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Abstract: Neutrophils and eosinophils are granulocytes that have very distinct functions.
Neutrophils are first responders to external threats, and they use different mechanisms to control
pathogens. Phagocytosis, reactive oxygen species, and neutrophil extracellular traps (NETs) are some
of the mechanisms that neutrophils utilize to fight pathogens. Although there is some controversy as
to whether NETs are in fact beneficial or detrimental to the host, it mainly depends on the biological
context. NETs can contribute to disease pathogenesis in certain types of diseases, while they are
also undeniably critical components of the innate immune response. On the contrary, the role of
eosinophils during host immune responses remains to be better elucidated. Eosinophils play an
important role during helminthic infections and allergic responses. Eosinophils can function as
effector cells in viral respiratory infections, gut bacterial infections, and as modulators of immune
responses by driving the balance between Th1 and Th2 responses. In particular, eosinophils have
biological activities that appear to be quite similar to those of neutrophils. Both possess bactericidal
activity, can activate proinflammatory responses, can modulate adaptive immune responses, can form
extracellular traps, and can be beneficial or detrimental to the host according to the underlying
pathology. In this review we compare these two cell types with a focus on highlighting their numerous
similarities related to extracellular traps.

Keywords: neutrophils; eosinophils; neutrophil traps; eosinophil traps; bacteria immunomodulation;
immunology

1. Introduction

The immune system is a complex myriad of signals that orchestrates the timing, length, and quantity
of the immune response [1]. A classic immune response consists of very well-coordinated steps and
begins with innate immunity providing the first level of protection. The innate immune response
includes phagocytic cells and physical barriers at mucosal sites [2–6]. After several steps, the innate
response is followed by adaptive immunity that will be responsible for the ultimate, long-term clearance
of the infection. The successful generation of protective immunity is dictated by a finely-tuned slew
of immune signals beginning with those produced by innate cells [3,6–9]. Nevertheless, while host
immunity fights to orchestrate the battle against the external aggression, microbes utilize means
to disrupt this precise and well-adjusted communication. The manipulation and disruption of the
immune homeostasis can lead to overreactive proinflammatory responses that can cause tissue damage,
disease, and even death of the patient, as is currently happening during the COVID-19 pandemic.

Polymorphonuclear granulocytes are white blood cells characterized by harboring numerous
cytoplasmic granules and segmented nuclei. Granulocytes are a very important part of the first
line of the immune response against infections or external threats [10]. Beyond their classical role,
their outstanding and recently-recognized versatility allows them to work as antigen presenting
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cells [10,11], modulators of adaptive responses [12–15], and overall shapers of the immune
memory [10,16]. There are three major classes of granulocytes—neutrophils, eosinophils, and basophils,
although mast cells can also be included. Neutrophils represent the most numerous and best-studied
class [10].

In this review, we focus on a special function of these cells, which is the formation of extracellular
traps (ETs). We first highlight neutrophils as we talk about their role as immune cells, the traps they
form, and the functionality of these traps. This will be followed by a comparison between neutrophils
and eosinophils as well as the traps they both form, and we outline similarities and differences between
them. We will also dedicate a small section to exploring how pathogens can escape or evade neutrophils
and their traps, as well as the recent discovery of bacterial modulation of eosinophils [17]. We give
examples of some of the pathogens executing these defense mechanisms as well as some of the diseases
that involve them (Figure 1). We conclude by discussing future directions focusing on the application
of current knowledge for the development of therapies as well as guiding future research directions
regarding these two cell types.
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Figure 1. Involvement of NETs and EETs in diseases. The figure compares neutrophils and eosinophils
as well as the extracellular traps they form. The right-hand side table summarizes autoimmune,
autoinflammatory, and infectious diseases associated with the formation of NETs or EETs. The table
also includes the ability of bacteria to modulate extracellular traps formation.

