appear in fMRI BOLD data) better
than a simple linear transformation (see Supplementary Figure 2
for an evaluation of the effect of sigmoid transformation). Finally,
the resulting set of time series, S

′

i =
(

S
′

i (1) , · · · , S
′

i (L)
)

, is
used as teaching data for setting the node states of the VARDNN.

Performance Evaluation
We quantified the performance of the VARDNN-GC and
VARDNN-DI measures over four different evaluations. The
first evaluation confirmed the ability of VARDNN to learn
and reproduce time series generated from uniformly distributed
random numbers. The second evaluation estimated the ground
truth directed graph from synthetic fMRI BOLD signals
generated by the DCM, in order to clarify the relationship
between network density and estimation accuracy. The third
evaluation estimated the ground truth directed graph from
synthetic neural activity signals generated by the reduced
Wong-Wang model. This was done to clarify the relationship
between node number and estimation accuracy. The DCM
and reduced Wong-Wang models were chosen to generate
biologically plausible synthetic neural signals for evaluation. The
final evaluation was to measure VARDNN’s performance on
experimental data. Here, we evaluated Alzheimer’s disease group
separation ability using empirical rsfMRI BOLD signals. For each
evaluation, we also compared our approach to other well-known
functional connectome analysis algorithms, listed in Table 1. Of
these algorithms, two are zero-lag-based algorithms: FC and PC.
FC is the simplest measure of pairwise similarity between two
time series, based on covariance. We used the corr() function
from MATLAB (R2019b) for the comparison. PC is a conditional
version of FC. It refers to the normalized correlation between
two time series. We used the partialcorr() function of MATLAB
to calculate the PC. Because PC relies on linear regression, it
may face large dimensionality and multi-collinearity problems.
Therefore, we implemented several countermeasure combined
versions of PC, namely Principal Component PC (PC-PC),
Elastic Net PC (EN-PC), and Partial Least Squares PC (PLS-PC).
Elastic Net requires hyperparameters α and λ; we calculated these
values from the minimum error of fivefold cross-validation using
half of the sample data.

The pairwise GC and multivariate (or conditional) GC
algorithms were implemented as MATLAB scripts. The GC time
lag p parameter was empirically chosen as 3 for the evaluation.

Multivariate GC, implemented as a multivariate vector auto-
regression (mVAR) model, attempts to detect causal effects by
considering differences between the network with all nodes and
the network with the removal of a single node. On the other
hand, the classical pairwise model simply considers two-node
interactions. The mVAR model is widely used in many different
fields, but it is also expected to suffer from the problems of
data with large dimensionality and multicollinearity—the same
as for the PC case. Therefore, we also implemented several
counter-measure combined mvGC versions, namely multivariate
Principal Component PC (mPC-GC), multivariate Elastic Net
GC (mEN-GC), and multivariate Partial Least Squares GC
(mPLS-GC) for our comparison.

Partially Conditioned GC (PCGC) is Granger causality
based on partial conditioning, proposed by Marinazzo et al.
(2012). The MATLAB script of its implementation was
obtained from the GitHub.1 Parameter “ndmax” of the
init_partial_conditioning_par_m() function was calculated based
on node number, and the partial_CGC_fix_nd_m() function was
used to acquire the dFC matrix.

The RNN-GC implementation was obtained from the
GitHub.2 The evaluation environment was built using
Anaconda3,3 Python-3.6, Keras-1.2.2, and Tensorflow-1.14.0.4

The dFC matrix was estimated as the average of 8 runs of the
RNN_GC() function. In the first evaluation, we chose 30 as the
number of hidden neurons.

Transfer entropy (TE) is a powerful tool for detecting
the transfer of information between nodes and is capable of
discovering non-linear interactions. It has been proven that
TE is equivalent to Granger causality for data that can be
assumed to be drawn from a Gaussian distribution (Barnett et al.,
2009). We used the MuTE implementation (Montalto et al.,
2014) in MATLAB for our comparison. This implementation
automatically chooses the time lag based on the Bayesian
information criterion. MuTE has three entropy estimators: the
linear estimator (LIN), binning estimator (BIN), and nearest
neighbor estimator (NN). Either a uniform or non-uniform
embedding scheme is used to derive the transfer of information.
As per the author’s results, BIN-NUE shows good estimation in
both the linear and non-linear cases, but our initial tests found
that estimating a dFC matrix from the signals generated by DCM
was unsuccessful. Therefore, we chose the LIN-UE and NN-NUE
algorithms for our comparison.

In sections “VARDNN Performance With Respect to Network
Density” and “VARDNN Performance With Respect to Node
Count,” various measures were used to estimate the ground truth
directed graph, and in order to quantify them, evaluation was
performed by changing the acceptance threshold and drawing
an ROC curve. The ground truth matrix and result matrix were
compared across the maximum value of the result matrix to its
minimum. From this changing threshold, true and false positive
rates of the result matrix were detected, and a ROC curve was

1https://github.com/danielemarinazzo/PartiallyConditionedGrangerCausality
2https://github.com/shaozhefeng/RNN-GC
3https://www.anaconda.com/
4https://www.tensorflow.org/
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TABLE 1 | Comparison algorithms.

