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GM3 ganglioside, the first molecule in ganglioside family biosynthesis, is formed by transfer of
sialic acid to lactosylceramide. Several dozenGM3molecular species exist, based on diversity
of ceramide structures. Among ceramide structures composed of sphingosine and fatty acids,
there is a great diversity resulting from different combinations of chain length, hydroxylation,
and unsaturation of fatty acid chains. Expression patterns ofGM3 species in serum vary during
pathogenesis of metabolic syndrome. Physiological activity of each species, and significance
of the variability, are poorly understood. Our studies revealed that GM3 species with differing
fatty acid structures act as pro- or anti-inflammatory endogenous Toll-like receptor 4 (TLR4)
ligands. Very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA GM3 variants strongly
enhanced TLR4 activation. In contrast, long-chain fatty acid (LCFA) and ω-9 unsaturated
VLCFA GM3 variants suppressed TLR4 activation. GM3 interacted with extracellular TLR4/
myeloid differentiation factor 2 (MD-2) complex, thereby promoting dimerization/
oligomerization. In obesity and metabolic syndrome, VLCFA-variant GM3 species were
elevated in serum and adipose tissue, whereas LCFA-variant species were reduced, and
such imbalances were correlated with disease progression. Our findings summarized in this
review demonstrate that GM3 molecular species are disease-related endogenous TLR4
ligands and modulate homeostatic and pathogenic innate immune responses.
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1 INTRODUCTION

Innate immune responses (host defenses against pathogens) are a major contributing factor in
physiological homeostasis. On the other hand, chronic persistence of innate immune responses (i.e.,
chronic inflammation) may lead to development of a variety of serious diseases, including malignant
tumors and metabolic syndrome (Lumeng and Saltiel, 2011; Hotamisligil, 2017). Elucidation of the
molecular mechanisms whereby innate immune responses as a homeostatic mechanism are
transformed into chronic inflammatory responses that lead to pathogenesis will be useful in
formulation of novel diagnostic and therapeutic methods.

This review is focused onmolecular mechanisms underlying the role of glycosphingolipids (GSLs)
in onset and progression of metabolic syndrome, a group of five conditions that often lead to heart
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disease, diabetes, and/or stroke. In particular, we summarize the
role of GM3 ganglioside and its fatty acid (acyl) chain structure in
regulation of innate immune responses, including our own recent
findings.

2 MOLECULAR BASIS OF TOLL-LIKE
RECEPTOR 4-MEDIATED INNATE IMMUNE
RESPONSES
Chronic inflammation in metabolic syndrome is apparently
caused by activation of pattern recognition receptors such as
Toll-like receptors (TLRs) and C-type lectin receptors, and of
downstream transcription factor NF-κB (Baker et al., 2011;
Moresco et al., 2011; Kawai and Akira, 2011; Tanaka et al.,
2014). A complex of TLR4 and co-receptors [myeloid
differentiation factor 2 (MD-2) and cluster of differentiation
14 (CD14) molecules] recognizes exogenous pathogen-
associated molecular patterns (PAMPs); e.g.,
lipopolysaccharide (LPS) as a ligand (Kawai and Akira, 2011;
Moresco et al., 2011). LPS is a glycolipid usually derived from
outer cell wall membrane of infectious Gram-negative bacteria; it
is also termed “endotoxin” because of its proinflammatory
activity. Elevated total endotoxin levels in sera of obese and
metabolic syndrome patients have been reported, although the
cause and measurement methods of these observations remain
controversial (Cani et al., 2007). High-mobility group box one
protein (HMGB1), which functions primarily as a nuclear
protein, is released from chromosomes of dead cells and from
hypertrophied adipocytes in metabolic syndrome patients, and
functions secondarily as an endogenous ligand for TLR4 (Harris
et al., 2012; Guzman-Ruiz et al., 2014). Free fatty acids released
from hypertrophic adipocytes and from fetuin-A, which
functions as a carrier protein, are similarly involved in TLR4
activation inmetabolic syndrome (Shi et al., 2006; Pal et al., 2012).
Cold-inducible RNA-binding protein (CIRP), which is released
by cold stimuli, and serum amyloid A (SAA), which is involved in
TLR4-mediated cancer metastasis, also trigger TLR4 activation
(Hiratsuka et al., 2008; Qiang et al., 2013). These endogenous
ligands are collectively referred to as damage-associated
molecular patterns (DAMPs) derived from cellular or tissue
abnormalities, and sometimes as danger signals or alarmins.