2. Neutrophils and Neutrophil Extracellular Traps

Neutrophils are a very abundant cell type in humans (55–70% of all peripheral white blood cells).
They respond very quickly to infectious agents by trapping the microbes and releasing antimicrobial
molecules with the purpose of killing them [18–22]. They are formed and differentiated in the bone
marrow before being released into the circulatory system. Neutrophils contain many granules that
are classified into three main groups, (1) azurophilic granules, that contain myeloperoxidase (MPO),
bactericidal/permeability-increasing protein (BPI), defensins, neutrophil elastase (NE), and cathepsin
G; (2) specific granules that encompass alkaline phosphatase, lysozyme, nicotinamide adenine
dinucleotide phosphate oxidase (NADPH oxidase), collagenase, lactoferrin, histamine, and cathelicidin;
and, (3) tertiary granules that have cathepsin, gelatinase, and collagenase. There is a fourth type of
granule called a secretory vesicle. These are not real granules, but vesicles derived from the plasma
membrane. These vesicles are important in early events of polymorphonuclear activation and largely
responsible for the many versatile functions of neutrophils [23].
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Although neutrophils are short-lived, they are very motile and can travel through tight junctions
between cells allowing them to reach a multitude of different body compartments. An interesting aspect
of these cells is their unique ability to form neutrophil extracellular traps (NETs) [24–27] allowing them
to catch pathogens in the extracellular space in order to control the spread of the infection. NETs can
trap and kill microbes which significantly decreases the microbial burden [28–30] aiding the immune
system in the clearance of the infection and in the individual’s overall survival.

2.1. Neutrophils in Infection

Neutrophil-mediated microbial clearance is required in infections caused not only by
extracellular [31,32] but also intracellular pathogens such as Listeria monocytogenes [33].
Neutrophils’ classical role during the early innate immune response involves bacterial phagocytosis and
killing facilitated by the generation of reactive oxygen species (ROS), NET formation, and production
of proinflammatory cytokines [19,34,35]. However, current research has demonstrated that neutrophils
can also acquire and perform other important immune functions including antigen presentation [11]
and modulation of adaptive immunity [12].

Neutrophils are essential during the signaling cascade required to activate an efficient inflammatory
response. They produce a plethora of chemokines and cytokines [36,37] highlighting the diversity of
neutrophils in the modulation and overall conservancy of the immune homeostasis. While their job as
first line of defense against pathogens is unquestionable, the formation of NETs remains a controversial
function of neutrophils due to their critical role during bacterial clearance, while simultaneously
associated with deleterious auto-inflammatory and autoimmune diseases.

2.2. NETs

NETs are made of extracellular fibers whose backbone consists of DNA [38,39]. NETs are complex
structures formed not only by chromosomal and mitochondrial DNA, but also DNA-associated histones
and granule proteins including neutrophil elastase (NE), cathepsin G, and MPO [25,40]. NETs can
bind pathogens that adhere to the DNA through the bacterial lipopolysaccharides, for instance [40,41].
This mechanism of defense is inducible by Gram-positive and Gram-negative pathogens [28–30,42,43],
such as Staphylococcus aureus [44–46], Escherichia coli [47–49], or Pseudomonas aeruginosa [41,50–54].

The NET formation process has been referred to as NETosis [55]. It was thought that neutrophils
have to die to form NETs and the actual cell death is called NETosis. However, not all neutrophils
have to die in order to release the mitochondrial DNA. Yousefi et al. [56] demonstrated that pure
mitochondrial DNA can form NETs while neutrophils remain viable. This means that neutrophils have
a cytolytic and non-cytolytic mechanism for NETosis [56,57]. However, the molecular mechanism by
which NETosis is induced and mediated is still not fully elucidated, albeit many pathways have already
been implicated. NET formation was first described to require the release of reactive oxygen species
(ROS) produced by the NADPH oxidase enzyme complex [28,55]. The activation of the NADPH
oxidase is one of the main effector responses of neutrophils to external pathogens and it is also critical
for NET formation due to its ability to activate intracellular granular proteases [58–60]. The localization
(intra- vs. extracellular) of ROS production in neutrophils has been proposed to drive effector responses
of neutrophils including NET extrusion to microbes of different sizes [61]. While several stimuli
trigger NETs in an NADPH oxidase- and ROS-dependent fashion, numerous reports have emerged
proposing an NADPH oxidase-independent mechanism of NET formation in response to specific
stimuli including microcrystals [27,62–64].

Protein arginine deiminase 4 (PAD4), an enzyme performing protein citrullination as a
post-translational modification, has been shown to be critical for NET formation [65,66]. PAD4 is
highly expressed in neutrophils and localizes to the cytosol in resting cells [67,68]. Upon neutrophil
stimulation, PAD4 translocates to the nucleus to promote histone citrullination that mediates chromatin
disassembly [65,69,70]. This is followed by the disruption of the cytoskeleton, endomembranes, and the
nuclear envelope [71]. Different protein kinase C isoforms have been implicated in the mediation
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of PAD4- and NADPH oxidase-mediated NET formation [72]. But regardless of the path utilized to
initiate NET formation, once the process is activated, NE, MPO, and other neutrophil granule proteins
are released and decorate the DNA web [73].