Name Abbreviation Type Strategy Implementation

Functional connectivity (Correlation) FC Zero-lag Pairwise MATLAB function

Partial correlation PC Zero-lag Multivariate MATLAB function

Principal component + Partial correlation PC-PC Zero-lag Multivariate Our Script (MATLAB)

Elastic net + Partial correlation EN-PC Zero-lag Multivariate Our Script (MATLAB)

Partial least square + Partial correlation PLS-PC Zero-lag Multivariate Our Script (MATLAB)

Pairwise Granger causality pwGC Predictive Pairwise Our Script (MATLAB)

Multivariate Granger causality mvGC Predictive Multivariate Our Script (MATLAB)

Principal component + Multivariate Granger causality mPC-GC Predictive Multivariate Our Script (MATLAB)

Elastic Net + Multivariate Granger causality mEN-GC Predictive Multivariate Our Script (MATLAB)

Partial Least Square + Multivariate Granger causality mPLS-GC Predictive Multivariate Our Script (MATLAB)

Partial Conditioning Granger causality PCGC Predictive Multivariate Script (MATLAB)

Recurrent neural network Granger causality RNN-GC Predictive Multivariate Script (Python)

Linear estimator-uniform embedding (Transfer entropy) LINUE-TE Predictive Multivariate MuTE (MATLAB)

Nearest neighbor estimator-Non-uniform embedding (Transfer Entropy) NNNUE-TE Predictive Multivariate MuTE (MATLAB)

generated from (0,0) to (1,1). After completing the ROC curve an
area under the curve (AUC) value could be obtained. An AUC
value close to 1 means a better classifier, whereas an AUC value
close to 0.5 means that it is a random classifier. In this way, the
accuracy of each measure was quantified by the value of AUC and
used for our evaluation.

Synthetic Data for Algorithm Evaluation
Uniformly Distributed Random Data
In section “VARDNN Trained on Random Independent Signals,”
8-nodes (i = 1. . .8) of 100 length time series were generated
by the Mersenne Twister (Matsumoto and Nishimura, 1998)
pseudo random generator, with values in the range [0, 1] of
the uniform distribution. The VARDNN was trained with these
random signals to verify the DNN unit functionality of each node.

DCM Generated Data
In section “VARDNN Performance With Respect to Network
Density,” we evaluated the relationship between network density
and ground truth network estimation from signals generated
by an 8-node DCM model. Eight nodes were chosen based
on the confirmation that the VARDNN operated as expected
based on the results given in section “VARDNN Trained on
Random Independent Signals.” We designed 5 patterns of
sparsely connected directed networks for generating synthetic
fMRI BOLD signals with DCM. The network densities were
0.2, 0.25, 0.3, 0.41, and 0.5. Each DCM connectivity matrix A
was derived from these network graphs. Each node had self-
connections with a weight of 0.2, and inter-node connections
had random weight values in the range [0.2, 0.5]. The DCM
input connection matrix C was set to identity so that each
node received endogenous fluctuations as random white noise
to model the external environment. To generate synthetic fMRI
BOLD signals, parameters of T = 300 (number of observations)
and TR = 2 (repetition time) were used. Endogenous fluctuations
for each node were generated by the spm_rand_mar() function,
and fMRI BOLD signals were generated by the observer function
spm_int_J() with spm_fx_fmri and spm_gx_fmri routines. In

addition to the sparse network densities, we also evaluated
networks with dense connectivity at the levels found in
anatomical studies of the mammalian brain, for example 97%
of all possible cortico-cortical connections have been observed
in mouse anatomical results (Gămănuţ et al., 2018). Here, all
nodes were connected (giving a network density of 1.14 when
including self-connections), with uniform random weight values
of [−0.1, 0.1] for designating weak connections, and weight
values of [0.2, 0.5] for strong connections. Due to the DCM
formulation, we found that such fully connected networks easily
exhibit divergence, and signals could reach a plateau value. By
setting negative weights on some of the weak connections, a stable
signal could be produced. We designed 5 patterns of directed
networks with strong weight (

∣∣aij
∣∣ > 0.2) network densities set

to 0.05, 0.11, 0.16, 0.27, and 0.36. In total, 10 patterns of 8-node
fMRI BOLD signals and exogenous signals were generated by
DCM for the evaluation.

Reduced Wong-Wang Generated Data
In section “VARDNN Performance With Respect to Node
Count,” we evaluated the relationship between network size
and ground truth network estimation from synthetic neural
activity signals generated by the reduced Wong-Wang model
implemented in The Virtual Brain (TVB) platform. We generated
global coupling matrices, defined as C, for the reduced
Wong-Wang model by down-sampling Allen’s mouse structural
connectome matrix (Oh et al., 2014; Melozzi et al., 2017) that
was constructed from a number of anterograde tracer injections.
We chose the reduced Wong-Wang model along with structural
connectome data to produce biologically plausible dynamics for
analysis. We wanted to evaluate causal measures in a more
biologically plausible setting; real structural connectivity data
could act as a useful proxy for defining a realistic ground truth
network for our analysis. Furthermore, the reduced Wong-Wang
model was chosen to explore network size over the DCM model,
as the latter was found to be too computationally expensive when
a large number of nodes were used. Node counts were 16, 32,
48, 64, 80, and 98. Similar to the DCM case, all nodes were
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TABLE 2 | Demographics of HC and AD subjects.

Variables AD (n = 32) HC (n = 41) p-value

Male/Female 14/18 17/24 0.851

Mean Age (SD) 72.4 (2.2) 72.1 (2.6) 0.454

connected with weight values in [−0.05, 0.01], with a fraction
of 0.15 connections assigned a strong weight value (

∣∣cij
∣∣ > 0.2).