TLR4-KO mice showed reduced metabolic syndrome
symptoms, e.g., abnormal glucose metabolism (Shi et al.,
2006), suggesting that TLR4 activation by various exogenous
and endogenous ligands is an important contributor to the
pathogenic processes.

3 REGULATORY MECHANISMS OF INNATE
IMMUNE RESPONSES MEDIATED BY
SPHINGOLIPIDS
Research on activation and regulation mechanisms of innate
immune responses mediated by sphingolipids has progressed
rapidly during the past decade. Glucosylceramide (GlcCer), the
molecule produced by addition of glucose to ceramide, activates

Mincle (macrophage-inducible C-type lectin), a C-type lectin
receptor in dendritic cells (Nagata et al., 2017). Mincle
expression is upregulated in adipose tissue of obese mice, and
metabolic syndrome symptoms were reduced in Mincle-KOmice
(Ichioka et al., 2011; Tanaka et al., 2014). Lactosylceramide
(LacCer), produced by addition of galactose to GlcCer, is
involved in recognition of the glycolipid lipoarabinomannan in
mycobacterial cell walls by neutrophils, and promotes (through
signal transduction) maturation of phagocytic cells and activation
of bactericidal mechanisms following phagocytosis (Nakayama
et al., 2016). Globo-series sphingolipids Gb3 (produced by
addition of galactose to LacCer) and Gb4 (produced by
addition of N-acetylgalactosamine to Gb3) are involved in
regulation of TLR4 activation in macrophages and vascular
endothelial cells (Kondo et al., 2013; Nitta et al., 2019).

Ganglioside GM3, produced by addition of sialic acid to
LacCer (Figure 1A), is expressed mainly in adipose tissue and
muscle in humans and mice, and liver and serum in humans
(Senn et al., 1989; Wentworth et al., 2016; Go et al., 2017;
Inokuchi et al., 2018). GM3 expression in adipocytes is
induced by stimulation of the inflammatory cytokines TNF-α
and IL-1β, derived from tissue macrophages (Tagami et al., 2002;
Nagafuku et al., 2015). In obesity, adipose tissue is infiltrated by
macrophages, and chronic inflammation caused by inflammatory
cytokine production leads to insulin resistance (Lumeng and
Saltiel, 2011; Hotamisligil, 2017). GM3 expression in visceral
adipose tissue, and gene expression of GM3 synthase (GM3S;
St3gal5), were significantly elevated in ob/ob mice (which display
obesity and metabolic syndrome because of deficiency of the
appetite suppressor hormone leptin) and in mouse models of
obesity induced by high-fat diet (Tagami et al., 2002; Nagafuku
et al., 2015). Molecular imaging of living cells suggests that
increased GM3 levels promote insulin resistance by increasing
the rate of insulin receptor spreading from caveola-microdomain
(lipid rafts) and decreasing signaling efficiency (Kabayama et al.,
2007). Conversely, inhibition of GM3 synthesis by GlcCer
synthase inhibitors (D-PDMP, Genz-123346) enhanced insulin
signaling in adipocytes (Tagami et al., 2002; Zhao et al., 2007).
GM3S-KO mice showed increased systemic insulin sensitivity
and reduction of obesity-induced chronic inflammation
(Yamashita et al., 2003; Nagafuku et al., 2015). These findings
suggest the existence of a GM3-mediated chronic inflammatory
mechanism upstream of insulin resistance, and involvement of
GM3 in innate immune responses (Figure 2).