NETosis was proposed to occur by two different pathways: suicidal NETosis and vital
NETosis [26,40,55]. Suicidal NETosis refers to NET formation due to the release of DNA following
the death of neutrophils [74]. Vital NETosis is activated by pathogens, bacterial lipopolysaccharide,
TLR4-activated platelets, or complement proteins. It is a rapid process that does not result in immediate
neutrophil death, however, the cell loses its DNA. More intriguingly, after vital NETosis neutrophils
are still capable of phagocytosing bacteria [75] suggesting that albeit not containing nucleic acid they
are still able to perform biological functions for some time. This is in line with classical observations of
human neutrophil ‘ghosts’ or ‘cytoplasts’ that are isolated neutrophils whose nuclei were removed
experimentally but still remained capable of migration, phagocytosis, and ROS production [76,77].

2.3. NETs and Infectious Diseases

NETs are highly conserved amongst different species in the animal kingdom, which features its
cruciality. As with any other immune function, the ability to form NETs appears to be affected by age.
Previous reports demonstrate that neonatal neutrophils are less capable of forming NETs than adult
neutrophils indicating that the immune system needs to acquire a certain degree of maturity in order
to establish proper NETs [78].

As previously mentioned, there is an extensive number of pathogens that trigger NET formation
by diverse mechanisms including lipopolysaccharide and flagella [79,80]. NETs can have bacteriostatic
and/or bactericidal effects [28]. Within NETs, bacteria cannot utilize the bacterial virulence factors to
downregulate host immune response allowing for the immune system to better control the infection [28].
This undeniably powerful mechanism provides protection against bacterial infections [28,29,51,81,82],
mycobacteria [40], fungi [83], viruses [84,85], and parasites [86–88] offering a basic universal method to
combat microbes. Thus, this highlights the very significant role of NETs during clearance of multiple
kinds of infections.

There is, nonetheless, debate in regard to the role of NETs during several chronic diseases such
as cystic fibrosis (CF). CF is a lung disease where there is a build-up of chronic inflammation and
thick mucus in the respiratory airways as well as robust bacterial colonization. Many different
kinds of bacteria are found in CF patients including Haemophilus influenzae, Staphylococcus aureus,
Pseudomonas aeruginosa, and Bordetella spp. [89]. As neutrophils release DNA, NETs are formed,
and they promote the patients’ mucus to become thicker resulting in the build-up of a niche with a
high amount of glycans that promotes a great bacterial diversity. NETs increase sputum viscosity
causing the patients’ breathing capacity to decrease, negatively impacting their health status. Many CF
patients are subjected to DNase treatment to disrupt the NETs so that sputum can be liquified and
mucus can be cleared [90].

Neutrophils and their NETs play a very important role in the defense against fungal infections as
well. Fungal infections are mostly controlled by neutrophils and they eradicate fungi by oxidative
burst, phagocytosis, or releasing NETs. Candida albicans is a fungus that can cause infections in
the gastrointestinal tract, mouth, throat, and the skin. While NETs bind to this fungal pathogen,
neutrophils also release the protein calprotectin, which is a metal ion chelator. Calprotectin performs its
antifungal activity by depleting Zn2+ and Mn2+. These two ions are very significant for Candida albicans
to thrive, and NETs allow for calprotectin to better reach all fungi leading, then, to the control of the
infection and its dissemination [83].

NET induction in viral infections has not been well-studied but scientists are now learning more
and more about how NETs help protect the host during these infections. Neutrophils are able to
recognize different viral pathogens and trigger NET formation via Toll-like receptors (TLR) like HIV-1,
which promotes NETs via TLR7 and TLR 8 [84]. However, viruses can also promote NETosis indirectly
without using pattern recognition receptors (PRRs). Chemokines and cytokines like interleukin-8 (IL-8)
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and type 1 interferons are present in virus-infected cells triggering NETosis in recruited neutrophils.
These NETs help clear viral infections by binding to the viral particles and immobilizing them by
electrostatic attraction, causing the virus to mechanically stop spreading [91]. But it is worth noting
that bacterial and viral infections manipulate the host system in a very conservative way. This indicates
that a better understanding of the precise mechanisms that pathogens utilize to modulate NETs can
result in targets for therapeutics that can be applied to a broad spectrum of diseases.

NETs and COVID-19

In December 2019, a cluster of pneumonia of unknown etiology was identified in Wuhan, China.
Rapidly, this novel virus known as SARS-CoV-2 emerged and it has spread worldwide causing a
great pandemic during 2020. Since this pandemic started, many efforts have tried to characterize the
pathology and immune responses to this novel coronavirus and a particular feature is the hyperreactive
uncontrolled immune response that leads to the detriment of the patient’s health [92–94].