The TVB framework was run using Anaconda3 and Python-3.6.
We made small modifications to TVB’s reduced Wong-Wang
implementation to obtain appropriate signals for the evaluation.
The “state_variable_boundaries” constant was bound to the range
[0, 1], which could clamp activity signals, and we modified
this value [−2.5, 2.5] in order to preserve causal relationships.
Because the reduced Wong-Wang model has an internal noise
factor, ηi(t), we wanted to use this noise signal as an exogenous
input for the VARDNN. Therefore, both the endogenous noise
and neural activity signals were recorded and exported for
evaluation. In summary, 6 patterns were used to generate 16–98
node sets of neural activity and internal noise signals. These were
generated at a sampling frequency of 64 Hz, a global coupling
G = 1 set to provide sufficient dynamics between regions, and a
noise amplitude σ = 0.014.

Empirical Data Used to Evaluate Vector
Auto-Regressive Deep Neural Network
Performance
Alzheimer’s Disease Neuroimaging Initiative
Database
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.5

The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Table 2 shows the demographics of healthy controls
(HC) and AD subjects from the ADNI2 subset of the database.
The number of subjects with HC and AD were 41 and 32,
respectively. Younger subjects with AD were preferred; HC of
similar ages were selected.

Resting State fMRI Data Pre-processing
fMRI BOLD data from the ADNI2 was scanned using a 3.0
Tesla Philips MRI scanner and saved in the DICOM format.
The experimental settings of the scanner were: flip angle = 80,
repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms,
pixel size = 3.3 × 3.3 mm, slice thickness = 3.3 mm, matrix
size = 64× 64× 48, and frame length = 140. More information on
the resting state parameters can be found on the ADNI website.

We converted the DICOM data to 4D NIfTI files using the
dcm2nii tool (Li et al., 2016). Images were re-orientated so

5adni.loni.usc.edu

that the anatomical axial, sagittal, and coronal planes appeared
correctly. Next, the CONN toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012) was used to pre-process the fMRI data.
CONN registered NII images to the standard MNI brain space.
Slice-timing correction was 1, 3, 5, . . ., 2, 4, and 6 for the
Philips 3T MRI. We removed the first 10 frames of fMRI data,
and the remaining data was smoothed by a FWHM of 5 mm.
After pre-processing, the fMRI data was segmented using the
CONN default atlas (132 ROIs), which is a combination of
the FSL Harvard-Oxford atlas cortical and subcortical areas
and the AAL atlas cerebellar areas. Voxels in each ROI were
averaged to give representative fMRI BOLD signals for 132
regions over 130 frames.

Subject-Wise Evaluation Framework for Algorithm
Comparison
We analyzed fMRI BOLD signals of HCs and ADs using 12
algorithms in Table 1 except RNN-GC and NNNUE-TE to
estimate connectivity between brain regions. This generated
132 × 132 sized functional connectome matrices for each of
the 41 HC’s and 32 AD’s results. These two groups were
compared using statistical testing. We performed the Lilliefors
test to check the distribution of functional connectome matrices
and the Wilcoxon rank sum test (Mann-Whitney U-test) to
compare the two groups. From this comparison, we obtained a
132 × 132 p-value matrix describing the actual performance of
lesion detection by each analysis algorithm. The top Nrr ( = 30–
300 step by 30) most different regional relationships between the
HC and AD (that is, the set with the Nrr smallest p-values in the
matrix) were then used to separate subjects to HC or AD group If
an input functional connectome value (for a particular regional
relationship) generated from new subject data was within the
range [−βσ, βσ] (where β = 1.5–2.0 with a stepsize of 0.1) of
the AD’s functional connectome population distribution, it is
counted as “unhealthy”; otherwise, it is counted as “healthy.” This
was done for each of the input functional connectome values
in the Nrr most different regional relationships and a “healthy
count” was acquired. The “health rating” for a subject is simply
derived by dividing the health count by Nrr .

Health rating

=
Healthy count

(
of Nrr regional relationships

)
Nrr

(17)

Two thresholds of Nrr and β were swept over for the
subject-wise evaluation. From this the ROC curves and area
under the curves (AUCs) of a total of 60 conditions were
calculated to quantify and compare the performance of each
of the studied analysis algorithms. Note that this subject-wise
evaluation framework cannot be used as a reliable diagnostic
technique if the subject number is not large enough—which we
realize is the case for the dataset we used in this section. In such
cases, cross-validation will show different p-value matrices and
top Nrr regional relationships and give unstable diagnosis results.
However, if there are enough subjects, we believe the presented
statistical framework can be reliably applied for AD diagnosis.
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Statistical Analysis Methods
To test the obtained AUC values, we used Kruskal-Wallis
ANOVA in MATLAB for significance testing, and the Steel test
in R-4.0.3 for multiple comparisons. For normality testing of the
functional connectome distribution, we used the Lilliefors test in
MATLAB. To perform non-parametric testing between the HC
and AD groups, we used the Wilcoxon rank sum test (Mann-
Whitney U-test) in MATLAB. Statistical significance was set at
p< 0.05.