4 REGULATORY MECHANISM OF TOLL-
LIKE RECEPTOR 4 ACTIVATION VIA FATTY
ACID STRUCTURE OF GANGLIOSIDE GM3
MOLECULAR SPECIES

GM3 is the predominant ganglioside component of human sera,
with concentrations in the 10–15 μg mL−1 (~10 µM) range
(Figure 1). Combinations of ceramide structures in GM3 are
highly diverse, resulting in many GM3 molecular species. In
particular, the fatty acid chains (acyl chains) vary in length

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 9183462

Inokuchi and Kanoh Regulation of TLR4 by GM3

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


because they are composed of many possible long-chain fatty acid
(LCFA) [16:0, 18:0, 20:0] and very long-chain fatty acid (VLCFA)
[22:0, 23:0, 24:0] structures, and can be structurally modified by

α-hydroxylation and ω-9 unsaturation (Figures 1D,E). Serum
expression patterns of GM3 molecular species fluctuate during
pathogenesis of metabolic syndrome (Veillon et al., 2015);

FIGURE 1 |Molecular species of ganglioside GM3 in human serum, and their acyl-chain structures. (A) Pathway (schematic) of GM3 biosynthesis from ceramide.
(B) TLC analysis of ganglioside species in human serum. (C) Quantification by densitometry of major ganglioside species GM3 and GD1a in sera from healthy subjects
(n = 6). (D) Detailed structures of GM3 species: sialyllactose head group, sphingoid base (d18:1), typical fatty-acid lengths (LCFA, VLCFA), and acyl-chain modifications
(a-hydroxylation, ω-9 unsaturation). (E)Quantification by LC-MS/MS of serum GM3 species in healthy subjects. Total abundance of 10 representative species was
defined as 1. (Kanoh et al., 2020).

FIGURE 2 |Working hypothesis: GM3 is involved in activation of innate immune responses. High fat diet-induced obese GM3S-KOmice showed reduced obesity-
induced systemic insulin resistance, and absence of chronic inflammation in visceral adipose tissues (Nagafuku et al.). This observation led us to hypothesize that the
increased GM3 might activate innate immune responses producing inflammatory cytokines.
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however, the significance of such fluctuations, and the
bioactivities of particular molecular species, are poorly
understood. We examined physiological activities of
representative GM3 molecular species (16:0, 18:0, 20:0, 22:0,
24:0, h24:0, 24:1) using innate immune responses as an
indicator (Kanoh et al., 2020), and made the following
observations: 1) LCFA variants (16:0, 18:0) suppressed
proinflammatory cytokine production mediated by human
TLR4/MD-2 complex, whereas VLCFA variants (22:0, 24:0,
h24:0) strongly promoted TLR4 activation. 2) Among VLCFA
variants, the unsaturated one (24:1) had an inhibitory effect on
TLR4. 3) GM3 species alone did not alter proinflammatory
cytokine production; they showed distinctive effects as above
only in the presence of TLR4 ligands (LPS, Lipid-A, HMGB1). 4)
These effects were selective for activation of TLR4 but not of other
TLR family members (TLR1/2 by Pam3-CSK4, TLR2/6 by
MALP-2, TLR5 by flagellin, TLR7/8 by R848). Thus, GM3
molecular species are evidently TLR4-selective endogenous
ligands that display either pro- or anti-inflammatory
properties depending on their fatty acid structures (Figure 3).
Studies by K. Furukawa’s group and ours suggested that globo-
sphingolipids modulate activation of TLR4/MD-2, and that
VLCFA-variant Gb3 species mediate chronic inflammation in
diabetic nephropathy (Kondo et al., 2013; Nitta et al., 2019). The
above findings, taken together, indicate that regulation by certain
GSLs of innate immune responses based on fatty acid chain
length is selective for TLR4 and its surrounding regulators.

We also examined bioactivity of GM3 molecular species in
innate immune responses mediated by mouse TLR4/MD-2
complex. VLCFA-variant GM3 species strongly promoted
TLR4 activation, as in humans. On the other hand, LCFA-
variant and unsaturated fatty acid-variant GM3 species weakly
promoted TLR4 activation, in contrast to the inhibitory effect
observed in humans. Thus, all GM3 species seem to have
proinflammatory effects on mouse TLR4. Why does the

differential selectivity of GM3 species between human and
mouse occur and how is it related to the GM3 recognition
mechanism by TLR4/MD-2?