Increased neutrophil counts in the peripheral blood have been associated with a worsening of the
patient’s prognosis. In fact, the neutrophil-to-lymphocyte ratio (NLR) has been used as a marker of
severe disease [95–97]. In COVID-19 patients, reactive oxygen species (ROS) produced by neutrophils
are augmented which can also contribute to organ failure [98].

Neutrophil degranulation and NET markers have been associated with severe illness during
COVID-19 [99]. In fact, higher levels of NETs have been correlated with an increased death rate in
COVID-19 patients, in which an overreactive neutrophilic response leads to a general multi-organ
failure [97]. Neutrophils appear to be decorated with thrombocytes in severe cases of COVID-19,
the number of NETs identified in the circulation is significantly increased in these patients [100–102]
and this correlates with the evidence of increased platelet factor 4 detected in these patients [101].
This increased NET formation has also been associated with COVID-19-related acute respiratory
distress syndrome and is a potential biomarker for disease severity [101]. SARS-CoV-2 has been shown
to trigger NETs directly in neutrophils [103]. Because of all of this, neutrophils have emerged as
potential, clinically relevant therapeutic targets in COVID-19 [104].

2.4. NETs and Inflammatory Diseases

While the benefit of NETs is to clear pathogens, the unchecked deposition of NETs has been
associated with deleterious effects to health [105]. NETs have been related to several acute diseases such
as acute respiratory distress syndrome [105], hepatic damage during bloodstream infection [106,107],
as well as chronic diseases including cystic fibrosis lung disease [26,50–52] and chronic obstructive
pulmonary disease (COPD) [108–111]. In CF patients, NETs associate, as previously mentioned,
with an obstruction of the lung and decrease of lung function [80,112,113]. However, NETs are also
involved in autoimmune diseases, cancer, and even fertility [114]. And excitingly, NETs and EETs,
as discussed later, have also been associated with gout and its pathogenesis induced by the formation
of monosodium urate microcrystals [27,62,115].

NETs play a very significant role in many diseases and health conditions including asthma and
allergies. Unfortunately, NETs have a negative impact in asthmatic patients. In some cases when there
is a disordered regulation in the formation of NETs, it can actually promote exacerbation of severe
asthma and COPD112.

Furthermore, it has been proven that NETs have been found in the sputum of severe asthmatic
patients. A previous study was completed to compare the sputum of severe asthmatic patients to
healthy control subjects by measuring extracellular DNA (eDNA). This study resulted in the knowledge
that a higher eDNA concentration was found in severe asthmatic patients and that NETs mediate
inflammasome activation as well as cell injury. High eDNA in the sputum of severe asthmatic patients
correlated with their levels of NETs that were also cytotoxic to airway epithelial cells [116].

NETs have also been shown to have a role in thrombosis. Thrombosis is the pathological deviation
of hemostasis which involves the mechanisms that stops bleeding after blood vessels are injured [117].
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In other words, thrombosis is the creation of a blood clot in a blood vessel which stops leakage of blood
into surrounding tissues but can also result in the restriction of blood flow. It has been shown that
thrombosis depends on platelet aggregation and adhesion, and NETs that are perfused within the blood
can accelerate platelet aggregation [118,119]. Deep vein thrombosis is a serious issue because it develops
pulmonary embolisms, referred to as venous thromboembolism [120], and there are occlusions of the
pulmonary artery due to the thrombus breaking apart and traveling to the lungs [117]. Studies regarding
deep vein thrombosis have shown that NETs stimulate thrombus formation through the entrapment of
red blood cells which also promotes fibrin deposition [118]. The results of these studies also indicated
that NETs in sepsis have the same function [118]. Other studies have illustrated the role of NETs in
acute myocardial infarction, revealing that NETs at the site of plaque rupture were enveloped by tissue
factor which is a significant in vivo initiator of coagulation [121]. Overall, NETs contribute to several
pathologies via their prothrombotic effect.