RESULTS

Vector Auto-Regressive Deep Neural
Network Trained on Random
Independent Signals
Figure 2 shows the result of training the VARDNN on fully
random and independent signals for 8-nodes. The following
hyperparameters were used: training epochs = 1,000, and
hidden layer 1 neuron count “hidden1” = 32 and layer 2
count “hidden2” = 22. The number of neurons per layer
were empirically calculated by the method described in

Supplementary Figure 1. Before training, the VARDNN nodes
output signals clearly different from the teacher data, but after
training with the conditions depicted in Figure 2A, the VARDNN
nodes were able to output signals similar to the teaching signal
(Figure 2). Before training, the mean absolute error (MAE) was
0.456 and after training it became 0.018. Figures 2C,D show some
performance measures for VARDNN training. The MAE and
training time were measured while changing the number of nodes
and signal length, with the number of training epochs = 1,000.
For any node number the VARDNN converged well and MAE
showed values less than 0.02. Training time took less than 1 min
with 30 nodes and signals of length 100 frames, and around 9 min
with 180 nodes and signals of length 1,000 frames on a computer
with the following specifications: OS, Windows 10 Pro; CPU,
AMD Ryzen Threadripper 3970X 32-Core Processor (3.70 GHz);
Memory, 128 GB. This makes VARDNN training very practical
for data needing 100 nodes or a similar order of magnitude
(such is the case when considering the number of cortical regions
defined in brain atlases). Next, we performed a simple check to
confirm VARDNN’s ability to estimate dFC; node 6′s signal was
copied to node 2 and 4 at the next time step. The VARDNN was
trained with new network (Figure 2E). Zero-lag analysis (FC)
detected a strong relationship between nodes 2 and 4 (Figure 2F).

FIGURE 2 | (A) Node network image and training conditions. (B) Left shows before training signals of 8 nodes (Red: teaching signal, Blue: VARDNN output). Right
shows after training signals. (C) Training error result (MAE) of signal length and node count. (D) Training time result of signal length and node count. (E) Node
network image for evaluating FC, mvGC and VARDNN-GC. (F) FC result of E. Color range is [–1, 1]. (G) mvGC result of E. Color range is [–5σ, 5σ]. (H) VARDNN-GC
result of E. Color range is [–5σ, 5σ].
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On the other hand, mvGC and VARDNN-GC detected strong
causality from node 6 to nodes 2 and 4 (Figures 2G,H). Since
Granger causality returns values that differ by two or more digits,
the matrix is displayed as a deviation.

Vector Auto-Regressive Deep Neural
Network Performance With Respect to
Network Density
Figures 3, 4 A show evaluation results for the relationship
between sparse pattern network density and ground truth
estimation from signals generated by the 8-node DCM. The
signal length was 300, and the trial number was N = 8.
The VARDNN was trained with the synthetic BOLD signals
and exogenous signals with training epochs = 1,000, hidden1
neurons = 55, and hidden2 = 37 (determined by the method
described in Supplementary Figure 1). Both VARDNN-DI and
VARDNN-GC show competitive results against conventional
algorithms. In particular, VARDNN-DI (AUC: 0.92–0.94 across
densities) shows a significantly higher AUC score compared to
other algorithms, or a similar AUC score to mEN-GC (0.99–
0.89), LINUE-TE (0.93–0.87), and higher as the density of strong
connections increased. The zero-lag analysis algorithms, FC and
PC families, showed similar results in all cases. mPLS-GC, mPC-
GC, PCGC, RNN-GC, and NNNUE-TE sometimes showed a
high AUC score but appeared unstable. mEN-GC, LINUE-TE,
and mvGC showed higher AUC scores relative to the others,
except for the VARDNN-based algorithms (especially in the high
network density case). Figures 4B, 5, show evaluation results
for the relationship between strong weight (| aij| > 0.2) fully
connected network density and ground truth estimation. Once
again, VARDNN-based algorithms also showed competitive
results against existing algorithms. As in the sparse network
evaluation, VARDNN-DI (AUC: 1.0–0.94) showed a significantly
higher AUC score over most algorithms and a similar AUC
score to mEN-GC (1.0–0.92), LINUE-TE (1.0–0.92), and
became higher as the density of strong connections increased.
Increased network density causes synergistic signal activation and
multicollinearity problems and VARDNN demonstrated robust
capabilities for dealing with these issues.

Computation time depends not only on the efficiency of
the algorithm, but also on its implementation and runtime
environment. However, as a basic guide we provide the
computation times of the implementations we tested. The
machine specification was the same as that described in section
“VARDNN Trained on Random Independent Signals.” Many
algorithms, such as FC, PC, mvGC, pwGC showed an order
of about 10−2 s for 8 nodes. LINUE-TE (0.05 s) showed an
order of about 10−1 s. VARDNN-based algorithms (24 s) and
NNNUE-TE (8 s) showed an order of about 10 s. On the other
hand, RNN-GC (599 s) showed an order of more than 102 s.
Because of this, RNN-GC was excluded from the evaluation in
section “VARDNN Performance With Respect to Node Count”
due to an excessively long calculation time in the large node
case. In addition, NNNUE-TE was also excluded from the same
evaluation due to a memory usage error.