5 COMPARATIVE FATTY ACID
STRUCTURE/ACTIVITY RELATIONSHIPS
IN LIPOPOLYSACCHARIDE AND
GANGLIOSIDE MOLECULAR SPECIES

When LPS acts as a TLR4 ligand, its glycan structure is recognized
by TLR4 and its fatty acid structure is recognized by MD-2 (Park
et al., 2009; Ohto et al., 2012). GM3, like LPS, has glycan chains
consisting of glucose, galactose, and sialic acid and a ceramide
moiety containing a variety of fatty acid structures. MD-2 may
therefore be involved in recognition of GM3 fatty acid structures.
We compared physiological activities of GM3 16:0 in mouse
TLR4/MD-2 complex, human TLR4/MD-2 complex, and a
chimeric mouse TLR4/human MD-2 complex. GM3 16:0
displayed inhibitory effects on the latter two complexes
(Figure 4); i.e., GM3 bioactivity based on fatty acid structure
was dependent on MD-2. These findings suggest that GM3
regulates TLR4 in lipid membrane, and exerts its effect on
TLR4 via MD-2 as a ligand, similarly to LPS (Galanos et al.,
1984; Galanos et al., 1985; Wang et al., 1990; Akashi et al., 2001;
Mueller et al., 2004; Saitoh et al., 2004). Lipid-A, the core
structure of LPS, has six fatty acids and acts as an agonist of
both human and mouse TLR4/MD-2. Lipid-IVa, the precursor of
Lipid-A, has four fatty acids and acts as an antagonist of human
TLR4/MD-2 and a partial agonist of mouse TLR4/MD-2. The
correlation between bioactivity and fatty acid number forMD-2 is
species-dependent; Lipid-IVa has an inhibitory effect on both
mouse TLR4/human MD-2 chimeric complex and human TLR4/
MD-2 complex. The Lipid-IVa analog eritoran, a TLR4 inhibitor,
contains an unsaturated fatty acid (18:1, ω7) whose binding to
MD-2 mediates the inhibitory effect. The unsaturated fatty acid
chain at the double bond site binds to the hydrophobic pocket of
MD-2 while flipping 180°, thereby reducing apparent chain length
and simultaneously increasing binding force (hydrophobicity)
(Kim et al., 2007). The relationship for GM3 molecular species
between bioactivity and fatty acid chain length and modification,
and the dependency on MD-2, are similar to findings for LPS and
eritoran, suggesting that the mechanism for regulation of TLR4
activation based on fatty acid chain length is conserved among
glycolipid ligands (Figure 5).

6 REGULATORY MECHANISMS OF
CHANGES IN FATTY ACID CHAIN LENGTH
AND STRUCTURAL MODIFICATION OF
GANGLIOSIDE MOLECULAR SPECIES

What is the relationship between variations in fatty acid structure
of GM3 molecular species as above, and onset/progression of
metabolic syndrome? We addressed this question by classifying

FIGURE 3 | Pro- and anti-inflammatory GM3 molecular species against
human TLR4/MD2 complex.
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FIGURE 4 | MD-2 (hydrophobic pocket) is the basis for selectivity for acyl chains of GM3 species. Comparative inhibitory effects of GM3 16:0 on LPS-induced
activation of mouse mTLR4/mMD-2 complex, human hTLR4/hMD-2 complex, and mTLR4/hMD-2 chimeric complex. Signal transduction was monitored by NF-kB
reporter assay (Kanoh et al., 2020).