2.5. Bacterial Mechanisms to Escape NETs

As NETs remained well-conserved across evolution, and due to the great selective pressure that
this possesses on infectious agents, bacteria have evolved mechanisms to escape or manipulate
NET mediated clearance [122–128]. Since this topic has been extensively covered in several
reviews [50,84,128–130], only a few highlights are mentioned here. Bordetella pertussis harbors many
immunomodulators that control several aspects of the host immune response [1,131,132] including
NETs. B. pertussis suppresses the generation of ROS inhibiting NET formation. Also, adenylate cyclase
toxin (ACT) of Bordetella spp. contributes to the suppression of ROS [126]. Similarly, Pseudomonas
aeruginosa possesses means to trigger NET formation. Swimming motility mediated by the bacterial
flagellum has been shown to be an essential factor in triggering NETs in neutrophils [80]. Interestingly,
it has been demonstrated that NET formation is also linked to quorum sensing (QS). Quorum sensing
is the mechanism by which bacteria communicate with each other via diffusible molecules [133–135].
LasR, a regulator of QS that controls expression of many bacterial virulence factors, provides an
exciting target to explore the relationship between NETs and QS. Previous results demonstrated that
LasR-deficient mutants presented a defect in NET formation. This implies that there is a two-way
signaling mechanism involved in the formation and maturation of NETs [136]. On one side, the bacteria
might be sensing the host inflammatory response and responding by increasing the expression of
factors that allow the blockage of host immunity. In parallel, the host immunity is able to detect cues of
the bacterial threat and counteract accordingly by orchestrating signals that will allow for the required
response that leads to clearance. A better understanding of this universal language will enable us to
design immunomodulators that can be used not only for treatments but also vaccine design.

These are only two examples that highlight the subtleties in the regulation of NETs in immune
responses. The fact that SARS-CoV-2 is also manipulating NETs suggests that disturbing this mechanism
of defense provides the pathogen with a very powerful tool to cause infection.

3. Eosinophils and Eosinophil Extracellular Traps

3.1. Eosinophil Biology

Eosinophils are terminally differentiated granulocytes that develop in the bone marrow from
granulocytic/myeloid progenitors in mice and common myeloid progenitors in humans [137].
They become eosinophil progenitor cells (EoP) and differentiate into mature eosinophils prior to exiting
the bone marrow [138]. Eosinophils rely on cytokines like IL-3, IL-5, and Granulocyte-macrophage
colony-stimulating factor (GM-CSF) for hematopoiesis, survival, and enhanced activation by other
stimuli. Homeostatic migration of eosinophils occurs through eotaxin-1 (CCL11), while eotaxins
-2 (CCL24) and -3 (CCL26: human only) are the primary mediators of their migration into tissues
in disease states. They are found in low numbers in the circulation (1–3% of all white blood cells)
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and can be resident cells in tissues such as the gastrointestinal tract, lung, thymus, adipose tissue,
and endometrial tissue, as well as in secondary lymphoid tissues [139–141].

Eosinophils contain eosinophil-specific (secondary) granules [129] that are released by several
mechanisms into the extracellular milieu. Within these secondary granules are proteins that
are conserved across species like major basic protein (MBP) and eosinophil peroxidase (EPX).
There are also granule matrix proteins like eosinophil cationic protein (ECP) and eosinophil-derived
neurotoxin (EDN) that are divergent in mice forming a family of murine ribonucleases (mEARs) [142].
Importantly, eosinophil granules also contain immune signals such as chemokines, growth factors,
and cytokines [143–145] within their granules that can be actively and specifically released without
requiring previous RNA transcription, leading to a very rapid response. Granules and granule contents
are released via several mechanisms in response to a variety of stimuli. This includes, for example,
specific release of mediators through piecemeal degranulation or release of entire granules resulting in
cell-free granules that deposit in tissue, or through lysis of the cell.

The classic role of the eosinophil is described as that of a cell that kills and damages other
cells, including pathogens. For example, eosinophils contain antimicrobial peptides (AMPs) and
generate reactive ROS that kill pathogens. Although eosinophils are known by these innate features
that lead to tissue damage or cell death, eosinophils are increasingly being defined as cells with the
potential to modulate immune responses as well as remodel and repair tissue as described by Lee and
colleagues [146].

For example, eosinophils have been identified as cells that respond to innate cytokines such as
IL-33, an IL-1 family cytokine [147], to induce type 2 cytokine production, macrophage polarization,
and dendritic cell activation [148,149]. Moreover, eosinophils may modulate the polarization and
activation of T cells through direct and indirect mechanisms. Tissue remodeling and repair by
eosinophils has been shown to be somewhat dependent on the extracellular matrix components that,
in turn, may activate or suppress eosinophils [150]. Finally, eosinophils have the capacity to resolve
inflammation, whether directly, by the release of resolvins [151], or through activation of phagocytic
macrophages [152]. The roles of eosinophils in infectious responses as well as non-allergic diseases have
enhanced our understanding of these cells as complex participants in human health [137,139,153,154].