Vector Auto-Regressive Deep Neural
Network Performance With Respect to
Node Count
Figures 6, 7 show evaluation results for the relationship between
node count and ground truth estimation of node signals
generated by the reduced Wong-Wang model. Conventional
algorithms such as multivariate GC (AUC: 0.79–0.5), pairwise GC
(AUC: 0.82–0.53), and LINUE-TE (AUC: 0.83–0.54) struggled
when the number of nodes was large. As they are based on OLS,
their sensitivity is reduced by the number of free parameters.
Countermeasure combined mvGC showed a small advantage
over standard mvGC. On the other hand, VARDNN-DI (AUC:
0.88–0.64) and VARDNN-GC (AUC: 0.74–0.66) showed better
scaling performance. At node numbers above 48, VARDNN-
DI and VARDNN-GC showed significantly higher AUC scores
over LINUE-TE and the mvGC family, and above 64 was
significantly higher than pwGC. The pwGC algorithm showed
better scores than mvGC; this may be due to the number
of free parameters. VARDNN-GC did not perform well for
the smallest network size, but unlike the rankings in section
“VARDNN Performance With Respect to Network Density,” it
outperformed VARDNN-DI for more than 64 nodes. Many zero-
lag analysis methods did not perform well in any node count.
This was because the sampling frequency (64 Hz) was too fast
and correlations between nodes were lower than the fMRI BOLD
signal repeat time (0.5 Hz). Overall, VARDNN showed a better
AUC over linear regression results. This means VARDNN has
the ability to be robust to redundancy or dealing with large
dimensionality data. Interestingly, VARDNN shows a higher
AUC over countermeasure techniques. This difference may be
due to VARDNN’s non-linearity.

Vector Auto-Regressive Deep Neural
Network-Directional Influence and
-Granger Causality Can Successfully
Analyze Alzheimer’s Disease
The rsfMRI data acquired from ADNI2 was preprocessed then
separated by the CONN default atlas, generating 132 regions
and 130 frames of rsfMRI BOLD signals. These were analyzed
by several analysis algorithms to obtain functional connectome
matrices. VARDNN was trained with the empirical BOLD signals
and randomly generated exogenous signals (uniform distribution
in range [0, 1], acting as a noise factor to the algorithm), with
training epochs = 1,000, hidden1 neurons = 34, and hidden2 = 23
(calculated by the method described in Supplementary Figure 1).
Figures 8A–D show the mean functional connectome matrices
for the AD and HC subjects. Most algorithms showed similar
patterns for AD and HC, but PC, mvGC, and LINUE-TE
did not (Figure 8E). The cosine similarities between AD
and HC matrices were FC (0.965), PLS-PC (0.645), pwGC
(0.976), VARDNN-DI (0.976), PC (0.11), mvGC (−0.025), and
LINUE-TE (0.034). This meant that FC, pwGC, VARDNN,
countermeasure combined PC and mvGC consistently captured
meaningful regional relationships across the AD and HC subjects,
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FIGURE 3 | (A) Sparse pattern of 8-node network of network density 0.2. Eight self-connections and three other connections. From left to right images show the
ground truth network graph, the matrix A for the DCM, the ROC curve result of ground truth estimation by each analysis algorithms, and the box-plot of AUC results,
respectively. The color bar describes the matrix A-values for (A–E). In the box-plot, a black dot shows each experimental result and a red asterisk shows significant
difference from VARDNN-DI to other algorithms by Steel test (*p < 0.05) (N = 8). (B) Result of network density 0.25 (sparse pattern of 8-node network). (C) Result of
network density 0.3. (D) Result of network density 0.41 (E) Result of network density 0.5.
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FIGURE 4 | (A) Network density (sparse pattern) vs. AUC result. Error bar shows standard error. (B) Network density (fully connected) vs. AUC result.

but PC, mvGC, and LINUE-TE were clearly insensitive because of
the large dimensionality problem.

To compare the values of functional connectome matrices
(132 × 132) between the AD and HC groups we needed to test
the normality of their distributions. FC values in the matrices for
the HC group (21.3%) were significantly not Gaussian distributed
(p < 0.05) (Figure 8F, left). VARDNN-DI values in the matrices
for the HC group (74.1%) were significantly not Gaussian
distributed (p < 0.05) (Figure 8H right). From these results, a
non-parametric test was chosen as appropriate for comparing
the AD and HC groups. We used the Wilcoxon rank sum test
(Mann-Whitney U-test) for this comparison.

Figure 9 shows comparison results between the AD and
HC groups for each analysis algorithm. VARDNN-DI detected
that 12% of regional relationships were significantly affected
(p < 0.05) by Alzheimer’s disease; FC (10.5%), PLS-PC (5.5%),
and pwGC (7.3%) were also able to detect a difference well. Even
though these algorithms had functional connectome matrices
showing high cosine similarity between AD and HC (Figure 8E),
they could capture significant differences between the AD
and HC groups. Next, we confirmed the consistency of our
results with previous studies. Table 3 shows the top 20 most
different regions (in terms of dFC) between the AD and HC
groups, calculated from VARDNN-DI.6 Significantly different
dFC were counted by brain region, and the total number of
both sources and targets is displayed in the VDNdiTotal column
in descending order. Table 3 columns are sorted by the bold
values in the VDNdiTotal column. In this result, VARDNN-DI
was able to detect lesion effects of the Default Mode Network
(DMN), including precuneus cortex, angular gyrus, and cingulate
gyrus (posterior division). Additionally, supramarginal gyrus
(posterior division) and intracalcarine cortex were also detected
and matched well with previous studies. This result confirms
that whole-brain screening with VARDNN-DI may be useful
for further brain analysis. Both FC and pwGC detected some
common effects within the DMN. Although these causal and

6VARDNN-DI was chosen over VARDNN-GC as we found it gave better diagnosis
results, implying that VARDNN-GC’s estimated significantly different regions
were less accurate.

zero-lag analyses use different approaches, they were capable of
showing similar results.