FIGURE 5 | Enhancement or suppression of human TLR4 activation by GM3 species. Ligand-macromolecular docking analysis: Docking model of GM3 24:0 (A)
and 16:0 (B) binding to human TLR4/MD2 complex. Basic residues of TLR4 are colered in blue. Superposition of GM3 24:0 vs. Ra-LPS (C), GM3 24:0 vs. GM3 16:0 (D),
and GM3 16:0 vs. lipid IVa (E). Binding mode of lipid IVa (antagonist) differed from that of LPS; it involved reverse orientation of 4′-phosphate and acyl chains, which may
inhibit TLR4/MD-2 dimer formation (E). Binding mode of GM3 16:0 was opposite that of GM3 24:0; it involved reverse orientation of acyl chains to MD-2
hydrophobic pockets (D), resulting in suppression of TLR4 activation (E) (Kanoh et al., 2020).
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GM3 species based on their physiological functions in innate
immune responses, and by mass spectrometric analysis of
expression patterns of GM3 species in sera of metabolic
syndrome patients (Kanoh et al., 2020) (Figure 6). Levels of
anti-inflammatory GM3 species (16:0, 18:0) were low in
unaffected obesity [visceral fat area (VFA) pre-symptomatic
phase] and early metabolic syndrome, whereas levels of
proinflammatory species (22:0, 23:0, 24:0, h24:0) were much
higher. In particular, hydroxylated VLCFA-variant GM3 h24:0
was strongly positively correlated with body mass index (BMI;
marker of obesity), abdominal circumference, and C-reactive
protein (CRP; marker of chronic inflammation and surrogate
marker for inflammatory cytokine IL-6) level. In more severe
obesity and metabolic syndrome, expression of VLCFA GM3
declined, while expression of unsaturated-VLCFA GM3 (22:1, 24:
1, h24:1) increased. Thus, a proinflammatory shift of GM3 species
is evidently associated with obesity and chronic inflammation in
early disease stages, while a mechanism that suppresses GM3
proinflammatory properties via unsaturation may become
operational in advanced (severe) stages. In a mouse obesity
model, among GM3 species in visceral adipose tissue, level of
hydroxylated-VLCFA GM3 (h24:0) was greatly increased (Kanoh
et al., 2020). In humans, elevated hydroxylated-VLCFA GM3 in
serum may similarly reflect changes in GM3 species in visceral

adipose tissue. TLR4 loss-of-function mutant C3H/HeJ mice
showed less increase of GM3 species in visceral adipose tissue
(Kanoh et al., 2020). Thus, it appears that proinflammatory GM3
expression is partially dependent on production of
proinflammatory cytokines via their receptor, TLR4, and that
a “proinflammatory loop” consisting of GM3 species and TLR4 is
formed, similarly to the case of free fatty acids and TLR4
(Suganami et al., 2007). H. Shimano’s group showed that fatty
acid elongase ELOVL is involved in regulation of fatty acid chain
length, particularly in Elovl6-KO mice, which have restricted
progression of obesity-induced metabolic syndrome (Matsuzaka
et al., 2007). Content of C22-C24 fatty acids is lower in these KO
mice than in wild-type. Fatty acid unsaturation occurs in late-
stage inflammatory responses and is essential for termination of
innate immune responses (Oishi et al., 2017). Along this line,
unsaturated GM3 content is elevated during severe-phase
inflammatory responses. Hydroxylation modification, on the
other hand, may be related to modulation of GM3 amount
secreted into serum by increased water solubility resulting
from hydroxylation, and to enhanced degradation of VLCFAs
via the α-oxidation pathway (Hama, 2010). Altered composition
of GM3 species in obesity may be associated with altered
expression of ceramide synthase CerS2/6 and impairment of
β-oxidation pathway (Raichur et al., 2014; Turpin et al., 2014).
Elucidation of such molecular mechanisms is the focus of
ongoing studies.

7 CONCLUDING REMARKS

Regulatory mechanisms of innate immune responses based on
fatty acid chains of sphingolipids are summarized in this review,
with focus on ganglioside GM3 and TLR4, and pathogenesis of
obesity and metabolic syndrome. TLR4-mediated chronic
inflammation plays key roles in pathogenesis of numerous
inflammatory diseases and malignancies, and of systemic
inflammatory response syndrome (SIRS) in sepsis. High-
throughput mass spectrometric techniques will help clarify
fluctuating expression patterns of circulating GM3 molecular
species in serum, and association of such patterns with many
disease processes. Numerous sphingolipids in addition to GM3
are generated from ceramide, and regulatory roles of many of
them in innate immune responses are the subject of our ongoing
studies.
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