3.2. EETs and EETosis

The discovery of eosinophil extracellular traps (EETs) is a novel exciting area of investigation that
promises to unravel important functions for these cells. EETs, similar to NETs, have many advantages
when it comes to infectious diseases, although this comes with a price [73].

Eosinophil traps have been shown to occur in humans as well as other animal species [155,156].
The original hypothesis of how these eosinophil extracellular traps are formed was demonstrated by
Yousefi and colleagues proposing that similarly to neutrophils, eosinophils can eject their mitochondrial
DNA and granule content while still remaining viable cells [157]. A second mechanism was identified
by Ukei and colleagues whereby lytic cells released nuclear DNA that contained histones and
cell-free secondary granules. When the cells are presented with immobilized immunoglobulins
(IgA and IgG), calcium ionophore, platelet activating factor, or phorbol myristate acetate, cellular
death and degranulation are promoted [141,142] and EETosis takes place [143]. It is possible, as
well, that NADPH oxidase-dependent mechanisms, similar to NETosis [158], are needed for EETosis.
Recent reports suggest several mechanisms may give rise to either lytic or viable DNA release from
eosinophils, all of which require further study. However, there is evidence that extracellular DNA trap
formation for viable and lytic EETosis happens in vivo [148].

Monosodium urate crystals (MSU) also induce trap formation in neutrophils and
eosinophils [159,160]. MSUs have been associated with the enhancement of the autoinflammatory
disease gout [161], partially due to their ability to trigger NETs and EETs. Interestingly, this poses
the question as to whether there is a feedback regulatory mechanism between both cell types and
their traps.
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3.3. Eosinophils and Their Traps in Infectious Diseases

Eosinophils have been shown to lead to the clearance of specific parasitic infections [162], bacterial
infections, and viral infections [163–168]. Even though the role of eosinophils during infection has
only started to be delineated, some evidence of their important involvement in immunity to bacterial
infections has been noted mostly in two models of infection. During Staphylococcus aureus septicemia,
the classical proinflammatory response involves production of type 1 and type 17 T helper cells [102].
Additionally, preliminary data have revealed that the cytokine secretion by group 2 innate lymphoid
cells (ILC2) combined with eosinophil function can skew the response towards a type 2 response,
and this appears to be a better defense mechanism against S. aureus infection [169]. Septicemia survivors
present higher numbers of Th2 cells [169] indicating that eosinophils mediate the generation of efficient
immunity during S. aureus systemic infections—by a still unknown mechanism.

An alternative model to study the role of eosinophils in inflammatory responses has also been
revealed during Helicobacter pylori infection. H. pylori is a Gram-negative bacterium that is generally
found in the digestive tract. During H. pylori infection, eosinophils promote immune responses by
suppressing Th1 immune responses allowing for a robust Th2 response that aids clearance [170].

An important role of eosinophils and EETs is highlighted during fungal infections. Fungi are
not only pathogens, but they can also be major allergens [171] triggering allergic responses classically
associated with eosinophils. ABPA (allergic bronchopulmonary aspergillosis) is involved in an allergic
response to Aspergillus fumigatus, a fungus that is commonly found in patients with cystic fibrosis
and asthma [172]. ABPA can cause such a severe eosinophil-dependent asthmatic response that can
lead to a significant decrease in lung function [171]. Following direct interaction with A. fumigatus,
eosinophils go through EETosis contributing to the thickening of the mucus and eventually causing
mucus plugging [173]. Mucus plugging is associated with recurrent relapse, and it is thought to be
the cause of severe inflammation in the airways [173]. Furthermore, the induction of the EETs by
this particular fungus culminates in an ROS-independent process [174]. Altogether, this indicates
that eosinophils likely play an important role in the immune responses to A. fumigatus and their
dysregulation may lead to increased morbidity associated with the primary infection [92].

Paracoccidioidomycosis (PCM) is caused by the fungus known as Paracoccidioides brasiliensis
and eosinophils are also involved in the pathology of PCM disease [175–177]. Patients suffering
from PCM have declining T cell immunity and an increasing number of blood eosinophils, which,
combined, induces high levels of inflammatory response in the very first phase of the infection [178].
Moreover, animal experiments have revealed that increased levels of IL-5 result in the blocking of
eosinophil maturation increasing the susceptibility to PCM. The association between eosinophils
and disease severity implies that immunomodulators of eosinophils might be a good therapeutical
candidate for these fungal diseases.