Figure 10 shows the result of Alzheimer’s disease separation
ability by our subject-wise evaluation framework. We tried
to use two subject groups as a ground truth to quantify the
separation ability of each algorithm. Figure 10A shows the top
Nrr ( = 100) most different regional relationships between the
AD and HC groups by VARDNN-DI. From left to right, regional
relationships were sorted in ascending order of p-value. As shown
in this graph, the dFC distribution of AD was significantly
different from that of HC. This means that connectivity is
reduced in these regions. Then, we were able to use these
Nrr regional relationships to separate AD and HC subjects.
The functional connectome matrix was calculated from the
rsfMRI BOLD signal obtained from a new subject, and the
top Nrr regional relationships from the matrix were used to
obtain their health rating (Figure 10B), which could be used to
distinguish between AD (N = 32) and HC subjects (N = 41)
(Figure 10C). ROC curves were generated from the subject
distribution of AD and HC based on the health rating histogram.
A “healthy” threshold to classify healthy or unhealthy was moved
from 100 to 0% over the health rating range. In total, 60
conditions of the framework settings (Nrr :30–300 with step-
size 30, β threshold: 1.5–2.0 with step-size 0.1) were tested
for each algorithm. Figure 10D shows ROC curve results for
each analysis algorithm, and Figure 10E shows the box-whisker
plot of AUCs. VARDNN-DI (0.97) showed the highest AUC
and PLS-PC (0.969) showed a competitive AUC result. These
algorithms separated the AD and HC groups well. FC (0.897)
and pwGC (0.888) (both pairwise strategies) showed similar
cosine similarities and subject-wise evaluation results in TR = 3
s rsfMRI BOLD data. They in turn showed a similar ability for
group separation. The mvGC family of algorithms and LINUE-
TE showed unstable subject-wise evaluation results—they did not
separate the two groups well. The PC family showed high AUC
scores, but they were unstable over several thresholds. Also, their
cosine similarity showed unstable results, i.e., their similarities
were smaller than other algorithms (Figure 8E) and significantly
different regional relations were fewer (Figure 9). For many brain
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FIGURE 5 | (A) Fully connected 8-node network with strong weight (| aij| > 0.2) network density 0.05. From left to right, images show the ground truth network
graph, the matrix A for DCM, the ROC curve result of ground truth estimation by each analysis algorithm, and the box-plot of AUC results, respectively. The color bar
describes the matrix A-values for (A–E). In the box-plot, a black dot shows each experimental result and a red asterisk shows significant difference from VARDNN-DI
to other algorithms by Steel test (*p < 0.05) (N = 8). (B) Result for the strong weight (| aij| > 0.2) network density 0.11 (fully connected 8-node network). (C) Result
of strong weight network density 0.16. (D) Result of strong weight network density 0.27. (E) Result of strong weight network density 0.36.
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FIGURE 6 | (A) Fully connected 16-node network with strong weight (| cij| > 1) network density 0.15. Node signals were generated by the reduced Wong-Wang
model from the TVB software. From left to right images show the global coupling matrix C for the reduced Wong-Wang model, the ROC curve result of ground truth
estimation by each analysis algorithm, and the box-plot of AUC results, respectively. Color bar shows matrix C-value for (A–F). In the box-plot, black dot shows each
experimental result and red asterisks denote a significant difference from VARDNN-DI to other algorithms by the Steel test (*p < 0.05) (N = 8). (B–F) Results for the
32-node, 48-node, 64-node, 80 node, and 98-node networks, respectively.
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FIGURE 7 | Node number (fully connected) vs. AUC result.

regions, the conditioning strategy shows very small differences
around the zero value and the two group distributions were
mixed. Even though some PC approaches were able to show good

group separability, overall results were unstable. In summary,
this demonstrates that VARDNN performs well with real-world,
empirical rsfMRI BOLD data.

DISCUSSION

In this article, we presented VARDNN, a novel method for
functional connectome estimation based on a vector auto-
regressive deep neural network architecture. We proposed two
VARDNN dFC measures that show good sensitivity to causal
structures, namely VARDNN-GC and VARDNN-DI. In our
experiments, the VARDNN was successfully trained with random
uniformly distributed signals, synthetic fMRI BOLD signals
that were generated by the DCM model, synthetic neural
activity signals that were generated by the reduced Wong-Wang
model, and empirical fMRI BOLD signals acquired from the
ADNI2 dataset. Functional connectome estimation of ground-
truth synthetic fMRI BOLD signals from DCM was successful,
and VARDNN-DI and VARDNN-GC showed competitive results
with existing functional connectome estimation measures. In
particular, VARDNN-DI showed a higher AUC score over
other algorithms for the high network density case (Figure 5).

FIGURE 8 | (A) Left: mean FC matrix (132 × 132) of the AD group (N = 32). Right: mean FC matrix of the HC group (N = 41) Color range is [–1, 1]. Source is column,
target is row. (B) Mean PLS-PC matrix (left: AD group, right: HC group). Color range is [–1, 1] (C) Mean pwGC matrix (left: AD group, right: HC group). Color range is
[–3σ, 3σ] (D) Mean VARDNN-DI matrix (left: AD group, right: HC group). Color range is [–3σ, 3σ] (E) Cosine similarity of the mean matrix between the AD and HC
group matrices. (F) Lilliefors test result matrix of FC (left) and VARDNN-DI (right) of HC.
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FIGURE 9 | (A) Significantly different (p < 0.05, yellow color; non-significant, blue color) regional relationship matrices between AD and HC groups. From left to right,
FC, PLS-PC, pwGC, and VARDNN-DI, respectively. (B) The whole brain image of the most different (0 ≤ p < 0.0024) regional relationships by VARDNN-DI. The
image on the left is seen from the dorsal view and the right image shows the medial view of the left hemisphere. Posterior is left and anterior is right. Blue circles are
region centroids. The source to target areas are color coded from green to red. A smaller p-value shows a thicker line.

Furthermore, functional connectome estimation from ground-
truth synthetic neural activity signals generated by the reduced
Wong–Wang model was evaluated. VARDNN-based dFC
measures significantly outperformed other causal estimation
measures for the large node count case (Figure 6). Several
articles evaluating undirected or directed functional connectivity
algorithms based on synthetic fMRI BOLD signals generated by
DCM exist, for example, Smith et al. (2011) and Prando et al.
(2020). However, the results of these experiments are difficult
to compare due to their various network configurations and
densities. For example, networks with node numbers of 5, 10,
and 50 with very sparse connections were used in Smith et al.
(2011), while node numbers of 7 and 66, with a network density
0.5 were used in Prando et al. (2020). In this work we evaluated
both increasing network density and node number cases. The
evaluation of multiple types of algorithms for the early diagnosis
of Alzheimer’s disease has been performed by Dauwels et al.
(2010). We designed a subject-wise evaluation framework to
separate AD and HC groups from empirical rsfMRI BOLD data
in order to quantify the performance of functional connectome
estimation measures. In our results, VARDNN-DI especially
succeeded in extracting lesioned brain regions consistent with
previous studies (Table 3), and it showed a higher AUC score
over existing functional connectome estimation measures when
separating AD and HC groups (Figure 10). This result also
supports the sensitivity of the VARDNN-DI measure.

Both multivariate Granger causality and LINUE transfer
entropy rely on linear multivariate auto-regression. Thus,

their sensitivity becomes low for large node counts and little
sample data (Barnett and Seth, 2014). Several countermeasure
techniques, such as PCA (Zhou et al., 2009), Elastic Net (Zou
and Hastie, 2005; Ryali et al., 2012), and PLS (Wold et al.,
2001; Krishnan et al., 2011) have been used to avoid these large
dimensionality and multi-collinearity problems. We compared
VARDNN against these techniques and VARDNN showed
competitive or even better estimation results. If a DNN does
not have (non-linear) activation functions, it is essentially the
same as linear regression. Activation functions, such as ReLU,
non-linearly extend the ability of linear regression. This strategy
works well for extending the capability of GC by VARDNN.
The well-studied training techniques of deep neural networks
complements the weaknesses of linear regression and extends
its capabilities.

We showed that VARDNN-based GC was able to obtain better
results than RNN-GC, an established neural network-based
approach. RNN-GC was directly compared with another neural
network-based approach called NN-GC, which it outperformed
(Montalto et al., 2015; Wang et al., 2018). The original NN-
GC definition of causality was a simple subtraction: Errreduced −

Errfull, and this definition showed less sensitivity than the
RNN-GC definition of log

(
var (Errreduced)/var

(
Errfull

))
. Our

VARDNN-GC measure used the same type of definition as RNN-
GC and outperformed it. From the comparative results of Wang
et al. (2018) we can also expect VARDNN to outperform NN-
GC. RNNs require sequential input, which can make training
convergence difficult. Our approach uses an auto-regressive DNN
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TABLE 3 | Top 20 regions of most different dFC between AD and HC, calculated from VARDNN-DI.

ROI name Network FC PC-PC PLS-PC pGCSrc pGCTrg VDNdiSrc VDNdiTrg VDNdiTotal References

Precuneous (Precuneous
cortex)

pDMN 20 14 8 11 18 30 59 89 Bakkour et al., 2013;
Peraza et al., 2014;
Utevsky et al., 2014;
Zott et al., 2018;
Pascoal et al., 2019

pSMG l (Supramarginal
gyrus, posterior division left)

FPN/Lang (L) 24 13 5 12 4 37 43 80 Harasty et al., 1999;
Bakkour et al., 2013;
Peraza et al., 2014

ICC l (Intracalcarine cortex
left)

Visual.Primary 6 12 9 10 4 19 58 77 Peraza et al., 2014;
Utevsky et al., 2014;
Hafkemeijer et al., 2015;
Schwab et al., 2020

SCC l (Supracalcarine
cortex left)

Visual.Primary 14 8 13 10 12 10 66 76 Utevsky et al., 2014;
Hafkemeijer et al., 2015

AG l (Angular gyrus left) lDMN 13 16 6 8 26 18 58 76 Bakkour et al., 2013

PC (Cingulate gyrus,
posterior division)

pDMN 5 9 8 19 10 35 24 59 Bakkour et al., 2013

toITG l (Inferior temporal
gyrus, temporooccipital part
left)

DAN 17 9 6 8 1 18 41 59 Mosconi et al., 2009;
Bakkour et al., 2013;
Peraza et al., 2014;
Utevsky et al., 2014;
Zott et al., 2018;
Pascoal et al., 2019

CO l (Central opercular
cortex left)

Auditory 9 9 5 6 7 35 23 58

Cuneal r (Cuneal cortex
right)

Visual.Primary 6 9 7 9 3 14 41 55 Utevsky et al., 2014;
Hafkemeijer et al., 2015

Cereb6 l (Cerebelum 6 left) Cerebellum 10 2 7 15 15 33 19 52 Jacobs et al., 2018

SFG r (Superior frontal gyrus
right)