An example also related to S. aureus is eosinophilic chronic rhinosinusitis (CRS). Eosinophilic CRS
is a refractory disease characterized by the presence of thick mucus, nasal polyps, and congestion.
Eosinophil infiltration in these patients is often associated with secondary infections that triggers
proinflammatory responses [179]. EETs are formed at the sites of airway damage and they protect CRS
patients from external aggressions like infections by entrapping bacteria such as S. aureus [180].

Eosinophils also play a role in many viral infections [181–183]. A study was completed looking at
how eosinophils respond to influenza A virus infection [184]. This study revealed that eosinophils
could act directly against influenza A, but they also mediated CD8+ T cell responses against the
virus [182]. Similarly, respiratory syncytial virus (RSV) also induces EET formation in vitro in a
concentration-dependent manner [181]. Interestingly, RSV is frequently related to asthma [185]
exacerbations, further implicating a role for eosinophils in these infections. RSV induces EETs in the
bronchoalveolar lavage fluid in mice with asthma which is suggested to promote airway obstruction,
mucus plugs, and inflammation in respiratory airways [181].

Altogether, this indicates that eosinophils likely play significant roles during infections, however,
the recent attention focused on these cells will soon enlighten more of the interesting biology of
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eosinophils and EETs and their roles in the immune responses to infectious diseases. The function of
EETs in pathogen clearance and the precise mechanisms that trigger EET formation and modulation
still remain not fully understood.

Eosinophils and COVID-19 Infection

Persistent eosinopenia has been directly correlated with severe COVID-19 with a positive
predictive value of over 72% [186–196], and eosinophil counts on peripheral blood have been proposed
as biomarkers [187,197]. Eosinophil counts appear to be very low, with a minimum at day 4 [197]
when patients arrive to the hospital and the numbers slowly increase in those patients that recover,
while continuing at minimum levels for those with severe manifestations of the disease [196]. COVID-19
patients have low blood eosinophils, lung biopsies are characterized by the lack of eosinophils and
massive macrophage infiltration. However, eosinopenia has also been thought of as a sign or
consequence of host exhaustion from clearing the COVID-19 virus [198]. Dr. Iwasaki and colleagues
characterized the immune responses to COVID-19 in a cohort of patients with different stages of severity
where correlations between elevated type 2 responses in severe COVID-19 infections appear [199].
Patients with severe disease showed increases in eosinophils and levels of eotaxin-2, IL-5, and IL-13
compared to those with moderate disease. The apparent association with eosinophils and other
signatures that are generally associated with Th2 responses, was unexpected [182].

Two eosinophilic proteins, eosinophilic cationic protein and eosinophil-derived neurotoxin (EDN),
neutralize SARS-CoV-2 [200] and strategize to avoid clearance and increase persistence while keeping
low levels of eosinophils [201]. In fact, elevated levels of EDN in serum have been observed in children
with persistent wheeze-associated illness. And interestingly, IL-5 and IgE have also appeared to be
augmented in the worse cases of COVID-19 [199], suggesting that eosinophil signatures could be
considered as indicators of patient prognosis.

These, so far, are preliminary studies, and more investigations need to be done to evaluate the role
of eosinophils during COVID-19 infections. Is the virus manipulating host response and promoting
eosinopenia, are eosinophils forming traps, what are the consequences of this decrease in the numbers
of eosinophils during early stages of infection? These and many other questions are still to be answer.

3.4. Bacterial Mechanisms to Escape EETs

The fact that EETs are a host mechanism to fight a variety of infectious diseases suggests
that it is most likely that pathogens have evolved means to evade, manipulate, or escape EETs.
The compelling evidence that EETs are involved in infectious pathologies such as septicemia or fungal
and viral respiratory diseases leads to the question of the implication of these traps in other bacterial
infections. A recent study reveals how well-adapted pathogens can efficiently block eosinophilic
influx in the lungs, causing a defect in adaptive responses associated with an increased pathogen
persistence [17]. The Bordetella bronchiseptica sigma factor, btrS, regulates many immunomodulators
associated with suppressing different aspects of the immune response [202]. B. bronchiseptica btrS-null
trigger a prompt and robust adaptive response [131]. Some insight into the possible mechanisms
associated with this increase in adaptive responses points two different cells, macrophages and
eosinophils. Transcriptomic data of macrophages challenged with this mutant indicate some Th2-related
signatures [131]. Further studies in eosinophil-deficient mice, revealed that while the wildtype mice
clear the infection in 14 days, mice lacking eosinophils present a long-term infections characteristic of
the wildtype bacteria [17]. These results suggest that wildtype bacteria somehow block eosinophil
influx in the lungs to prevent the generation of prompt and robust adaptive immunity and to promote
long term bacterial persistence.