FPN (R) 22 15 12 12 11 37 14 51 Bakkour et al., 2013

Pallidum l Salience 13 9 7 16 8 18 32 50 Bakkour et al., 2013

SPL r (Superior parietal
lobule right)

DAN 36 12 5 12 6 34 16 50 Peraza et al., 2014

Cereb9 l (Cerebelum 9 left) Cerebellum/pPaHC 10 11 7 7 8 42 7 49 Jacobs et al., 2018

FOrb l (Frontal orbital cortex
left)

Inferior Temporal 3 7 4 4 13 37 12 49

Caudate r Thalamus 16 6 8 5 35 28 20 48

AG r (Angular gyrus right) lDMN 15 3 9 10 0 23 24 47

Cereb45 l (Cerebelum 4 5
Left)

Cerebellum 9 10 5 12 22 16 31 47 Peraza et al., 2014

sLOC l (Lateral occipital
cortex, superior division Left)

sLOC 17 4 5 4 19 28 19 47 Bakkour et al., 2013

Ver12 (Vermis 1 2) Cerebellum/pPaHC 34 9 6 7 3 19 27 46

From left to right column: ROI name, brain network name, significantly different region counted by FC, PC-PC, PLS-PC, pwGC source count, pwGC target count,
VARDNN-DI source count, VARDNN-DI target count, total of VDNdiSrc and VDNdiTrg column, references, respectively.

structure so mini-batch and shuffling during network training
becomes possible. This flexibility improved the training time
of the VARDNN and the accuracy of causality estimation.
Furthermore, we defined a new dFC measure, VARDNN-DI,
as
∣∣zfull − zreduced

∣∣, to extract causal relationships from trained
DNN weights. This simple equation showed surprisingly high
sensitivity in comparison to other algorithms. Owing to these
properties, the VARDNN can be trained on non-linear signals
and capture non-linear relationships in the weights of the DNNs.

Despite its effectiveness, there are some limitations to
the VARDNN and its functional connectome measurements.
Since the designs of the VARDNN-based dFC measures have
similarities with predictive-based analysis, they have similar
limitations to Granger causality (Bressler and Seth, 2011;

Barnett and Seth, 2014; Stokes and Purdon, 2017). The first is
variability in the shape and latency of Hemodynamic Response
Functions (HRFs) in different brain regions (Miezin et al., 2000)
and across subjects (Aguirre et al., 1998). Neural activity and
HRFs in brain regions are not completely synchronized, so data
driven functional connectome measures, including FC, PC, and
GC, have always faced this issue. However, many biological
experiments involve two group comparisons, for example AD vs.
HC, wild type vs. mutated disease model, etc. In this scheme, the
variability of HRFs in different brain regions and subjects can
be considered as differentiating features between the two groups.
Therefore, for such schemes, applying data driven functional
connectome measures for rsfMRI BOLD signal analysis and
striving to increasing the experimental number will support
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FIGURE 10 | (A) Top 100 most different regional relationships by VARDNN-DI. The left vertical axis shows VARDNN-DI score and blue (HC) and orange (AD) lines
show mean score (box) and standard error (bar). The right vertical axis shows the logarithmic scale of p-value. The black dotted line shows the p-value of the
regional relationship between AD and HC groups. (B) Healthy count estimation for subject-wise evaluation framework between AD vs. HC. If the input VARDNN-DI
score is within the specific σ range (1.5–2.0) of the AD distribution, it is counted as unhealthy. This operation was repeated from top Nrr (30–300) most different
regional relationships. (C) Example histogram (Nrr = 100, β = 2, VARDNN-DI) of health rating. Red bars show AD subjects. Blue bars show HC subjects. (D) Mean
ROC curves of 60 conditions by each analysis algorithm. (E) AUC results from (D).

robustness of experimental results. The second issue is related
to changes in the sampling time interval. In our experiments,
VARDNN-DI detected lesioned brain regions from experimental
rsfMRI BOLD signals with a repetition time (TR) of 3 s. These
dFCs clearly depend on the repetition time. If the repetition time
was changed to 1.5 s, the dFC results might have differed. This
problem is not only for predictive-based analysis, but also for

zero-lag analysis. Longer time intervals average over fine patterns
in neural activity, and correlation-based analysis shows better
sensitivity at lower as compared to higher sampling rates. Thus,
we need to be careful and consider this time dependence when
choosing the appropriate analysis algorithm. The third is with
regard to negative causal relationships between nodes. The DCM
inversion algorithm is able to estimate positive and negative
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connection weights, but GC-based algorithms basically do not
have this function because they are calculated from changes in
variance. Some GC approaches may generate negative values, but
such values have no physical interpretation (Chen et al., 2006).
This type of positive and negative causality estimation is also an
issue for VARDNN.

We provide a VARDNN toolbox for MATLAB that
implements the algorithms described in this paper. The code
is open source and can be downloaded from the GitHub
repository at https://github.com/takuto-okuno-riken/vardnn.
The VARDNN toolbox contains a command line tool that
includes several analysis algorithms, namely VARDNN-DI,
VARDNN-GC, mvGC, pwGC, linear TE, FC, and PC to estimate
a functional connectome from brain signals. We hope that this
toolbox will help further brain analysis, and the toolbox will be
expanded with new features in the future. The Deep Learning
toolbox ver. 12.1 (or later), Fuzzy Logic Toolbox ver. 2.6 (or
later), and MATLAB R2019a (or later) are required to run
the VARDNN scripts.
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