These findings open a novel perspective and understanding of bacterial ability to manipulate
host immune responses using very sophisticated mechanisms. This suggests that we might need to
reconsider the classical view that we have of some immune cells.
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3.5. EETs and Inflammatory Diseases

While inflammatory diseases caused by NETs are very diverse, eosinophils and EETs have
been mostly associated with allergic [203] and non-allergic respiratory diseases. EETs can
negatively affect patients’ health due to the increased production of mucus secretions [155].
Unfortunately, dysregulations of eosinophilic functions can lead to pathological disorders, such as
atopic dermatitis, rhinitis, asthma, and other inflammation-associated medical conditions [137].

Allergic asthma [178] is generally a very complex disease characterized by reversible bronchial
hyperresponsiveness often associated with airway eosinophilia. In particular, severe eosinophilic
asthma, which is often refractory to inhaled corticosteroids, has been found to present neutrophil and
eosinophil traps that may play a role in disease pathologies as well as serve as biomarkers [204,205].
EETs contribute to asthmatic patients having respiratory problems likely due to the EETs promoting
mucus plugging in the airways and epithelial damage [206]. Overall, these activities of eosinophils may
contribute to asthmatic exacerbations [207]. One mechanism of EET activity in asthma may be through
the functions of granule proteins and granules associated with the DNA NETs, resulting in tissue
damage and cell-free granule signaling [205,208]. To further support these findings, when studying the
role of EETs in the murine model, EETs injected into naïve wild-type mice induced epithelial activation
that promoted group 2 innate lymphoid cell activities thus increasing type 2 cytokines IL-5 and IL-13
in the airways and lungs [206]. Overall, this study showed that EETs could potentially modulate type
2 immune responses in severe asthmatic patients with high airway and blood eosinophilia.

A further study indicated that indeed extracellular granules are found in tissues of asthmatic
patients and this implies that eosinophils release cytotoxic cellular content that causes damage to
the tissues. There are certain signaling pathways involved in triggering cytolysis, the bursting of a
cell due to an osmotic imbalance, and the release of these free granules of eosinophils. Many of the
granules are activated by interleukin-3 (IL-3). This study looked at IL-3-primed eosinophils seated on
immunoglobulins like IgG. When eosinophils were exposed to IL-3, they degranulated early in the
presence of IgG and the cytolysis of the IL-3-primed eosinophils was dependent on ROS production
and involved eosinophil migration and adhesion [209].

Non-respiratory diseases including thrombosis and atherosclerotic plaque formation have also
been associated with EETs [210,211]. Previous data have revealed that EETs could be used as targets
for atherosclerosis treatment, for example using Siglec 8/F antibodies to block EET formation [210],
providing a novel approach for a disease that is highly prevalent. In fact, in mice, SiglecF antibodies can
reduce thrombus stability preventing arterial thrombosis [210]. In this study, the data suggested that
eosinophil EETosis and MBP release promote platelet activation, thrombus formation, and production
plaques in blood vessels. As EETs have been associated with thrombosis formation in atherosclerotic
plaques it is not without reason to suspect EETs may be present in other diseases with thrombus
formation, such as chronic urticaria [212] and other skin diseases [213]. Altogether these data suggest
a novel mechanism of eosinophil-mediated damage to vasculature and tissue.

4. Future Directions

The role of eosinophils during immune responses against pathogens has been under-studied,
nevertheless, when looking carefully, neutrophils and eosinophils share many functions. In this review
we only explored one of the many aspects of this cell type, furthering the demonstration that EETs
(of eosinophils) are similar to NETs (of neutrophils).

Interestingly, NETs and EETs possess many common mechanisms and functions. It could even be
possible that NETs trigger the formation of EETs by inducing signals such as MSU crystals indicating
that these two processes might complement each other and be interconnected. But the question
remains as to whether, if the microbes are able to manipulate NET formation, are they also able to
manipulate EET formation? How do pathogens disrupt immune signals orchestrating NETs and EETs
and promoting inflammation in autoinflammatory disorders? If pathogens disrupt immune signals
causing overreactive proinflammatory responses, can we manipulate them artificially as a treatment
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for some of the aforementioned diseases? Also, does viable and lytic EETosis and NETosis happen at
the same time in vivo and in the same diseases?

Both EETs and NETs have advantageous and disadvantageous effects for the host. The great
opportunity comes with the gain in knowledge of EETs, as it can provide not only a better understanding
of the biology of eosinophils and their role during inflammatory responses, but it can generate targets
for therapeutic agents of many infectious and eosinophilic diseases.
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